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An example

"Stochastic gradient descent":

Xn+1 = Xn + n(—V V(Xn) + gn)

[td6 Diffusion:

dXe = —VV(XZ)dt + o dW,,

Xg = X0-
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Metastability

To describe the metastable phenomenon in a system, we need:

e metastable regimes

e transition time between them
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Linear diffusion

dXe = —VV(X?)dt + o dW,,

Xg = X0-

V - multi-well potential, W — Brownian motion in RY, ¢ > 0 — noise parameter.

Questions:

e What are the metastable regimes?
e What are the transition times?

e What are the transition position?
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Linear diffusion

Alternatively, to describe metastability, we need:
e basins of attraction
e exit-time

e exit-location
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Exit-time problem

Let G C RY be an open domain. We want to estimate the exit-time, i.e.:

T¢ = inf{t >0: X/ € 0G}.

Assumptions :

e There is only one attractor a inside G
e G is bounded
e G is stable
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1. PDE (potential-theoretic) approach
2. The pathwise approach
3. The spectral approach



1. PDE (potential-theoretic) approach

A classical theorem:

satisfies the Poisson equation in G:

L°u=—g, in G,
u=1"f, on 0G,

where L%y ;= %2Au —-VV.-Vu.
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A classical theorem:

o

u(x) = Ex (o + /OTG 1ds>

satisfies the Poisson equation in G:
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1. PDE (potential-theoretic) approach

A classical theorem:
u(x) := Ex(72)

satisfies the Poisson equation in G:

Lu= -1, in G,
u=20, on G,

where L%y ;= %2Au —-VV.-Vu.

10



1. PDE (potential-theoretic) approach

|dea:
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1. PDE (potential-theoretic) approach

|dea: Solve this PDE!
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. PDE (potential-theoretic) approach

1. Kramers (1940) : solved it for a toy model with a double-well potential in d =1 and

N 2 e exp{2(V(z*)J; V(al))}

get:
Es7a, = (14 0(1))
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1. Kramers (1940) : solved it for a toy model with a double-well potential in d =1 and
2 2(V(zf) -V
o[ AV Vi)

\/—V”(z*)V”(al) o

2. The multidimensional version is attributed to Eyring (40s) and is called the

Eyring-Kramers formula

get:

Ea17-82 = (1 + 0(1))
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1. PDE (potential-theoretic) approach

1. Kramers (1940) : solved it for a toy model with a double-well potential in d =1 and

EayTar = (1+ o(l))\/_ VH(Z{) e exp{z(v(z*)gz V(al))}

2. The multidimensional version is attributed to Eyring (40s) and is called the

get:

Eyring-Kramers formula
3. Bovier, Eckhoff, Gayrard and Klein (2001) : potential theory
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2. The pathwise approach

dxe = —

VV(XO)dt + o dWe, X = xo.
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2. The pathwise approach

Xy = -

VV(X?)dt +odWe, X§ = xo.
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2. The pathwise approach

AX? = —VV(X?)dt + o dWs, X = xo.

Assumptions :

o Ve C2(Rd) et V>0,
e G — bounded; G is stable under —VV; a is the only attractor inside G
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2. The pathwise approach

Theorem (Freidlin, Wentzell)
Let H :=infyecac {V(x) — V(a)}. Then for any x € G and for any 6 > 0
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2. The pathwise approach

Theorem (Freidlin, Wentzell)
Let H :=infyecac {V(x) — V(a)}. Then for any x € G and for any 6 > 0

. 2 o 2 _
° JLnOPX <exp{02(H—5)} <T¢ SGXP{CTQ(H+5)}> =1,

2

g
lim — logE, 7Z = H.
¢ O'T;]O 2 08 ExTe
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2. The pathwise approach

Theorem (Freidlin, Wentzell)
Let H :=infycac {V(x) — V/(a)}. Then for any x € G and for any 6 > 0

. > i 2
[ ()l—IL)n()PX <exp{a2(H—5)} ETG §exp{g2(H—|—5)}> = 1’

o2
. ;@07 log ExT¢ = H.

For any N C OG such that inf,cny{V(z) — V(a)} > H then also

e lim PX<ng € /v) —0.

o—0

13
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In favour of the PDE approach:
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Comparison of the two approaches

In favour of the PDE approach:

1. prefactors?

2. why stability on 9G? (in fact, see works of Day, 90s)
In favour of the pathwise approach:

1. works in the nonreversible case
2. gives more information (result in P, exit-position, exit trajectory, etc.)

3. | understand it better

14



McKean-Vlasov diffusion



McKean-Vlasov diffusion

dX? = odW, — VV(X?)dt —VF % pug(X7) dt,
pg = L(X7),
XJ =x0 € RY as.;

V : RY — R - confinement potential
. F: RY - R — interaction potential
. uy = L(X7) - the law of X7

AwoN e

W — Brownian motion

15



A measure dependent diffusion

X" = odwi - vv(x{Myde 4 EJNZI VEX" = xdM)dr,
Xé"N =xp € RY ps.

@ ® _vrx,dt

) @
® o o) >.Xt\
o @ odW,
® @ ® () t
@

—VF x up (Xp)dt
e o e\ Ae
® ® ®

Figure 1: Dynamic of X/

16



Old and new results



Some previous results

1. Convex-Convex case : [HIP08] — Kramers' type law

V(x) F(x)

| * | )

Techniques: LDP, remake of the Freidlin-Wentzell theory (the pathwise approach)
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Some previous results

1. Convex-Convex case : [HIP08] — Kramers' type law
2. Convex-Convex case : [Tugl6] — Kramers' type law

V(x)

F(x)

Techniques : control of the law, coupling method
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V(x) F(x)
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How to approach this problem

The idea was:

1. Convexity of the confinement => control of the law (u¢ ~ ;)
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How to approach this problem

The idea was:

1. Convexity of the confinement => control of the law (u¢ ~ ;)

2. Convexity => closeness with the coupled process Y:

dX? = =VV(X7)dt — VF x pu(X7)dt + o dW,
dYS = =VV(Y?)dt — VF % §,(Y)dt + o dW;
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How to approach this problem

The new idea is:

1. Convexity-of-theconfinement. But, before the exit-time, we are in the domain of

attraction G.
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How to approach this problem

The new idea is:

1. Convexity-of-theconfinement. But, before the exit-time, we are in the domain of
attraction G. Thus, u7 ~ &, should be true at least until the exit-time

2. Convexity. But both Y7 and X7 spend most of the time around a. Thus, we still
expect that they are close.

dX? = —-VV(X7)dt — VF % u?(X7)dt + o dW;
dYS = =VV(Y?)dt — VF x§,(Y7)dt + o dW;
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New result

Assumptions:

1. V and F are regular

2. GCRYisa regular, bounded domain

3. a € G is the unique (inside G) attractor of —VV
4. G is stable under —VV — VF(- — a).

20



Results

Theorem ([AT24])

Under the assumptions above, we have:

1. Kramers' type law: for all § > 0:
lim P |exp {E(H - 5)} < 7& < exp {E(H + 6)} =Hil
o—0 02 =6 = 02
2. Exit location : for all closed N C OG such that inf,cny Wa(z) > H, we have:

lim P(X7; € N) =0.
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Results

Theorem ([AT24])

Under the assumptions above, we have:

1. Kramers' type law: for all § > 0:
lim P |exp {E(H - 5)} < 71¢ < exp {E(H#—é)} =1
0—0 02 O o2
2. Exit location : for all closed N C OG such that inf,cy Wa(z) > H, we have:

lim P(X7; € N) =0.

Question: where is E,(7Z)7
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Open questions

1. Generalization of the process (in particular, diffusion term)
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Open questions

1. Generalization of the process (in particular, diffusion term)
2. Full description of metastability
3. What is wrong with E,(7Z)?

4. Prefactors ?

22



Thank you for your attention !
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