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An example

"Stochastic gradient descent":

Xn+1 = Xn + η(−∇V (Xn) + ξn)

Itô Diffusion:

dX σ
t = −∇V (X σ

t ) dt + σ dWt ,

X σ
0 = x0.
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Metastability

Metastability occurs when a dynamical system lingers around an equilibrium position
before transitioning to another

• Chemistry

• Physics

• Computer science

• Economics
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Metastability

To describe the metastable phenomenon in a system, we need:

• metastable regimes

• transition time between them
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Linear diffusion

dX σ
t = −∇V (X σ

t ) dt + σ dWt ,

X σ
0 = x0.

V – multi-well potential, W – Brownian motion in Rd , σ > 0 – noise parameter.

• What are the metastable regimes?

• What are the transition times?

• What are the transition position?
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Linear diffusion

Alternatively, to describe metastability, we need:

• basins of attraction

• exit-time

• exit-location
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Exit-time problem



Exit-time problem

Let G ⊂ Rd be an open domain. We want to estimate the exit-time, i.e.:

τσG := inf{t > 0 : X σ
t ∈ ∂G}.
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Exit-time problem

Let G ⊂ Rd be an open domain. We want to estimate the exit-time, i.e.:

τσG := inf{t > 0 : X σ
t ∈ ∂G}.

Assumptions :

• There is only one attractor a inside G

• G is bounded

• G is stable
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Three approaches

1. PDE (potential-theoretic) approach

2. The pathwise approach

3. The spectral approach
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1. PDE (potential-theoretic) approach

A classical theorem:

u(x) := Ex

(
f (XτσG

) +

∫ τσG

0
g(X σ

s ) ds
)

satisfies the Poisson equation in G :

Lσu = −g , in G ,

u = f , on ∂G ,

where Lσu := σ2

2 ∆u −∇V · ∇u.
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1. PDE (potential-theoretic) approach

Idea:

1. Kramers (1940) : solved it for a toy model with a double-well potential in d = 1 and
get:

Ea1τa2 = (1 + o(1))
2π√

−V ′′(z∗)V ′′(a1)
exp

{
2(V (z∗)− V (a1))

σ2

}
2. The multidimensional version is attributed to Eyring (40s) and is called the

Eyring-Kramers formula

3. Bovier, Eckhoff, Gayrard and Klein (2001) : potential theory
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2. The pathwise approach

dX σ
t = −∇V (X σ

t ) dt + σ dWt , X σ
0 = x0.
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2. The pathwise approach

dX σ
t = −∇V (X σ

t ) dt + σ dWt , X σ
0 = x0.

Assumptions :

• V ∈ C2(Rd) et V ≥ 0,

• G – bounded; G is stable under −∇V ; a is the only attractor inside G
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2. The pathwise approach

Theorem (Freidlin, Wentzell)

Let H := infx∈∂G {V (x)− V (a)}. Then for any x ∈ G and for any δ > 0

• lim
σ→0

Px

(
exp

{
2
σ2 (H − δ)

}
≤ τσG ≤ exp

{
2
σ2 (H + δ)

})
= 1 ,

• lim
σ→0

σ2

2
log Exτ

σ
G = H.
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Let H := infx∈∂G {V (x)− V (a)}. Then for any x ∈ G and for any δ > 0

• lim
σ→0

Px

(
exp

{
2
σ2 (H − δ)

}
≤ τσG ≤ exp

{
2
σ2 (H + δ)

})
= 1 ,

• lim
σ→0

σ2

2
log Exτ

σ
G = H.

For any N ⊂ ∂G such that infz∈N{V (z)− V (a)} > H then also

• lim
σ→0

Px

(
X σ
τσG

∈ N
)
= 0.
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Comparison of the two approaches

In favour of the PDE approach:

1. prefactors?

2. why stability on ∂G?

1. works in the nonreversible case

2. gives more information (result in P, exit-position, exit trajectory, etc.)

3. I understand it better
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McKean-Vlasov diffusion



McKean-Vlasov diffusion


dX σ

t = σ dWt −∇V (X σ
t ) dt −∇F ∗ µσ

t (X
σ
t ) dt,

µσ
t = L(X σ

t ),

X σ
0 = x0 ∈ Rd a.s.;

1. V : Rd → R – confinement potential

2. F : Rd → R – interaction potential

3. µσ
t = L(X σ

t ) – the law of X σ
t

4. W – Brownian motion
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A measure dependent diffusion

dX i ,N
t = σ dW i

t −∇V (X i ,N
t ) dt − 1

N

∑N
j=1 ∇F (X i ,N

t − X j ,N
s ) dt,

X i ,N
0 = x0 ∈ Rd p.s.

Figure 1: Dynamic of X i,N
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Old and new results



Some previous results

1. Convex-Convex case : [HIP08] – Kramers’ type law

x

V (x)

x

F (x)

Techniques: LDP, remake of the Freidlin-Wentzell theory (the pathwise approach)

2. Convex-Convex case : [Tug16] – Kramers’ type law
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x

V (x)

x

F (x)

Techniques : control of the law, coupling method
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How to approach this problem

The idea was:

1. Convexity of the confinement => control of the law (µσ
t ≈ δa)

2. Convexity => closeness with the coupled process Y σ:

dX σ
t = −∇V (X σ

t ) dt −∇F ∗ µσ
t (X

σ
t ) dt + σ dWt

dY σ
t = −∇V (Y σ

t ) dt −∇F ∗ δa(Y σ
t ) dt + σ dWt
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How to approach this problem

The new idea is:

1. Convexity of the confinement. But, before the exit-time, we are in the domain of
attraction G .

2. Convexity. But both Y σ and X σ spend most of the time around a. Thus, we still
expect that they are close.
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σ
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How to approach this problem

The new idea is:

1. Convexity of the confinement. But, before the exit-time, we are in the domain of
attraction G . Thus, µσ

t ≈ δa should be true at least until the exit-time

2. Convexity. But both Y σ and X σ spend most of the time around a. Thus, we still
expect that they are close.

dX σ
t = −∇V (X σ

t ) dt −∇F ∗ µσ
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New result

Assumptions:

1. V and F are regular

2. G ⊂ Rd is a regular, bounded domain

3. a ∈ G is the unique (inside G ) attractor of −∇V

4. G is stable under −∇V −∇F (· − a).
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Results

Theorem ([AT24])
Under the assumptions above, we have:

1. Kramers’ type law: for all δ > 0:

lim
σ→0

P
[
exp

{ 2
σ2 (H − δ)

}
≤ τσG ≤ exp

{ 2
σ2 (H + δ)

}]
= 1

2. Exit location : for all closed N ⊂ ∂G such that infz∈N Wa(z) > H, we have:

lim
σ→0

P
(
X σ
τσG

∈ N
)
= 0.
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Results

Theorem ([AT24])
Under the assumptions above, we have:

1. Kramers’ type law: for all δ > 0:

lim
σ→0

P
[
exp

{ 2
σ2 (H − δ)

}
≤ τσG ≤ exp

{ 2
σ2 (H + δ)

}]
= 1

2. Exit location : for all closed N ⊂ ∂G such that infz∈N Wa(z) > H, we have:

lim
σ→0

P
(
X σ
τσG

∈ N
)
= 0.

Question: where is Ex(τ
σ
G )?
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Open questions



Open questions

1. Generalization of the process (in particular, diffusion term)

2. Full description of metastability

3. What is wrong with Ex(τ
σ
G )?

4. Prefactors ?
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Thank you for your attention !
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