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Approximation of a random process

Some aspects to specify:

What is a good approximation? Having low kinetic energy or some other
kind of energy?

How to measure the closeness of a process and its approximation?
Uniformly? In average (using L2 distance or some other potential)?

Which data of the process are available for constructing an
approximation? Non-adaptive or adaptive approximation?

Which types of processes to handle? Stationary or with stationary
increments.
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Example: running after a Brownian dog

How to keep the Brownian dog on a leash in the energy saving mode?

Let the dog walk in R according to a Brownian motion W (t).

You must follow it by moving with a finite speed and always stay not
more than 1 away from the dog.

If x(t) is your trajectory, then the goal is to follow the dog, i.e. keep
|x(t)− W (t)| ≤ 1 and expend minimal kinetic energy per unit of time

1
T

∫ T

0
x ′(t)2 dt

in a long run, T → ∞.
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Diffusion strategy for the pursuit

Let X (t) := x(t)− W (t) be the signed distance to the dog.
A reasonable strategy is to determine the speed x ′(t) as a function of
X (t) by accelerating when X (t) approaches the boundary ±1. So let
x ′(t) := b(X (t)). Then X becomes a diffusion satisfying
dX = b(X )dt − dW . One-dimensional diffusions are well understood.
Consider a probability density

p(x) = C eB(x), where B(x) := 2
∫ x

b(y)dy .

If non-exit conditions
∫
−1

dx
p(x) =

∫ +1 dx
p(x) = ∞ are satisfied, then the

diffusion is ergodic and p(x)dx is its invariant measure.
By ergodic theorem, in the stationary regime

1
T

∫ T

0
x ′(t)2 dt →

∫ 1

−1
b(x)2 p(x)dx =

1
4

∫ 1

−1

p′(x)2

p(x)2 p(x)dx :=
1
4

I(p).

We have to minimize Fisher information I(p) !
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Solution: optimal strategy

Minimizing Fisher information on the interval is a classical problem
arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit,
Shevlyakov, etc).
By simple variational calculus we obtain the optimal density

p(x) = cos2(πx/2), x ∈ [−1,1],

and the optimal speed strategy

b(x) = −π tan(πx/2)

exploding at the boundary.
This leads to the asymptotic minimal reduced energy

1
T

∫ T

0
x ′(t)2 dt → 1

4
I(p) =

π2

4
.
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Non-adaptive setting: taut string

Let on some time interval two functions be given – an upper boundary
and a lower boundary, as well as some initial value and some final
value located between the boundaries.
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Non-adaptive setting: taut string

Consider all functions running between the boundaries and having
given initial and final values.

Consider a class of optimization problems
∫ T1

T0
φ(h′(t))dt ↘ min

h(T0) = h0, h(T1) = h1,

F (t) ≤ h(t) ≤ G(t),
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Non-adaptive setting: taut string


∫ T1

T0
φ(h′(t))dt ↘ min

h(T0) = h0, h(T1) = h1,

F (t) ≤ h(t) ≤ G(t),

Examples:∫ T1
T0

√
1 + h′(t)2 dt is the graph length;∫ T1

T0
h′(t)2 dt is the kinetic energy;∫ T1

T0
|h′(t)|dt is the total variation;
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Non-adaptive setting: taut string


∫ T1

T0
φ(h′(t))dt ↘ min

h(T0) = h0, h(T1) = h1,

F (t) ≤ h(t) ≤ G(t),

Magic: for all convex functions φ there is a common solution called taut
string.
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Taut string: properties

Taut string is piecewise linear when running strictly between the
boundaries; It can be non-linear when running along one of the
boundaries; It can have infinitely many linear pieces if a boundary
is non-smooth;
When eliminating initial and the final values, the solution may
depend on φ;
If φ is strictly convex, taut string is a unique solution; If φ is
non-strictly convex, other solutions may exist. Example: φ(t) = |t |
(the total variation functional).
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Alternative minimizers for total variation:
lazy function vs taut string

Lazy function does not change its value as long as it can.
Both a lazy function and a taut string minimize the total variation of the
functions running between the boundaries.
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A taut string for Brownian motion


∫ T

0 h′(t)2dt ↘ min

h(0) = W (0), h(T ) = W (T ),

W (t)− r/2 ≤ h(t) ≤ W (t) + r/2, 0 ≤ t ≤ T .

Taut string for Brownian motion
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Non-adaptive approximation: formal setting

We consider uniform norm

||h||T := sup
0≤t≤T

|h(t)|, h ∈ C[0,T ],

and Sobolev-type norm (spent kinetic energy)

|h|2T :=

∫ T

0
h′(t)2dt , h ∈ AC[0,T ].

Let W be a Brownian motion. We are mostly interested in its
approximation characteristics
I(T , r) := minimal kinetic energy over approximations h such that
||h − W ||T ≤ r/2 and h(0) = 0,
and

I0(T , r) := inf{|h|2T ;h ∈ AC[0,T ], ||h−W ||T ≤ r/2,h(0) = 0,h(T ) = W (T )}.
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First results on non-adaptive approximation,
ML+E.Setterqvist, 2015

Theorem (weak LLN)
There exists C ≈ 0,63 such that for any q > 0 if r√

T
→ 0, then

r2

T
I(T , r)

Lq−→ 4C2 and
r2

T
I0(T , r)

Lq−→ 4C2.

We may complete the mean convergence with a.s. convergence to
4C2.

Theorem (strong LLN )
For any fixed r > 0, when T → ∞, we have

r2

T
I(T , r) a.s.−→ 4C2 and

r2

T
I0(T , r) a.s.−→ 4C2.
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New results, ML+A.Podchischailov, 2024

Theorem (strong LLN (2015))
There exists C ≈ 0,63 such that for any fixed r > 0, when T → ∞, we
have

r2

T
I(T , r) a.s.−→ 4C2 and

r2

T
I0(T , r) a.s.−→ 4C2.

In this result, the value of C was found by computer simulation. Now,
as a special case of a fairly general result we know that this limit
equals π2

6 , so that C2 = π2

24 , i.e. C ≈ 0,64.
Recall that

I0(T , r) =
∫ T

0
η′T ,r (t)

2dt , where ηT ,r is a taut string.

We show that, as T → ∞,∫ T

0
φ(η′T ,r (t))dt a.s.−→

∫
R
φ(u)ν(du).

for fairly general φ and some explicitly given measure ν on R.
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Convergence of occupation measures

We want to find

R(φ) := lim
T→∞

1
T

∫ T

0
φ(η′T ,r (t))dt .

Rewrite
1
T

∫ T

0
φ(η′T ,r (t))dt =

∫
R
φ(u)νT (du)

via taut string derivative’s occupation measure

νT (du)(A) :=
1
T

∫ T

0
1η′T ,r (t))∈Adt .

If we prove that νT ⇒ ν a.s. with some limiting non-random measure ν
(as T → ∞), then it is likely that

R(φ) = lim
T→∞

∫
R
φ(u)νT (du) =

∫
R
φ(u)ν(du).

M. Lifshits (St.Petersburg State University) Pursuit and Approximation 17 / 78



Convergence of occupation measures (continued)

We will prove that the limiting occupation measure of taut string’s
derivative ν exists and has a density

pν(u) = r
ru coth(ru)− 1

sinh(ru)2

(the limiting value at u = 0 exists and is equal to r
3 ). This is a good

symmetric density exponentially decreasing at ±∞. It follows that
R(φ) =

∫
R φ(u)pν(u)du. In particular, for kinetic energy φ(u) = u2 we

have

R(φ) = lim
T→∞

1
T

∫ T

0
η′T ,r (t)

2dt =
∫
R

u2pν(u)du =
π2

6r2 ,

as claimed before.
We will find the limiting occupation measure ν via truncated variation
(a notion to be explained now).
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Truncated variation (R. Lochowski)

Let f be a continuous function on an interval [0,T ].
Consider partitions of [0,T ] by points

0 = t0 < t1 < · · · < tn = T .

The usual total variation is defined as

TV (f ) := sup
n≥1,t0...tn

n∑
i=1

|f (ti)− f (ti−1)|.

If f is absolutely continuous, then TV (f ) =
∫ T

0 |f ′(t)|dt . Let r > 0. Then
r-truncated variation is defined by

TV r (f ) := sup
n≥1,t0...tn

n∑
i=1

max{|f (ti)− f (ti−1)| − r ,0}.

There is no contribution from increments smaller than r !
We have TV 0(f ) = TV (f ).
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Truncated variation (continued)

The advantage of truncated variation

TV r (f ) := sup
n≥1,t0...tn

n∑
i=1

max{|f (ti)− f (ti−1)| − r ,0}.

is that it can be finite for functions having infinite total variation such as
Brownian motion.
There is a variational representation of truncated variation

TV r (f ) = inf{TV (g),g : ||f − g||T ≤ r/2}

= inf

{∫ T

0
|g′(t)|dt ,g : g ∈ AC[0,T ], ||f − g||T ≤ r/2

}
.

Here we come closer to taut strings!
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Truncated variation of Brownian motion

Theorem (Lochowski–Milos)
Let u ∈ R, let W be a Brownian motion and let Xu(t) := W (t)− ut be a
Brownian motion with drift u. Then

lim
T→∞

1
T

TV r (Xu; [0,T ]) = mr (u) =

{
u coth(ru), u ̸= 0,
r−1, u = 0.

By variational representation TV r (Xu; [0,T ]) equals to

inf

{∫ T

0
|g′(t)|dt ,g : g ∈ AC[0,T ], ||W (t)− ut − g||T ≤ r/2

}

= inf

{∫ T

0
|h′(t)− u|dt ,h : g ∈ AC[0,T ], ||W (t)− h(t)||T ≤ r/2

}

≈
∫ T

0
φu(η

′
T ,r (t))dt , φu(v) := |v − u|.
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First conclusions on taut string

We infer from Lochowski–Milos theorem that for the function φu
defined by φu(v) := |v − u|

R(φu) = lim
T→∞

1
T

∫ T

0
φu(η

′
T ,r (t))dt = mr (u).

We will slightly modify this result. Let χ(v) := v be identity function.
Then

R(χ) = lim
T→∞

1
T

∫ T

0
χ(η′T ,r (t))dt = lim

T→∞

1
T

∫ T

0
η′T ,r (t)dt

= lim
T→∞

1
T
ηT ,r (T ) = lim

T→∞

1
T

W (T ) = 0.

We introduce the functions ψu = φu+χ−u
2 , i.e. ψu(v) = (v − u)+ and

infer
R(ψu) =

R(φu) + R(χ)− u
2

=
mr (u)− u

2
.
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Computation of the occupation measure

By using the functions ψu(v) := (v − u)+ we have

ψu − ψu+δ

δ
≤ 1[u,∞) ≤

ψu−δ − ψu

δ
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Computation of the occupation measure (continued)

By integrating the inequality

ψu − ψu+δ

δ
≤ 1[u,∞) ≤

ψu−δ − ψu

δ

w.r.t. the occupation measure νT we have∫
R

ψu − ψu+δ

δ
νT (dv) ≤ νT [u,∞) ≤

∫
R

ψu−δ − ψu

δ
νT (dv),

and taking the limit in T → ∞, and using R(ψu) =
mr (u)−u

2 we obtain

R
(
ψu − ψu+δ

δ

)
=

mr (u)− mr (u + δ) + δ

2δ
≤ lim inf

T→∞
νT [u,∞) ≤ lim sup

T→∞
νT [u,∞)

≤ R
(
ψu−δ − ψu

δ

)
=

mr (u − δ)− mr (u) + δ

2δ
.
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Computation of the occupation measure (end)

Having

mr (u)− mr (u + δ) + δ

2δ
≤ lim inf

T→∞
νT [u,∞) ≤ lim sup

T→∞
νT [u,∞)

≤ mr (u − δ)− mr (u) + δ

2δ

we take the limit in δ ↘ 0 and get

lim
T→∞

νT [u,∞) =
−m′

r (u) + 1
2

:= ν[u,∞).

The density of the limiting occupation measure ν is

pν(u) = − d
du

ν[u,∞) =
m′′

r (u)
2

= r
ru coth(ru)− 1

sinh(ru)2 ,

as claimed.
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Final result on the best non-adaptive approximation of
BM

We consider convergence limT→∞
1
T

∫ T
1 φ(η′T ,r (t))dt =

∫
R φ(u)ν(du).

There are some subtle differences between a.s.-convergence and
convergence in probability.

Theorem
We have

1
T

∫ T
1 φ(η′T ,r (t))dt P−→

∫
R φ(u)ν(du); (even if the limit is infinite);

lim infT→∞
1
T

∫ T
1 φ(η′T ,r (t))dt ≥

∫
R φ(u)ν(du) a.s.;

if φ(u) ≤ c(1 + |u|)α for come c, α > 0, then
1
T

∫ T
1 φ(η′T ,r (t))dt a.s.−→

∫
R φ(u)ν(du);

There exists λ > 0 such that for φ(u) = exp(λu) we have
lim supT→∞

1
T

∫ T
1 φ(η′T ,r (t))dt = +∞ a.s. but

∫
R φ(u)ν(du) <∞.
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Open problem: other processes

One can get similar results for the Brownian motion with drift.
Open problem: get similar results

1
T

∫ T

1
φ(η′T ,r (t))dt a.s.−→

∫
R
φ(u)ν(du);

for taut strings in a tube around sample path of a process other than
Brownian motion, e.g., a rather general Gaussian process with
stationary increments.

A missing piece: Lochowski–Milos result on truncated variation is
exclusively Brownian.
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Diffusion strategy for multivariate pursuit

Now the object of pursuit is a multivariate Brownian motion W (t) in Rd ,
d > 1. (Imagine a Brownian dog running across 2-dimensional field).
The pursuit trajectory x(t) must stay within unit distance from W (t)
and spend the minimal amount of kinetic energy per unit of time.
Again, we explore the diffusion strategies: always running towards the
target with a speed depending on the distance from the target, i.e., let
X (t) := x(t)− W (t) determine the direction to the dog and the pursuit
speed is

dx
dt

(t) = b(||X ||) X
||X ||

.

Then X is a d-dimensional diffusion and one has to minimize the
pursuit energy over b(·).
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Diffusion strategy for multivariate pursuit (solution)

The next result (I. Lialinov, 2025) describes the optimal strategy in this
class. Let ν = d−2

2 . Let Jν be the first kind Bessel function of order ν,
and jν its smallest positive root. Then the optimal pursuit speed is

b(r) =
jνJν+1(jνr)

Jν(jνr)

which gives the minimal asymptotic pursuit energy per unit of time

lim
T→∞

1
T

∫ T

0

∥∥∥dx
dt

(t)
∥∥∥2

dt = j2ν .

The simplest expression appears dimension for d = 3. Then

b(r) =
1
r
− π cot(πr)

and the minimal limiting energy equals π2 .
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Open problems

Prove that the optimal diffusion strategy for Brownian dog pursuit
is also optimal among all adaptive strategies.
Find an optimal diffusion strategy for Brownian dog pursuit on a
finite time interval. It will be not time-homogeneous.
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An extension: variable width

Now we want to minimize the kinetic energy over the functions running
through a band of variable width. Let t 7→ r(t) be a positive width
function. We solve

∫ T
0 h′(t)2dt ↘ min

h(0) = W (0), h(T ) = W (T ),

W (t)− r(t)/2 ≤ h(t) ≤ W (t) + r(t)/2, 0 ≤ t ≤ T .

Again, the solution is given by the taut string ηT ,r(.). We have

Theorem (ML+A.Siuniaev, 21)

Let r(t) ↗ but r(t) log log t
t1/2 ↘ 0. Then, with the same C2 = π2

24 ,∫ T

0
η′T ,r(.)(t)

2dt ∼ 4C2
∫ T

0

dt
r(t)2 , a.s., as T → ∞.
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Further extension: approximation of random walk

Let X1,X2, ... be an i.i.d. sequence. Define the partial sums (a random
walk) as S0 := 0, Sk :=

∑k
j=1 Xj (k ≥ 1). Define a random broken line

S(t), t ≥ 0, by S(k) := Sk , k ≥ 0, and by linear interpolation between
integer times. We solve

∫ T
0 h′(t)2dt ↘ min

h(0) = S(0), h(T ) = S(T ),

S(t)− r(t)/2 ≤ h(t) ≤ S(t) + r(t)/2, 0 ≤ t ≤ T .

The approximation results for W extend to those of S if
either

for some p > 2 we have E|Xj |p <∞ and r(t) ≫ t1/p,
or

for some λ > 0 we have E exp{λ|Xj |} <∞ and r(t) ≫ log t .
The proofs go through KMT approximation of S by W .
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A famous related problem: Strassen’s FLIL

Strassen’s functional law of the iterated logarithm:

lim sup
T→∞

inf
|h|1≤1

∥∥∥∥ W (·T )√
2T ln lnT

− h
∥∥∥∥

1
= 0 a.s.

Convergence rate: Grill, Talagrand ∃c1, c2 such that

c1 < lim sup
T→∞

(ln lnT )2/3 inf
|h|T≤1

∥∥∥∥ W (·T )√
2T ln lnT

− h
∥∥∥∥

1
< c2 a.s.

Liminf result (Grill, Griffin and Kuelbs) ∃c3, c4 such that

c3 < lim inf
T→∞

(ln lnT ) inf
|h|1≤1

∥∥∥∥ W (·T )√
2T ln lnT

− h
∥∥∥∥

1
< c4 a.s.

In terms of the taut string energy I(T , r) we have

lim sup
T→∞

I(T , c1(2T )1/2(ln lnT )−1/6)

(2 ln lnT )1/2 > 1, a.s.

etc. Here the tube is much wider and the string energy is much lower
than in our case.
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Unilateral approximation

Let W still be a Brownian motion and let r > 0. We consider absolutely
continuous functions h satisfying unilateral constraints

h(t) ≥ W (t)− r , 0 ≤ t ≤ T ,

and initial condition h(0) = 0 and try to minimize the energy∫ T

0
φ(h′(t))dt ,

with some convex non-negative energy function φ, e.g. kinetic energy∫ T

0
h′(t)2dt ,

This means that we need not follow the target process when it goes
deeply downwards.
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Unilateral approximation (continued)

Let us shift the problem upwards in order to unify the constraints. We
will minimize the energy on functions h satisfying

h(t) ≥ W (t), 0 ≤ t ≤ T ,

and initial condition h(0) = r .

It turns out that, again, (as in the case of bilateral constraints) there is
a universal solution independent on the energy function!
We will describe it now.
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Concave majorant of the Brownian motion

The global concave majorant of the Brownian motion W is the smallest
concave function M on [0,∞) satisfying

M(t) ≥ W (t), t ≥ 0.

Similarly, the local concave majorant concerns
M(t) ≥ W (t), 0 ≤ t ≤ T .
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Minimal energy function

The following function h∗ solves the problems∫ T

0
φ(h′(t))dt ↘ min, h(0) = r ,h(t) ≥ W (t),0 ≤ W (t),0 ≤ t ≤ T .

h∗ has three pieces:
the first piece is a linear tangent to the local convex majorant
(starting from r );
the second piece is the local convex majorant until argmax[0,T ]W ;
the third piece is the constant equal to max[0,T ] W .
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Unilateral constraints: minimal energy behavior

We have understood that the optimal function essentially coincides
with the minimal concave majorant. Therefore, a crude heuristic
comes:
W (t) ≈

√
t ; M(t) ≈

√
t ;h′

∗(t) ≈ M ′(t) ≈ t−1/2;for the energy we have∫ T

0
φ(h′

∗(t))dt ≈
∫ T

0
φ
(

t−1/2
)

dt

Theorem (ML+S.Nikitin, 24)
For kinetic energy we have (for each fixed r > 0)∫ T

0
h′
∗(t)

2dt ∼ logT
2

a.s., as T → ∞.

Compare this rate with the linear one for bilateral constraints! Yet,
according to our heuristics, the logarithmic rate is rather exceptional.
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Unilateral constraints: minimal energy behavior

Theorem (ML+S.Nikitin, 24)
For kinetic energy we have (for each fixed r > 0)∫ T

0
h′
∗(t)

2dt ∼ logT
2

a.s., as T → ∞.

The log-rate here is rather exceptional. In general case, the behavior of∫ T

0
φ(h′

∗(t))dt

as T → ∞, is determined by the growth of φ at zero (because h′
∗(t)

tends to zero at infinity).
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Unilateral approximation: non-kinetic energies

Let us replace the quadratic function x2 in the definition of kinetic
energy with another power function φ(x) = |x |α.

Theorem (S.Nikitin, 25)
Let α > 2. Then for each fixed r > 0 we have

0 < lim
T→∞

∫ T

0
h′
∗(t)

α dt <∞, a.s.

This means that we may approximate Brownian motion as long as we
wish using a limited amount of energy.

Theorem (S.Nikitin, 25)
Let α ∈ (1,2). Then for each fixed r > 0

0 < lim sup
T→∞

1
T 1−α/2(log logT )α/2

∫ T

0
h′
∗(t)

α dt <∞, a.s.
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Unilateral approximation: non-kinetic energies
(continued)

The following result describes the lim inf behavior of the minimal
non-kinetic energy. The lim inf behavior is more complicated than the
lim sup one.

Theorem (S.Nikitin, 25)
Let α ∈ (1,2) and g(·) some decreasing function. Then for each fixed
r > 0

lim inf
T→∞

1
T 1−α/2g(T )

∫ T

0
h′
∗(t)

α dt =

{
= ∞, iff

∫∞ g(b)1/(2−α) db
b <∞,

= 0, iff
∫∞ g(b)1/(2−α) db

b = ∞.

The critical function here is g(b) = (log b)−(2−α).
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Unilateral adaptive approximation: diffusion strategy

The following result provides an optimal (in a certain class of stationary
strategies) adaptive diffusion strategy.

Theorem (ML+S.Nikitin, 24)
The optimal diffusion pursuit strategy is given by

x ′(t) = (x(t)− W (t))−1.

for this strategy it is true that∫ T
0 x ′(t)2dt

lnT
a.s.−→ 1, as T → ∞.

We conclude that this adaptive strategy yields, in a long run, two times
larger energy loss than the optimal non-adaptive one.
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An extended setting: ”Pursuit under Potential”

Consider a fixed time horizon [0,T ], introduce a penalty function
(potential) Q(·). Problem: find a pursuit process X (·) such that

E
∫ T

0

[
X ′(t)2 + Q(X (t)− W (t))

]
dt ↘ min

among all adapted absolutely continuous random functions X .
We also consider an infinite horizon problem stated as

lim
T→∞

T−1 E
∫ T

0

[
X ′(t)2 + Q(X (t)− W (t))

]
dt ↘ min

By appropriate interpretation of Q this setting formally includes the
Brownian dog problem, whenever

Q(y) :=

{
0, |y | ≤ 1,
+∞, |y | > 1.
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A strategy of optimal pursuit

Strategy: X ′(t) := b(X − W ,T − t).
At every moment we determine the pursuit speed as a prescribed
function of two arguments: the current distance from the target W and
the remaining time T − t . We show that this kind of strategy is the best
among all adapted strategies on every finite interval of time provided
that the drift function b(·, ·) is chosen properly.
Consider the expected penalty function achievable on the time interval
of length t when starting at the point X (0) = y ,

F (y , t) := E
∫ t

0

[
X ′(s)2 + Q(X (s)− W (s))

]
ds

= E
∫ t

0

[
b(Y (s), t − s)2 + Q(Y (s))

]
ds.

A version of Feynman–Kac formula leads to an equation{
F ′

t (y , t) = Q(y)− 1
4 (F ′

y )
2(y , t) + 1

2 F ′′
y (y , t)

F (y ,0) = 0 .
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Heat equation

Our equation

F ′
t (y , t) = Q(y)− 1

4
(F ′

y )
2(y , t) +

1
2

F ′′
y (y , t)

is quite close to Burgers equation. Therefore, one has to use
Hopf–Cole transform F (y , t) := −2 lnV (y , t) which leads to some form
of heat equation, namely,

V ′
t (y , t) =

V ′′
yy (y , t)

2
− Q(y)V (y , t)

2
.

with initial condition V (y ,0) = 1. This is the heat equation up to the
additional inhomogeneous term at the end.
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From heat equation to survival probability

For that sort of heat equation, a good probabilistic solution is known.
We find there

V (y , t) = E exp

{
−1

2

∫ t

0
Q(Wy (s)) ds

}
,

where Wy stands for a Brownian motion starting at a point y . This is
the survival probability until time t for a Wiener process starting at y , if
the process is killed at the rate Q(x)ds/2 when passing through a
point x , independently on its past.
We also have the following expression for the drift function of the
optimal diffusion:

b(y , t) =
V ′

y

V
(y , t).

Recall again that the pursuit strategy with the speed b(X −W ;T − t) is
the optimal one among all adapted strategies.
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Two basic examples

For the Brownian dog problem we just have
V (y , t) = P

(
|Wy (s)| ≤ 1,0 ≤ s ≤ t

)
which, for large t , is nothing

but small ball probability.
The distortion Y = X − W of the optimal pursuit coincides with the
Brownian motion conditioned to survive under the killing rate Q,
which, for specific potential, means the Brownian motion
conditioned to stay in the strip [−1,1].
For quadratic potential Q(y) = y2 we get
b(y , t) = − tanh(t) y ∼ −y (for large t) which corresponds to the
Ornstein – Uhlenbeck process.
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Infinite intervals

We search an adapted and absolutely continuous pursuit X minimizing
asymptotic energy per unit of time

lim
T→∞

T−1 E
∫ T

0

[
X ′(t)2 + Q(X (t)− W (t))

]
dt .

Again, a natural candidate for being an optimal pursuit is a process X
satisfying X ′(t) := b(X − W ), where now the speed depends only on
the distortion. This strategy is optimal provided that the drift function
b(·) is chosen properly.
Optimization arguments and the variable change b = V ′/V lead to the
eigenvalue problem for 1-dimensional Schrödinger equation

V ′′(y)− Q(y)V (y) = −λV (y).

We conclude that the minimal asymptotic energy in the stationary
regime is equal to the minimal eigenvalue of the respective
Schrödinger equation, while the optimal speed function b(y) is equal to
the log-derivative of the corresponding eigenfunction.
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Generalization

Brownian motion ↗ general process with stationary increments or a
stationary process.

Kinetic energy ↗ general form of energy.

General potential Q ↘ quadratic potential Q(y) = αy2.
This makes possible to consider the L2 (or wide sense) setting.
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Problem setting

Let (B(t))t∈Θ with Θ = Z or Θ = R be a wide sense stationary process
with discrete or continuous time.
We search for an approximation process X such that

The pair (B,X ) is jointly stationary.
Smoothness (or finite energy). Process X is M-times
differentiable, so that the energy

E [X ](t) :=
∣∣ M∑

m=0

ℓmX (m)(t)
∣∣2

is well defined. Basic example: kinetic energy
E [X ](t) :=

∣∣αX ′(t)
∣∣2.

Optimality.

lim
N→∞

1
N

∫ N

0

[
|X (t)− B(t)|2 + E [X ](t)

]
dt ↘ min .

(optional) Adaptivity: X (t) ∈ span{B(s), s ≤ t}.
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Problem setting: continued

If, additionally, the process X (t)− B(t) and the derivative X ′(t) are
stationary processes in the strict sense, in many situations ergodic
theorem applies and the limit

lim
N→∞

1
N

∫ N

0

[
|X (t)− B(t)|2 + E [X ](t)

]
dt

is equal to E|X (0)−B(0)|2 +EE [X ](0). Setting aside ergodicity issues,
we may solve the problem

E|X (0)− B(0)|2 + E E [X ](0) → min .
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Spectral theory: reminder

Let B(t), t ∈ R, be a complex-valued random process. It is called wide
sense stationary, if EB(t) = const and Cov(B(s),B(t)) := K (s − t)
depends only on s − t .
In the sequel, we assume that EB(t) = 0 and that covariance K (·) is
continuous. (Equivalently, the mapping t 7→ B(t) is L2-continuous on
R).
Then, by a Bochner’s theorem, there exists a finite positive measure µ
on R such that

K (t) =
∫
R

eitu µ(du), t ∈ R.

Thus, K and µ are essentially Fourier transforms of each other. The
measure µ is called spectral measure of B. Many properties of B can
be expressed in terms of µ.

The next step is to give a similar representation of the process B itself.
For this aim, we need a notion of orthogonal random measure and
respective integral.
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Spectral theory: reminder (continued)

Let (R,A, µ) be a measure space. Let A0 = {A ∈ A : µ(A) <∞}. A
family of random variables {W(A),A ∈ A0} is called an orthogonal
random measure of intensity µ if EW(A) = 0 for all A and
cov(W(A),W(B)) = µ(A ∩ B) for all A,B. In particular, the values of W
on disjoint sets are uncorrelated (orthogonal).
It is easy to check that W is additive: if the sets Aj are disjoint and

µ
(⋃

j Aj

)
<∞, then

W
(⋃

j

Aj

)
=
∑

j

W(Aj), a.s.

The next step is to define the integral w.r.t. W. For step functions we
set ∫

R

[∑
j

cj1Aj (u)
]
W(du) :=

∑
j

cjW(Aj)

and then extend the integral by continuity to
∫
R f (u)W(du) for all

f ∈ L2,C(R,A, µ).
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Spectral theory: reminder (continued)

The main feature of the integral is its isometric property

cov
(∫

R
f dW,

∫
R

g dW
)

= (f ,g)2 =

∫
R

f g dµ.

Now we apply this general construction to stationary processes.

Let B be a (wide sense) stationary process with spectral measure
µ.Then there exists a unique orthogonal measure W on R with
intensity µ such that

B(t) =
∫
R

eitu W(du), t ∈ R.

Remark: if a process B is real, the corresponding measure W need not
be real ! It must only satisfy the conjugation property W(−A) = W(A).
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Spectral theory: reminder (continued)

Similarly, if a centered process B has (wide sense) stationary
increments (e.g. Brownian motion, fractional Brownian motion etc),
then it has a similar spectral representation

B(t) = ξ t +
∫
R

(
eitu − 1

)
W(du), t ∈ R.

where ξ is a square integrable centered random variable.

The only difference is that now the intensity measure µ for W need not
be finite. It should satisfy less restrictive Lévy condition∫

R
min{u2,1}µ(du) <∞,

which allows accumulation of infinite measure at zero.
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Spectral representation of the problem

Recall the spectral representation

B(t) =
∫
R

eituW(du)

where W is an orthogonal random measure with E|W(A)|2 = µ(A), µ
being the spectral measure of B.
We search approximation process in the form

X (t) =
∫
R

g(u)eitu W(du)

(in adaptive case: g ∈ span{eisu, s ≤ 0|L2(µ)}.
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Spectral representation of the problem (continued)

Having an approximation X (t) =
∫

g(u)eitu W(du), we first compute its
energy. Differentiate m times and obtain

X (m)(t) =
∫
R

g(u)(iu)meitu W(du),

hence,

E [X ](t) =

∣∣∣∣∣
∫
R

g(u)
M∑

m=0

ℓm(iu)meitu W(du)

∣∣∣∣∣
2

:=

∣∣∣∣∫
R

g(u)ℓ(iu)eitu W(du)
∣∣∣∣2

with the energy polynomial ℓ(z) :=
∑M

m=0 ℓmzm. By isometric property,

E E [X ](t) =
∫
R
|g(u)|2|ℓ(iu)|2µ(du),

E|B(t)− X (t)|2 = E
∣∣∣∣∫ (1 − g(u))eituW(du)

∣∣∣∣2 =

∫
|1 − g(u)|2µ(du).
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Two error terms

Therefore, the optimization problem takes a spectral form∫
R

(
|1 − g(u)|2 + |g(u)|2|ℓ(iu)|2

)
µ(du) ↘ min .

Using the identity

|1− g|2 + |g|2|ℓ|2 =

∣∣∣∣g − 1
|ℓ|2 + 1

∣∣∣∣2 (|ℓ|2 + 1
)
+

|ℓ|2

|ℓ|2 + 1
, ∀g, ℓ ∈ C,

we must minimize∫
R

∣∣∣∣g(u)− 1
|ℓ(iu)|2 + 1

∣∣∣∣2 (|ℓ(iu)|2 + 1
)
µ(du) +

∫
R

|ℓ(iu)|2

|ℓ(iu)|2 + 1
µ(du).

The second term is not influenced by optimization of g. This is the
error of non-adaptive prediction. The first term is the additional error of
adaptive prediction. Its optimization is very similar to solving a
prediction problem.
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Optimal non-adaptive approximation

For non-adaptive approximation the unique solution of the problem is
given by g(u) = 1

|ℓ(iu)|2+1 , thus

X (t) =
∫
R

eitu

1 + |ℓ(u)|2
W(du)

and the corresponding minimum is equal to∫
R

|ℓ(iu)|2

1 + |ℓ(iu)|2
µ(du).

Interestingly, the form of the solution does not depend on the spectral
measure of B.
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Optimal non-adaptive approximation: kinetic energy

In continuous time case the kinetic energy problem

E|X (0)− B(0)|2 + α2E|X ′(0)|2 ↘ min

corresponds to ℓ(z) = αz. Using that

1
1 + |ℓ(iu)|2

=
1

1 + α2u2 =
1

2α

∫
R
exp{−|τ |/α}eiτudτ,

We see that

X (t) =
1

2α

∫
R

eitu
∫
R
exp{−|τ |/α}eiτudτW(du)

=
1

2α

∫
R

∫
R

ei(t+τ)uW(du) exp{−|τ |/α}dτ

=
1

2α

∫
R

B(t + τ) exp{−|τ |/α}dτ.

is a double sided moving average. This is indeed non-adaptive!
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Discrete time theory

When considering discrete time wide sense stationary sequences
B(n),n ∈ Z, we have the same spectral theory except that the spectral
parameter runs over [0,2π) or over the unit cercle instead of the real
line. That is, we have an isometric spectral representation

B(n) =
∫ 2π

0
einu W(du), n ∈ Z.

The energy-efficience problem may not now use the derivatives. We
must replace them with difference operators having the same sense.
For example, the discrete time counterpart of kinetic energy
minimization is E|X (0)− B(0)|2 + α2E|X (1)− X (0)|2 ↘ min . It is
solved by the double-sided series

X (n) =
1√

1 + 4α2

(
B(n) +

∞∑
k=1

β−k (B(n + k) + B(n − k))

)

with β = 1 +
1+

√
1+4α2

2α2 (the golden section while α = 1).
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Adaptive approximation: problem setting

We are back to continuous time case. Let B(t), t ∈ R, be a stationary
process (a target). We search for an approximating process X such
that

The pair (B,X ) is jointly stationary.
Adaptivity.

X (t) ∈ span{B(s), s ≤ t}.

Smoothness (or finite energy). Process X is M-times
differentiable, so that the energy

E [X ](t) :=
∣∣∣ M∑

m=0

ℓmX (m)(t)
∣∣∣2

is well defined.
Optimality.

E|X (0)− B(0)|2 + E E [X ](0) ↘ min .
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Adaptive approximation: reduction to prediction
problem

Recall that our problem is to minimize∫
R

∣∣∣∣g(u)− 1
|ℓ(iu)|2 + 1

∣∣∣∣2 (|ℓ(iu)|2 + 1
)
µ(du) +

∫
R

|ℓ(iu)|2

|ℓ(iu)|2 + 1
µ(du)

over g ∈ past. The second term does not admit any optimization.
Compare: our remaining problem∫ ∣∣∣∣g(u)− 1

|ℓ(iu)|2 + 1

∣∣∣∣2 (|ℓ(iu)|2 + 1
)
µ(du) ↘ min

and the classical prediction problem∫ ∣∣∣g(u)− eitu
∣∣∣2 µ(du) ↘ min, t > 0.

Since the prediction problem solution is linear in its argument, we may
use it for solving our problem.
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Adaptive approximation: solution via prediction
problem

To solve ∫
R

∣∣∣∣g(u)− 1
|ℓ(iu)|2 + 1

∣∣∣∣2 (|ℓ(iu)|2 + 1
)
µ(du) ↘ min

factorize

|ℓ(iu)|2 + 1 = λℓ(u)λℓ(u) = |λℓ(u)|2, u ∈ R.

Then we have to minimize∫
R

∣∣∣∣∣λℓ(u)g(u)− 1
λℓ(u)

∣∣∣∣∣
2

µ(du).

Assume that
1

λℓ(u)
=

∫ ∞

0
eiτuνℓ(dτ), u ∈ R,

with some finite complex measure νℓ depending on the energy
polynomial ℓ(·). Then we have a mix of classical prediction problems.
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Adaptive approximation: solution via prediction
problem (continued)

For solving
∫ ∣∣∣λℓ(u)g(u)− 1

λℓ(u)

∣∣∣2 µ(du) ↘ min over g ∈ past under

1
λℓ(u)

=

∫ ∞

0
eiτuνℓ(dτ), u ∈ R,

we let q̂(τ,µ)
∗ be the solution of the classical prediction problem:∫ ∣∣∣q(u)− eiτu

∣∣∣2 µ(du) ↘ min τ ≥ 0,

over q ∈ past. Then the function

q̂(ℓ,µ)
∗ (u) :=

∫ ∞

0
q̂(τ,µ)
∗ (u)νℓ(dτ), u ∈ R,

solves the problem
∫ ∣∣∣q(u)− 1

λℓ(u)

∣∣∣2 µ(du) ↘ min over q ∈ past and

our problem is solved by letting g∗ := q̂(ℓ,µ)
∗ /λℓ. (why g∗ ∈ past?)
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Adaptive approximation: solution via prediction
problem (concluding remarks)

The good factorization |ℓ(iu)|2 + 1 = λℓ(u)λℓ(u), is possible for
any energy polynomial ℓ(iu).
For the presented method, we need to know the solutions of the
classical prediction problems.Yet we may apply the methods of
prediction theory directly to our problem and solve it in a straight
way.
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A good factorization for energy polynomials

Let ℓ(·) be a polynomial of degree M with complex coefficients.Then
we must factorize

1 + |ℓ(iu)|2 = 1 + ℓ(iu)ℓ(iu) := P(u),

where P is a polynomial of degree 2M with real coefficients and having
no real roots. Thus we may write

P = C
M∏

m=1

(u − βm)(u − βm),

where C > 0 and Im(βm) > 0. Then the good factorization is given by

1 + |ℓ(iu)|2 = 1 + ℓ(iu)ℓ(iu) := P(u) = λℓ(u)λℓ(u),

λℓ(u) = C1/2
M∏

m=1

(u − βm).
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A good factorization for energy polynomials
(continued)

The factorization with λℓ(u) = C1/2∏M
m=1(u − βm) is good because the

desired representation

1
λℓ(u)

=

∫ ∞

0
eiτu νℓ(dτ), u ∈ R,

or equivalently

1
λℓ(u)

=

∫ ∞

0
e−iτu νℓ(dτ), u ∈ R,

essentially follows from the representations of every factor

1
u − βm

= i
∫ ∞

0
e−iτ(u−βm)dτ, u ∈ R.

M. Lifshits (St.Petersburg State University) Pursuit and Approximation 68 / 78



One example: Ornstein–Uhlenbeck process

The Ornstein – Uhlenbeck process (B(t))t∈R, is a centered (Gaussian)
stationary process with covariance KB(t) = e−|t |/2 and the spectral
measure µ(du) := 2du

π(4u2+1) . We solve the problem related to kinetic
energy

E|X (0)− B(0)|2 + α2 E|X ′(0)|2 ↘ min .

The optimal non-adaptive approximation is given by

X (t) =
1

2α

∫ ∞

−∞
B(t + τ)e−|τ |/α dτ.

The error of non-adaptive approximation is α
2+α . The optimal adaptive

approximation is given by

X (t) =
2

(2 + α)α

∫ 0

−∞
B(t + τ)e−|τ |/α dτ.

The error of adaptive approximation is α
2+α + 2α

(2+α)2 = 4α+α2

(2+α)2 .
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Adaptive approximation: discrete time theory

The theory is essentially the same. Instead of
1

λℓ(u)
=

∫ ∞

0
eiτu νℓ(dτ), u ∈ R,

one needs
1

λℓ(u)
=

∞∑
τ=0

νℓ(τ)eiτu, u ∈ [0,2π).

For example, for discrete-time analog of kinetic energy ℓ(z) = α(z − 1)
the factorization is

1 + |ℓ(eiu)|2 = λℓ(u)λℓ(), u ∈ [0,2π),

with λℓ(u) := α√
β
(e−iu − β) and β = 1 +

1+
√

1+4α2

2α2 , as before.In
particular,

1
λℓ(u)

=
−1
α
√
β

∞∑
τ=0

β−τeiτu, u ∈ [0,2π).
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Application of the prediction technique

If the solution of prediction problem is not available, the previous
approach does not work. Yet we can still apply the prediction
technique. We only consider discrete time here.
Introduce some notation. Let Λ denote Lebesgue measure on [0,2π).
Let

L≤0 := span
{

eiτu, τ ≤ 0, τ ∈ Z
}
⊂ L2([0,2π),Λ);

L>0 := span
{

eiτu, τ > 0, τ ∈ Z
}
⊂ L2([0,2π),Λ);

A function γ ∈ L2([0,2π),Λ) is called an outer function if

span
{
γ(u)eiτu, τ ≤ 0, τ ∈ Z

}
= L≤0.

We will assume that the spectral measure of our process has a
density: µ(du) = f (u)du.
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Application of the prediction technique

The classical prediction technique suggests using factorization

f (u) = γf (u) γf (u), u ∈ [0,2π),

where γf is an outer function. This factorization exists if Kolmogorov
regularity condition ∫ 2π

0
| log f (u)|du <∞

is satisfied. We will use this factorization along with the former energy
function factorization

1 + |ℓ(eiu|2 + 1 = λℓ(u) λℓ(u), u ∈ [0,2π)],

Thus we split the properties of the process and those of the energy
form.
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Application of the prediction technique: solution

Theorem
Let γf and λℓ be the functions from two factorizations given above.
Denote Q the orthogonal projection of γf/λℓ to L>0 in L2([0,2π),Λ).
Then the optimal adaptive approximation is given by

X (t) =
∫ 2π

0
g∗(u)W(du),

where
g∗(u) =

1
|λℓ(u)|2

− Q
λℓ γf

.

The additional adaptive approximation error is given by ||Q||22,Λ.
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Application of the prediction technique: solution

For discrete kinetic energy ℓ(z) = α(z − 1) we may give an explicit
representation of the additional adaptive approximation error via
spectral density

2π
β2

√
1 + 4α2

exp

{
1

2π

∫ 2π

0

β2 − 1
β2 + 1 − 2β cosu

log f (u)du

}
.

Here β = (2α2 + 1 +
√

1 + 4α2/(2α2).
This reminds very much the classical formula for one step prediction
error

2π exp

{
1

2π

∫ 2π

0
log f (u)du

}
.

A paralel continuous time theory is also available.
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An example: autoregressive sequence

Consider an autoregressive sequence given by equation
B(t) = ρB(t − 1) + ξ(t) where |ρ| < 1 and ξ(t) are centered
uncorrelated r.v. with E|ξ(t)|2 := σ2. The spectral density is

f (u) =
σ2

2π|1 − ρe−iu|2
= γf (u)γf (u)

with γf (u) = σ√
2π
(1 − ρe−iu)−1. Then the optimal approximation is

given by another autoregressive sequence,

g∗(u) =
1

α2(β − ρ)

∞∑
j=0

β−je−iju, which means

X (t) =
1

α2(β − ρ)

∞∑
j=0

β−jξ(t − j),

with additional adaptivity error σ2√
1+4α2(β−ρ)2

.
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