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Problem: Establishing a Kramers’ type for the small viscosity/zero-noise limit of the first collision
time:
C(O’) = inf{t Z 0: Xf = \/t}7

and related collision location X¢ () between two independent self-stabilizing diffusion processes:
t
Xe = x+ 0B — / {VV(XS) +a(Xs — E[Xs])} ds, t>0,
0

t
Yt:y-l—cht—/ {VV(YS)J,-a(YS—]E[YS])}ds, t>0,
0

whenever (Bt);>o and (éf)tZO are two independent R?-Brownian motions and the potential V
admits two possible attractors and each diffusion is driven towards one of these particular
attractors.

Analog problem for the related particle systems:

. . t . N .
XN = x4 oB] —/ (VM) +a(Xs - % S xiM}ds, t>0,
0 =

VN =y oBi— [T (V) 4 a(vit - ZY!”)}ds t20.
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Prototypical case

~

Double wells landscape: d =1, V(x) =

At the zero-noise limit o = 0, X; — ¢¢(x) and Y: — ¢:(y) for

t
ou(2) =z [ 6:(2) - 6x(2)ds, 20
0
Assuming further x < —1 and 1 < y, then collisions between the two self-stabilizing diffusions are

due to the (join) effort of the Brownian motions.
As the noise vanishes the collision time is expected to follow a Kramers' type law of the form:

0.2
= log(C() 5 H

and the collision location X¢ () should persists in some region in the space or be co.
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Assumptions
(A) — (i) V admits two distinct minima located in A1 and ;.

(A) — (ii) The starting points x and y lie in a respective basin of attraction G(A1) and G(A2) of
the wells of V and, for ¢¢(z) = z — fot VV(¢s(z)) ds, the gradient flow related to V/, it holds

2¢0 := gg\i) (Ip(x) — #:(¥)]) > 0.

(A) — (iii) V : R? — R is of class C?, locally Lipschitz, convex at infinity (namely
inf| >R/ V2V(x) is positive definite for some R’ > 0) and is such that VV grows at a
2n-polynomial rate on RY:

sup {(1+ |X\2")_1\VV(X)\} < 00.
xERI

(A) — (iv) Synchronization condition: aly + V2V is definite positive on RY.
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Freidlin-Wentzell's exit time problem [FW98]
Perturbed dynamical systems:

t
z7 :zo+0'Wt—/ VU (z7)ds,t > 0.
0
As 0 — 0: zZ — W¢(z) solution to
¢
We(z0) = 20 — / VU (Ws(20)) ds, t > 0.
0

Large deviation principle: For any finite arbitrary time horizon T, and for any § > 0,
o2
lim — logPq sup |z7 — Wi(z0)| > 8
c—0 2 te[0;T)
. } 1 md _ _
|gf {IT(CD) :® e ([0, T; RY), ®(0) = xp and 021fa£><_r|<b(t) Vi(x0)| > 5},
the action functional I+ being given by

I+(®) ::/0 |—+VU ()] dt.

Definition

Let G be a subset of R and let VU be a Lipschitz vector field on RY. We say that the domain G
is stable by VU if the orbit {W¢(z); t € Ry} is included in G for all zg € G.
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Freidlin-Wentzell's exit time problem [FW98]
Exit-time estimate:

Theorem

Let G be an open bounded set of RY, stable by VU, where U of class C? and convex. Assume
also that for all xg € G, W¢(xp) converges to a unique point ag at large time. Then, for any zg in
G, and

Tg(o) =inf{t >0 : z7 ¢ G},

we have:

J@OP{exp [% (ﬂ—é)} < i) < o [% (ﬂ+5)” —1. 1)

The value H representing the main cost of exiting G is given by
H= inf_inf inf{I d>:'f( - )
H= inf_inf in {IT,2(®)} pinee U(x) — U(ao)

Additionally:

(i) For all zg in G, lims—0 "72 log (E{Tg(a)}) =H;

(ii) Exit location: If infycag (U(x) = U(ao)>is achieved in a unique point z, in 0G, then, for all
§>0 €6,

lim P{|27, ) — 2| <6} =1.

o—0
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A very short over-view on self-stabilizing diffusion processes

e Benachour, Roynette, Talay and Vallois [BRTV98]: Existence of an invariant distribution for
the one dimensional model:

X=X+ 8- 3 [ [ 50 ~ el d, e = Law(x0), £ 2 0
with 8 : R — R odd, increasing and satisfying
1B(x) = B)| < Clx = y[(1 + Ix|" +|y|"), for somer € N\ {0},
(B(x) = B(y)) > ca(x — y) + a2, @ > 0, for allx > y.

e Hermann, Imkeller and Peithmann [HIP08]: Long time behaviour of

t
Xe=y+ 0B — / {ue) + /d>(X5 — y)us(dy) } ds, e = Law(Xs), £ >0,
0

with U and & relatively smooth and (globally) convex functions.The authors further established a
Kramers' type law in the case V = VU and ® = Vb, the exit cost being given by

1 T
H= ol gy ) 190 VO 0l 20 s g (U0e) b ) UG

e Tugaut 2007-2021: Kramers' type law in the case of a double wells landscape and other
globally non-convex situation (e.g. [T21] for the case of the granular media equation).
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Kramers' type law for the first collision time of two self-stabilizing diffusions
Strategy: Given the multi-dimensional self-stabilizing diffusions:

t
Xe = x+ 0Bt — / {TV(X) + alXs —EX:]) } ds, >0,
0

t

Ye=y+oB:— / {VV(YS) +a(Ys — ]E[Ys])} ds, t>0,

0
introduce the e-approximation:
Ce(o)=inf{t >0 : | X — Y| <2} ,e< e,
reformulate this time in terms of an exit time
C(o) = inf Bie(0),
AER
Ba,e(o) = inf{t>0: X; € B()\e), Yr € B(\€)}

= inf{t >0 X ¢ (RY\ B(\e), Ye & (RY\ B()\,e))} ,

and apply a particular coupling between (X, Y:) and linearized version:

¢
x{’:x-{—UBt—/ {VV(XS")—I—oa(XS"—/\1)}ds7 t>0,
0

t
v =y+ob— [ {TV0D)+abs - x)}ds >0
0
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Preliminaries: First collision time of two stochastic gradient flows

Models: .
x{ :onro'Btf/ VWV (x7)ds,t >0,
0
and
— t
74 :yo+aBt—/ VW (yS)ds ,t > 0.
0
Assumptions:

e U, and W, are of class C?, strictly convex and admits A1 and A; as their respective minimizers.
e infeso [pE(x) — ¢2(y)| > 2¢q for ¢i(z) =z — [f VVi(#L(z))ds, t >0, i=1,2.
€ approximation of the first collision time:

(o) =inf{t >0 : |x{ —y7| <2},e>0.
Strategy: For € < ¢,
(o) = inf (o).
Brplo) = inf{t>0: (,y7) € B(\p) x B(A p)}
= inf{t>0: (x,57) & R\ B(X,p)) x (R?\ B(A,0))}

and approximate 8y ,(o) by EA,,;(U) where B}\,p(o) is the first entering time of
DA, p) x D*(, p) for

D'\ p) ={o7"(2) 1 t>0,z€ B(\p)}, 417 (2) = z+/0tw,-(¢>2*(z))ds, t>0.
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Note:

e Whenever X is too close to one of the two infimum, say |\ — A1| = € with € < p, then, B(}, p)
is an attractive set for ¢1'* and so D} p = R, If € is (strictly) smaller than €, this reduces
B\,\,p(a) to the first exit-time from D3 o

o In the opposite case, minj=12(|]A — \i|) > p, (Rd \ D} p) X (Rd \ D2 p) is stable by
(-VWl,—vv?),

e The cases |\ — \j| = p are singular and require a rescaling.

e Outside these "degenerated” cases, the exit-costs of R9 \ D} , and of R\ B(), p) are the same:

inf (w,-(x) - \u,-(,\,-)) = inf (w,-(x) - \IJ,-(A,-)), i=1,2.

x€9B(A,p) x€dD},
Last approximation: For e < ¢y, 0 < p < 1,
B (o) =inf{t>0: (x7,¥7) € Oxep} @)
where the domain O, . , is given by

ODY(\, pe) x OD?(\,€) if A — M| = ¢,
Onep = 0D (A €) x OD*(A, pe) if A = Xo| = ¢,
ODY(\, €) x OD?(), €) otherwise.

LSA Autumn Meeting (HSE, Moscow) Kramers’ type law for the first collision time September 24, 2021 10 / 24



Applying classical Kramers' type law:

Lemma

For any X in RY and for any § > 0,

UIiEOIP’{exp [% (HP(A) — 5)] < B8 (o) < exp [ 2 (HP(/\)+6)]} ,
for

inf (Wi(x) —Vi(\)) + |nf (\Ug(y) Wy (A2)) iflXA — A1 =€,
x€OB(X;pe) y€d

M) = | nf (a0 = ¥a0) + yea';‘(& oy (W2) = W20 1A~ dal =,
xean(ﬁ\;e) (W1(x) — Wi(A1)) + ye}Bn(f)\;e) (Wa(y) — W2(X2)) otherwise.

Moreover, we have: for any § > 0,

UITQOIP {mln (dISt(XE§,5(0)7 B(A, p)), d’St(yE’;,e(ff)’ B(X; p))) < 5} =1.

for dist(x, B(; p)) = inf,cp(xn;p) X — 2|
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Lemma
The same Kramers' type law holds for
inf {t >0 : (x7,y) € OB(\, pe) X OB(A,€)} ifIx—Ai| =€,
BL (o) =< inf{t>0: (x7,y7) € OB(X e€) x OB(X, pe)} if|x — 2| =¢,
inf{t >0 : (x7,y) € 0B(\,€) x OB(\,€)} otherwise.

Asymptotic p — 1:

Lemma

For any A € RY, and for any § > 0:

i {erw [ 2 () - 9)] < br.0) < o0 | S (R0 +9)| } =1

for

HE()\):XEE;gf (W1(x) — W1 (M) + emf (Wa(y) — Va(Ar2)) -

Moreover,

ollr;nOIP’ {mln (dlSt(XB (o) B(A, p)), dist(ygf\ye(a), B(X\; p))) < 6} =1.

LSA Autumn Meeting (HSE, Moscow) Kramers’ type law for the first collision time September 24, 2021 12 /24



Kramers’ type laws for cc(o) = infy B (o)

Theorem

For any § > 0:

UliggOIP’{exp [% (H, - 6)] < (o) < exp [% (H, +6)}} —,

where

H, = inf He(A).
He = inf He(A)

In addition, for H. the set of all minimizers Ae of A — He(\), and for € small enough:

. . g o p—
JTOP{Aelggie max (lXCE(U) — A, |yce(a) - )\€|) < 6} =1,

Note: The exit-cost He can be achieved in more than one points. Nevertheless,

VX € RY, lim He(X) = Ho(A) := (V1() = W1(A1)) + (V2(}) = W2 (X))

and
iy = o
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Corollary

For Ao the minimizer of X — Ho(\) = (W1(X) — W1(A1)) + (W2(X) — W2(A2)), and
Ho := Ho(Xo), we have: for any 6 > 0:

lim lim ]P’{exp [% (Ho — 6)] < ce(o) < exp {% (Ho + 5)} } =

e—=00—0

Jim, Jim, P{"‘ax ('Xi(o) = ol IV o) — ’\0|) e 5} =1

and
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Kramers' type law for the first collision time of two self-stabilizing diffusions

Under the assumptions (A) — (i) to (A) — (iv), [HIP08]: the dynamics (X:);>0 and (Yt):>o are
wellposed (in the pathwise sense) and

supE[| X¢|P + | Y¢|P] < o0, Vp € Z.
>0

Moreover [T21]: Given k > 0, there exists a finite (non-random) time T, and a critical thereshold

o such that
max  E[IXe — A1+ E[ Ve — dof’] < .

oS0kt

Corollary (Coupling estimate)
For

t
X = xi+0B —/ (VV(T) + VF(C — M)} ds,
0
t
W = m+abi [ (VV0E)+ VFOL - %)) o
0
and any k > 0, there exists Ty, o, > 0 such that

lim P{max |Xt—xf|2+|Yt—yt”|22n}:0.
>

o—0
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From the Kramers' type law for (x7, y{)¢>o to the Kramers' law for (Xt, Yi)¢>o:

Proposition
Define
Ta,e(0) == inf {t >0 : (Xt Yr) €B(N 6)2} ,

the first time the nonlinear diffusion (X, Yt):>o0 enters in the domain B(X; €) x B(X;€). Then, for
any A € RY, for any § > 0, we have

tim oo [ 2 () - 9)] <o) <o [ S (e +0)] | =1, 3)
where
H) = _jaf (V) Flx= ) = VOW) + it (V(s) + Fly = 3a) = V()
Theorem

Given ¢ > 0, let \(¢) be an arbitrary minimizer of He. Then, for any 6 > 0, we have

im e {ew [ 5 (H ) - 0)] < o) < o0 [ S (M) +9)] | =

In addition, for He the set of all minimizers Ae of A — He(\), and for ¢ small enough:

Gll_n;l P{)\Elgf max (|XC (o) — )\e|7 che(a) — )\5|) < 5} =1.

vV
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Corollary
For any § > 0, we have

e—=00—0

lim lim P {exp [% (Ho — 6)} < Ce(0) < exp [% (Ho + 5)} } =1i.

where

Ho = min Ho(A), Ho(A) = lim He() = (V(A) + F(A = M) = V(A1)

Moreover, for L
Ao = argminy Ho(\) = (VV + ald) (a(A1+X2)/2),

it holds
I Jimy P {1Xeuio) = ol < 9} =1 = fim, Iy {1 e, ) —al <5} )
. 4 2
Example: In the prototypical case: V(x) = % — %,

1
A€t —2e2 + a(2e £1) + 5} .

N =

1
argminH, = o + > argminH, € {a +
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Collision time for the particle systems

Zero-noise limit of - -
N= inf i >0 XN - vl <
Ce(o) lS|rl_1;\llnf{t >0 |X; Yo | < E}

where
t 1 N
iN . . . .
XN = x + 0B —/O {VV(x;N) +a(xiN - ;xg N)}ds, t>0,
Y{’N:eroBgf/ {VV(Y"")+a (YiN — ZYJ’ }ds t>0,
for (Btl)tzo, (BN )¢>0, and (B )ez0, (Bt )¢>0, two families of independent Brownian
motions.

Anticipated exit cost: The potential related to each family of particles

N
M) =S Vi) + Z|x, X2, X = (x1, -+ ,xn) € RM,
i=1

ij=1

and the exit-cost is given by

lim inf inf  Th(xN) = Tw(, -, A
€0 XcRIN xNcdBN(A,e) WG v 2
+ lim inf inf TN(yN)*TN()\z,"' ,A2),

e—0 \cRrdN yNEBBN( €)

for

BN(\€) = {xN = (x1,xn) € RN Vi, x; ¢ B(X, E)} .
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Preliminary note

e As long as (A) hold the particle systems and their "linear” analog:
. . t . t .
7 =x1+ 0B — / VV(x¢%)ds — / VF(xg? — A1)ds,
0 0
. . t ) t )
vy’ =x +0oBl — / VV(yo)ds — / VF(ys? — Ao)ds.
0 0

are well-posed in the pathwise sense. Moreover, forall 1 <i < N, T finiteand 1 < p < ©

max E[[X{" [P+ Y{"|P] < oo.

te[0,7]
e Propagation of chaos: For (th)t207 e :(XtN)tZO and (Ytl)t207 ey (YtN)t207 N-copies of
(Xt)t>0 and (Yi)¢>o driven respectively by (B})tzo, cee (B,_{V)tzo and (Btl)tzo, .. ,(Bév)tzo,

. . ) ) C(o, T)
E xM - xip YoM - v < =t
[ymax X el 4 max 1V = —

Non-uniform propagation of chaos = We cannot rely on the Kramers' law established in the
mean-field limit situation to deal with the particle case.

= Start over and apply a strategy analog to the mean-field case. Namely: Establish the
Kramers' type law from a coupling between the particle systems and their linear analogs.
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Coupling for the particle systems

Lemma

For any k > 0 and for all N > 0 large enough, there exists a finite (deterministic) time 0 < T,
. . N i N PN
uniform with respect to o, such that X, = %ZJN:l XN and Y, = % ZINZI YIN it holds

lim P max (||7§"_A1\|+||VQ’_,\2||) <2 B =1.
770 | te[Tw.eml 3 (Ho(r0)+2)]]

Proposition

For any £ > 0, there exists a finite time T, such that

lim P sup {IXN =i+ 1N =il 2 € ) =o,
o — ngtgexp[fg("’o(*o)‘*'z)]

and

lim P sup Yo" =yl 2 €] =0,
a—0 Tﬁgtgexp[ﬁ(Ho(Ao)Jrz)]

provided that k and o are small enough while N is large enough.
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Kramers' law for the first collision time

Theorem
Let \o(€) be a minimizer of He. Then, for any 6 > 0 and for N large enough:

{0 [ )] <Cont) <o [ (] -1

Moreover, the collision persists near the minimizers of He in the sense: for H¢ the set of all
minimizers Ae of A — He(X), and for e small enough:

. q i,N i,N _
JTOP{A:.Q;E max (IXCN( o) — Aels IYC"’( o) /\6\) SS} =1,

Corollary
For any § > 0, we have, for N large enough:

A 2
EITOJTOIP{GXP [; (Ho — 6)} < Ce,n(0) < exp [ (Ho + 6)} } 1.
Moreover, for any 1 < i < N,

lim_lim p{|ngN(c) ~ Xl < 5} —1= lim lim ]P{\Y’e oy — Yol 5} :

e—=00—0 e—00—0
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Note on the one-dimensional case
In this situation, one can deal more directly with the true collision times:

Clo)=inf{t>0: Xe = i}, CN(U):léniNinf{tzO XN = Yg""’}.

Theorem
For any § >0 :

. 2 2
J@OP{eXp {; (Ho — 6)] < C(o) < exp [; (m—l—&)}} =1.
Moreover, for \g the minimizer of Hp,

Jim P {[Xc(o) = o <6} = 1= lim P{|Yc(o) = do| <3} .

Theorem
For any 6 > 0, and N sufficiently large:

. 2 2
UITOIP’{exp [; (Ho — 5)} < Cn(o) < exp {; (Ho +6)]} =i,
and, forall1<i <N
- i A — [ i
tim P { Xty 01 <3} =1= fim P {I¥El, ~ 01 <3}
v
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Generalizations

® Random initial conditions: As long as (x§,yg ) or (Xo, Yo) are a.s. bounded, at a 2¢o-distance
from each others, and the law of Xy and Yy have full support on different basin of attraction of
V/, our main results still hold true.

o Regular multi-wells confining potential. For instance if V admits m wells located at A1, -+, Am
then, again, the Kramers'law for Cc(o), Cc n(o), C(o) and Cy(o) hold and the collision Ag is
located at

(Cvw) @D A), Wil = Ve + Sk - .
I=1

I'=1

o Further self-stabilizing forces: Provided that F is a smooth function such that F(x) = G(]|x]|)
where G : R — R is a even polynomial function G, with a degree larger than 2, satisfying

G(0) = 0 (i.e. framework of [HT10, T20]) then the self-stabilizing force derive can be extended
into more general kernel

[ Foc=yuta).
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