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Plan of the talk

I Skew random walk and skew Brownian motion

I Skew fractional Brownian motion and skew stochastic heat
equation

I Sewing of Gubinelli and sewing with controls of Friz–Zhang

I Veretennikov–Zvionkin transformation vs stochastic sewing
with controls
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Skew random walk and skew
Brownian motion
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α-skew simple random walk
Fix α ∈ [0, 1] and consider the following simple Markov process
(Sn)n∈Z+ :

I S0 = 0;

I P(Sn+1 = i + 1|Sn = i) = P(Sn+1 = i − 1|Sn = i) = 1/2 if
i 6= 0;

I P(Sn+1 = 1|Sn = 0) = α;

I P(Sn+1 = −1|Sn = 0) = 1− α.
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α-skew simple random walk (α-SSRW)

α = 0.2 α = 0.5 α = 0.8

I Harisson and Shepp (1981) showed that a properly rescaled
α-SSRW converges to an α-skew Brownian motion

α = 0.2 α = 0.5 α = 0.8
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More on α-skew Brownian motion (α-SBM)

I Harisson and Shepp: n−1/2Sbn·c → X (α), where X (α) is
α-SBM.

I One can construct an α-SSRW in the following way: take
SRW and change independently the sign of its excursions:
each excursion is positive with probability α and negative with
probability 1− α.

I The same is true for an α-SBM (Ito, Mckean, 1965): take
BM and change independently the sign of its excursions: each
excursion is positive with probability α and negative with
probability 1− α.

I In particular, if α = 0.5, X (α) is a standard BM; if α = 1,
X (α) is a reflected BM.
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More on α-skew Brownian motion (α-SBM)

I It is clear that α-SBM is not a martingale and not Gaussian
for α 6= 0.5.

I However, it is still a diffusion process! It satisfies the following
SDE:

X (α)(t) = β

∫ t

0
δ(X

(α)
s ) ds + Wt , (∗)

where β := 2α− 1.

Theorem (Harisson,Shepp, 1981)

If β ∈ [−1, 1] SDE (∗) has a unique strong solution. This solution
has the same law as α-SBM.
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SDE for skew BM

X (α)(t) = β

∫ t

0
δ(X

(α)
s ) ds + Wt , (∗)

I Since δ is not a function but just a distribution, δ(Xt) is a
priori not well-defined.

I We say that a process X solves SDE (∗) if X = W + ψ and
one has

sup
t∈[0,1]

∣∣∣ψt − β
∫ t

0
pε(Xs) ds

∣∣∣→ 0,

in probability as ε→ 0.
I Here pε is a Gaussian kernel with mean 0 and variance ε,

however the choice of a sequence of functions approximating δ
is not important.

I What if |β| > 1? Maybe (∗) would still have a solution?

Theorem (Harisson,Shepp, 1981)

If |β| > 1 then SDE (∗) does not have even a weak solution.
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Warm-up (reminder)

X (α)(t) = β

∫ t

0
δ(X

(α)
s ) ds + Wt , (∗)

I Let’s show that this SDE has a weak solution for β = 1.

I Take Xt := |Bt |, where B is a Brownian motion. Then by
Ito’s formula (informally)

dXt = d |Bt | = sign(Xt)dBt + δ(Xt)dt = dMt + δ(Xt)dt,

where Mt :=
∫ t

0 sign(Xt)dBt . Since 〈M〉t = t, we see that M
is a BM.

I Thus the pair (|B|,M) is indeed a weak solution to (∗).
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SDE for Skew BM

X (α)(t) = β

∫ t

0
δ(X

(α)
s ) ds + Wt , (∗)

I In the general case |β| 6= 1 Harisson–Shepp applied the
Veretennikov-Zvonkin method.

I They construct a nice function F such that the process
Yt := F (Xt), does not have a drift and satisfy a nice SDE

dY (t) = G (Ys) dWs ,

where G is not too bad. Then from uniqueness/non-existence
of solutions to this SDE one can show
uniqueness/non-existence of solutions to the original equation.

I This method was pioneered by Veretennikov, Zvonkin in
1970ies for showing well-posedness of SDEs with bounded
drift, and later developed by Flandolli, Gubinelli, Priola, Bass,
etc.

I To apply this method one needs Ito’s formula!
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Skew fractional Brownian motion and
skew stochastic heat equation
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Skew fractional Brownian motion (SfBM)

I Consider now fractional Brownian motion WH , H ∈ (0, 1).

I Recall that WH is a Gaussian process with mean 0 and
covariance EWH

t WH
s = 1

2 (t2H + s2H − |t − s|2H).

I Its trajectories are Hölder with the exponent H− a.s.

I For H = 1/2 fBM is just BM; for H 6= 1/2 it is not a Markov
process nor a semimartingale.

I Ito’s formula is not available here.

I We want to define a skew fractional Brownian motion by
analogy with SBM.
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Skew fractional Brownian motion (SfBM)

I We cannot define SfBM as a limit of a random walk model.

I We cannot define SfBM by flipping its excursions, because
fBM is not a Markov process.

I Thus, the only hope is to define SfBM via the corresponding
SDE.

Definition
The unique strong solution to the following SDE will be called
SfBM:

X (t) = β

∫ t

0
δ(Xs) ds + WH

t . (∗∗)

I Does sFBM exist?
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Skew fractional Brownian motion (SfBM)

X (t) = β

∫ t

0
δ(Xs) ds + WH

t . (∗∗)

I It is known that (∗∗) has a unique strong solution in the red
intervals of the plot below; 1/4 is not included.

I Heuristically, the more irregular the driving noise, the rougher
the drift can be.

I The bound 1/4 does not have any special meaning; it is
known that if H < 1/4 then SDE (∗∗) has a unique strong
solution for any drift in C−1.

I But δ is also a measure!
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Main result and conjecture

X (t) = β

∫ t

0
δ(Xs) ds + WH

t . (∗∗)

I The gap appears because Ito’s formula is not available for
H 6= 1/2 and one has to develop other methods to solve this
problem.

I Conjecture: equation (∗∗) has a unique strong solution if
H < 1/2 and no weak solutions if H > 1/2.
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Skew stochastic heat equation

I The fact that now we are able to cover the case H = 1/4
allows to show that the skew stochastic heat equation is
well–defined.

I This process was conjectured to exist by Bounebache,
Zambotti, 2011.

∂tu = ∂xxu + βδ(u) + Ẇ , t > 0, x ∈ R,

where Ẇ is a space-time white-noise.
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Skew stochastic heat equation

∂tu = ∂xxu + βδ(u) + Ẇ , t > 0, x ∈ R,
As usual, we say that u solves this equation if

u(t, x) =pt ∗ u0(x)

+

∫ t

0

∫
R
βpt−s(x − x ′)δ(u(s, x ′)) dx ′ds + V (t, x)

where p is the standard heat kernel and

V (t, x) :=

∫ t

0

∫
R
pt−s(x − x ′)W (ds, dx ′).

I For fixed x ∈ R the process V (t) “behaves like” fBM 1/4.
Thus, the following theorem holds.

Theorem (ABLM, 2021)

For any β ∈ R skew stochastic heat equation has a unique strong
solution.
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Sewing of Gubinelli and sewing with
controls of Friz–Zhang
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Proof idea: big picture
I To fix the ideas consider 1D SDE with “bad” drift b ∈ Cγ ,
γ < 1.

dXt = b(Xt)dt + dWt .

I Let us try to prove strong uniqueness of solutions to this
equation. Let X and X̃ be two solutions to this equation.
Denote Z := X̃ − X . We have

‖Zt‖Lp =
∥∥∫ t

0
[b(X̃s)− b(Xs)]ds

∥∥
Lp

I At least we want to show that∥∥∫ t

0
[b(Ws + z)− b(Ws)]ds

∥∥
Lp

6 Ctρ|z |.

Recall that for us b = δ.
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Sewing lemma of Gubinelli
I Let f ∈ Cα, g ∈ Cβ. Then it is well–known that

∫
fdg exists

and can be defined as a limit of Riemann sums if α + β > 1.

I One way to prove it, is Gubinelli’s sewing lemma (2004).

I Suppose we are given a continuous (deterministic) process
As,t , indexed by 0 6 s 6 t 6 1.

I Define for 0 6 s 6 u 6 t δAs,u,t := As,t − As,u − Au,t .

Theorem (Gubinelli)

Assume that |δAs,u,t | 6 N|t − s|1+ε. Then the following process
exists

At := lim
∑

Ati ,ti+1 ,

and |At −As | 6 |As,t |+ CN|t − s|1+ε.

I For the Young case we take As,t := fs(gt − gs). Then
|δAs,u,t | = |fs(gt − gs)− fs(gu − gs)− fu(gt − gu)| =
|(fs − fu)(gt − gu)| 6 |t − s|α+β.
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Sewing lemma with controls of Friz–Zhang

I Take f ∈ Cα, where α > 0 is very small, and g(t) := tβ,
β > 0 is also very small. Then g ∈ Cβ, α + β < 1, yet∫ t

0 f (s) dsβ = N
∫ t

0 f (s)sβ−1 ds exists.

I Following Friz–Zhang, we say that a nonnegative continuous
function λ(s, t), where 0 6 s 6 t 6 1 is a control if

λ(s, u) + λ(u, t) 6 λ(s, t), for any 0 6 s 6 u 6 t 6 1.

Theorem (Friz, Zhang, 2017)

Assume that |δAs,u,t | 6 N|t − s|ρλ(s, t), ρ > 0. Then the
following process exists

At := lim
∑

Ati ,ti+1 ,

and |At −As | 6 |As,t |+ C |t − s|ρλ(s, t).
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How do we gain with sewing with controls?
Demo mode

I Suppose we want to get a good bound on At :=
∫ t

0 f (s) dsβ,
f ∈ Cα, α + β < 1.

I Set As,t := fs(tβ − sβ).

I Then δAs,u,t = As,t − As,u − Au,t = (ft − fs)(tβ − sβ).

|δAs,u,t | 6

.
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where λ(s, t) := tβ − sβ is indeed a control.
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Stochastic sewing with random controls

X (t) = β

∫ t

0
δ(Xs) ds + WH

t ;

X = ψ + WH .

A couple of observations:

I ψ is increasing; thus λ(s, t) := ψt − ψs is a random control
(i.e. λ(s, u) + λ(u, t) 6 λ(s, t) whenever s 6 u 6 t).

I But ‖ψt − ψs‖Lp(Ω) is NOT a control for p > 1 :-(.

I So one has to be very careful in extending Friz–Zhang to the
stochastic setting so that the result is still useful.

I Recall: a very useful extension of Gubinelli to the stochastic
setup is due to Le, 2019.
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Stochastic sewing with random controls

I We say that the process λ(s, t, ω) is a random control if
λ(s, u, ω) + λ(u, t, ω) 6 λ(s, t, ω) a.s. whenever s 6 u 6 t.

Theorem (B., Mytnik, 2020)

Let As,t be an Ft-measurable random variable. Assume that for
some p > 2, ρ > 0 one has

‖δAsut‖Lp 6 K1|t − s|1/2+ε

|E[δAsut |Fu]| 6 K2|t − s|ρλ(s, t) a.s..

Then there exists a process Bst and a constant C > 0, such that
the following holds:

‖At −As‖Lp 6 ‖Ast‖Lp +CK1|t− s|1/2+ε +CK2|t− s|ρ‖λ(s, t)‖Lp .
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Stochastic sewing with random controls: application
(sketch)

X (t) = β

∫ t

0
δ(Xs) ds + WH

t ;

X = ψ + WH .

I We need to show that ‖ψt − ψs‖Lp 6 |t − s|γ .

I Recall that if H = 1/2, b is bounded, then this step is
immediate; but already for H = 1/2, b ∈ Lp this is not trivial.

I Take As,t :=
∫ t
s δ(WH

r + ψs) dr .

I Then δAsut =
∫ t
u δ(WH

r + ψu)− δ(WH
r + ψs) ds.

I Hence |E[δAsut |Fu]| 6 |t − s|γ |ψu − ψs | - which is very good!
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Further directions:
conjectures/paradoxes/open problems
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Open problems
I Well-posedness of dXt = δ0(Xt)dt + dWH

t , H ∈ (1/3, 1/2).

I Weak existence and uniquness?

I Numerics for SDEs driven by α-stable processes. We are
planning to improve Mikulevicius–Xu, 2016.

I B., Le, Zambotti (work in progress). Consider SPDE on [0, 1]
with Dirichlet BC

∂tu =
1

2
∂xxu +∇f (u) + Ẇ .

It’s invariant measure is the Gibbs measure given by

π(A) :=
1

Z

∫
A

∫ 1

0
e−f (x(z))dz µ(dx),

where µ is the law of the Brownian Bridge 0→ 0.

I Note that π is well-defined even if ∇f is a distribution! Can
we take ∇f = δ0?
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It’s invariant measure is the Gibbs measure given by

π(A) :=
1

Z

∫
A

∫ 1

0
e−f (x(z))dz µ(dx),

where µ is the law of the Brownian Bridge 0→ 0.

I Note that π is well-defined even if ∇f is a distribution! Can
we take ∇f = δ0?
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Summary
I Harrison and Shepp using Veretennikov–Zvonikin technique

showed that skew Brownian motion is well-defined.

I Extension of this to the fractional BM case is not easy! No
Ito’s formula.

I Catellier, Gubinelli used deterministic sewing to show that
SfBM is well posed for H < 1/4.

I Inspired by sewing with controls of Friz–Zhang and stochastic
sewing of Le, we developed stochastic sewing with controls.

I This allows to show well–posedness of SfBM for H < 1/3 and
well-posedness of skew stochastic heat equation, thus
resolving a conjecture of Bounebache–Zambotti.

I The proofs are based on stochastic sewing and its variations,
which we believe to be a very flexible and useful tool. We
hope that one day it will become as popular as the
Zvonkin–Veretennikov transform.
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