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Plan of the talk

» Skew random walk and skew Brownian motion

» Skew fractional Brownian motion and skew stochastic heat
equation

» Sewing of Gubinelli and sewing with controls of Friz—Zhang

» Veretennikov—Zvionkin transformation vs stochastic sewing
with controls



Skew random walk and skew
Brownian motion



a-skew simple random walk
Fix o € [0,1] and consider the following simple Markov process
(Sn)n€Z+3
> 50 = 0;
> P(Sp1=i+1|Sy=i)=P(Spp1=i—1/S,=i)=1/2if
i #0;
» P(Sp41=1lS5,=0)=q;
» P(Sp+1=-1S,=0)=1-q.
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a-skew simple random walk (a-SSRW)




a-skew simple random walk (a-SSRW)

a=0.5 a=0.8

» Harisson and Shepp (1981) showed that a properly rescaled
a-SSRW converges to an a-skew Brownian motion
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More on a-skew Brownian motion (a-SBM)

» Harisson and Shepp: "71/25L"-J — X(@) where X(@) s
a-SBM.

» One can construct an @-SSRW in the following way: take
SRW and change independently the sign of its excursions:
each excursion is positive with probability o and negative with
probability 1 — a.



More on a-skew Brownian motion (a-SBM)

>

>

Harisson and Shepp: "71/25L"-J — X(@) where X(@) s
a-SBM.

One can construct an a-SSRW in the following way: take
SRW and change independently the sign of its excursions:
each excursion is positive with probability o and negative with
probability 1 — a.

The same is true for an a-SBM (Ito, Mckean, 1965): take
BM and change independently the sign of its excursions: each
excursion is positive with probability o and negative with
probability 1 — a.

In particular, if @ = 0.5, X(® is a standard BM; if a = 1,
X(@) is a reflected BM.



More on a-skew Brownian motion (a-SBM)

» It is clear that a-SBM is not a martingale and not Gaussian
for a # 0.5.

> However, it is still a diffusion process! It satisfies the following
SDE:

t
X@)(¢) = 5/ 5(XE)Y ds + Wi, (%)
0
where 5 :=2a — 1.

Theorem (Harisson,Shepp, 1981)
If 3 € [-1,1] SDE (x) has a unique strong solution. This solution
has the same law as a-SBM.



SDE for skew BM

/3/ s(x¢Y ds + W, (+)

» Since 0 is not a function but just a distribution, §(X;) is a
priori not well-defined.

» We say that a process X solves SDE (k) if X = W + ¢ and
one has

_ IB/OtpE(XS)dS‘ -0,

t€[0,1]
in probability as ¢ — 0.
» Here p. is a Gaussian kernel with mean 0 and variance ¢,
however the choice of a sequence of functions approximating
is not important.



SDE for skew BM

/3/ s(x¢Y ds + W, (+)

» Since 0 is not a function but just a distribution, §(X;) is a
priori not well-defined.

» We say that a process X solves SDE (k) if X = W + ¢ and
one has

_ IB/OtpE(XS)dS‘ -0,

t€[0,1]
in probability as ¢ — 0.

» Here p. is a Gaussian kernel with mean 0 and variance ¢,
however the choice of a sequence of functions approximating
is not important.

» What if | 5] > 1?7 Maybe (*) would still have a solution?



SDE for skew BM

/3/ s(x¢Y ds + W, (+)

» Since 0 is not a function but just a distribution, §(X;) is a
priori not well-defined.

» We say that a process X solves SDE (k) if X = W + ¢ and
one has

_ l@/otpE(Xs)dS‘ -0,

t€[0,1]
in probability as ¢ — 0.

» Here p. is a Gaussian kernel with mean 0 and variance ¢,
however the choice of a sequence of functions approximating
is not important.

» What if | 5] > 1?7 Maybe (*) would still have a solution?

Theorem (Harisson,Shepp, 1981)
If |B] > 1 then SDE (x) does not have even a weak solution.



Warm-up (reminder)

ﬂ/ ) ds + W, (%)

» Let's show that this SDE has a weak solution for § = 1.

» Take X; :=|B;|, where B is a Brownian motion. Then by
Ito’s formula (informally)

dXt = d|Bt‘ = sign(Xt)dBt + (S(Xt)dt = th + (S(Xt)dt,

where M, := fotsign(Xt)dBt. Since (M); = t, we see that M
isa BM.

» Thus the pair (|B|, M) is indeed a weak solution to ().



SDE for Skew BM

/3/ s(x¢Y ds + W, (+)

» In the general case || # 1 Harisson-Shepp applied the
Veretennikov-Zvonkin method.

» They construct a nice function F such that the process
Y: := F(Xt), does not have a drift and satisfy a nice SDE

dY(t) = G(Ys) dW.,

where G is not too bad. Then from uniqueness/non-existence
of solutions to this SDE one can show
uniqueness/non-existence of solutions to the original equation.



SDE for Skew BM

/3/ s(x¢Y ds + W, (+)

» In the general case || # 1 Harisson-Shepp applied the
Veretennikov-Zvonkin method.

» They construct a nice function F such that the process
Y: := F(Xt), does not have a drift and satisfy a nice SDE

dY(t) = G(Ys) dW.,

where G is not too bad. Then from uniqueness/non-existence
of solutions to this SDE one can show
uniqueness/non-existence of solutions to the original equation.

» This method was pioneered by Veretennikov, Zvonkin in
1970ies for showing well-posedness of SDEs with bounded
drift, and later developed by Flandolli, Gubinelli, Priola, Bass,
etc.

» To apply this method one needs Ito's formula!



Skew fractional Brownian motion and
skew stochastic heat equation



Skew fractional Brownian motion (SfBM)

» Consider now fractional Brownian motion W!, H € (0, 1).

» Recall that W is a Gaussian process with mean 0 and
covariance EWHWH = 1(t2H + 2 — |t — s|2H).

> Its trajectories are Holder with the exponent H— a.s.

» For H=1/2 fBM is just BM; for H # 1/2 it is not a Markov
process nor a semimartingale.

» Ito’s formula is not available here.

> We want to define a skew fractional Brownian motion by
analogy with SBM.



Skew fractional Brownian motion (SfBM)

» We cannot define SfBM as a limit of a random walk model.

» We cannot define SfBM by flipping its excursions, because
fBM is not a Markov process.

» Thus, the only hope is to define SfBM via the corresponding
SDE.
Definition
The unique strong solution to the following SDE will be called
SfBM:

X(t) = 5/0t5(xs) ds + WH. (%)

» Does sFBM exist?
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Skew fractional Brownian motion (SfBM)

X(t) = ﬂ/oté(Xs) ds + WH. ()

It is known that (%) has a unique strong solution in the red
intervals of the plot below; 1/4 is not included.

Catellier, Gubinelli 2016 Harrison, Shepp
..... o I

0 1/4 1/2 1

Heuristically, the more irregular the driving noise, the rougher
the drift can be.

The bound 1/4 does not have any special meaning; it is
known that if H < 1/4 then SDE (xx) has a unique strong
solution for any drift in C71.

But § is also a measure!
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Main result and conjecture
t
X(t) = ﬂ/ 5(Xs) ds + Wt (%)
0

> The gap appears because Ito's formula is not available for
H # 1/2 and one has to develop other methods to solve this

problem.
new method: stochastic sewing
with random control
B, Le, Mytnik 2021+
deterministic sewing Ito's formula
Catellier, Gubinelli 2016 Harrison Shepp
o |
I
0 1/4 173 172 1

» Conjecture: equation (*x*) has a unique strong solution if
H < 1/2 and no weak solutions if H > 1/2.
12



Skew stochastic heat equation

» The fact that now we are able to cover the case H = 1/4
allows to show that the skew stochastic heat equation is
well-defined.

» This process was conjectured to exist by Bounebache,
Zambotti, 2011.

Oru = Ot + BO(u) + W, t>0, x €R,

where W is a space-time white-noise.

13



Skew stochastic heat equation

Oru = Ot + B0(u) + W, t>0, x €R,

As usual, we say that u solves this equation if

u(t, x) =p¢ * up(x)

[ Aot 0t s+ V(e

where p is the standard heat kernel and
t
V(t,x) = / / pe—s(x — x') W(ds, dx’).
0 JR

» For fixed x € R the process V/(t) "behaves like" fBM 1/4.
Thus, the following theorem holds.

Theorem (ABLM, 2021)

For any 8 € R skew stochastic heat equation has a unique strong

solution. 14



Sewing of Gubinelli and sewing with
controls of Friz—Zhang

15



Proof idea: big picture

» To fix the ideas consider 1D SDE with “bad” drift b € C7,
v <1

> Let us try to prove strong uniqueness of solutions to this
equation. Let X and X be two solutions to this equation.
Denote Z := X — X. We have

20, = [ (%) — O8],

15



Proof idea: big picture

» To fix the ideas consider 1D SDE with “bad” drift b € C7,
v <1
dX: = b(X¢)dt + dW,.

> Let us try to prove strong uniqueness of solutions to this
equation. Let X and X be two solutions to this equation.
Denote Z := X — X. We have

1Zel, = | / [(Xs) = b(X)ds]|,,

< / 1Z:]17 ds
0
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Proof idea: big picture

» To fix the ideas consider 1D SDE with “bad” drift b € C7,
v < 1.

> Let us try to prove strong uniqueness of solutions to this
equation. Let X and X be two solutions to this equation.
Denote Z := X — X. We have

1Zel, = | /9 [b(Xs) — b(Xe)]ds],
< ds

S
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Proof idea: big picture

» To fix the ideas consider 1D SDE with “bad” drift b € C7,
v <1
dX: = b(X¢)dt + dW,.
> Let us try to prove strong uniqueness of solutions to this

equation. Let X and X be two solutions to this equation.
Denote Z := X — X. We have

1Zel, = | / [(Xs) = b(X)ds]|,,

M
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< CtP sup || Z|L,
s€[0,t]
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Proof idea: big picture
» To fix the ideas consider 1D SDE with “bad” drift b € C7,

v <1
dX: = b(X¢)dt + dW,.

> Let us try to prove strong uniqueness of solutions to this
equation. Let X and X be two solutions to this equation.
Denote Z := X — X. We have

1Zel, = | / [(Xs) = b(X)ds]|,,

M

777
< CtP sup || Z|L,
s€[0,t]

> At least we want to show that
t
H/ [b(We +2) — B(Wo)]ds]|, < Ctvlz.
0

Recall that for us b = 9. 15



Sewing lemma of Gubinelli

> Let f € C® g € CP. Then it is well-known that | fdg exists
and can be defined as a limit of Riemann sums if o + 8 > 1.

» One way to prove it, is Gubinelli's sewing lemma (2004).

16



Sewing lemma of Gubinelli
> Let f € C® g € CP. Then it is well-known that | fdg exists
and can be defined as a limit of Riemann sums if o + 8 > 1.
» One way to prove it, is Gubinelli's sewing lemma (2004).
» Suppose we are given a continuous (deterministic) process
As¢, indexed by 0 <s <t < 1.
» Define for 0 < s < u <t dAsut = Ast — Asu — Aut-

)
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Sewing lemma of Gubinelli
> Let f € C® g € CP. Then it is well-known that | fdg exists

and can be defined as a limit of Riemann sums if o + 8 > 1.

» One way to prove it, is Gubinelli's sewing lemma (2004).

» Suppose we are given a continuous (deterministic) process
As¢, indexed by 0 <s <t < 1.
» Define for 0 < s < u <t dAsut = Ast — Asu — Aut-

Theorem (Gubinelli)
Assume that |§As ,.t| < N|t — s|**¢. Then the following process

exists
.At = lim E Ati:ti+17

and |Ar — As| < |Ase| + CN|t — s|1Te.
» For the Young case we take As; := f;(g+ — gs). Then
10As ut| = |fs(gt — &s) — fs(gu — &s) — fulgr — gu)| =
(£ — fu)(ge — &u)| < |t —s[o*P.
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Sewing lemma with controls of Friz—Zhang

> Take f € C®, where o > 0 is very small, and g(t) := t7,
B> 0is also very small. Then g €C8 a+ 3 <1, yet
Js f(s)ds? = N [ f(s)s7~1 ds exists.
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Sewing lemma with controls of Friz—Zhang

» Take f € C% where a > 0 is very small, and g(t) := 8
B> 0is also very small. Then g €C8 a+ 3 <1, yet
Js f(s)ds? = N [ f(s)s7~1 ds exists.

» Following Friz—=Zhang, we say that a nonnegative continuous
function A(s, t), where 0 < s < t < 1is a control if

A(s,u) + AMu, t) < A(s,t), forany0<s<u<t<1.

Theorem (Friz, Zhang, 2017)

Assume that |0As ,.¢] < N|t —s|PA(s, t), p > 0. Then the
following process exists

Ag :=lim ZAti,tiﬂv
and |As — As| < |Ast| + Clt — s|PA(s, t).

17



How do we gain with sewing with controls?

Demo mode

> Suppose we want to get a good bound on A; := fot f(s) ds?,
feC* a+p<1.

> Set As; = fi(t? — s9).

18
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How do we gain with sewing with controls?

Demo mode

» Suppose we want to get a good bound on A; := fot f(s) ds”,
feCY a+p<1.

> Set A ;= fi(t? — s9).

> Then 6Asue = Ase — Asy — Aur = (f — £)(t° — 7).

t—s|* =i’

t—s|%\(s, t)

|6As ut| < |
<

where (s, t) := t® — s” is indeed a control.

18



Stochastic sewing with random controls

x=5 [ 5(X.) ds + W
0
X =1+ WwH.

A couple of observations:
» 1 is increasing; thus A(s, t) := ¢ — 1)s is a random control
(i.e. A(s,u) + A(u, t) < A(s, t) whenever s < u < t).
> But [[tr — ¥sll1,(q) is NOT a control for p > 1 :(.

» So one has to be very careful in extending Friz—Zhang to the
stochastic setting so that the result is still useful.

» Recall: a very useful extension of Gubinelli to the stochastic
setup is due to Le, 2019.

19



Stochastic sewing with random controls

» We say that the process A(s, t,w) is a random control if
A(s, u,w) + A(u, t,w) < A(s, t,w) a.s. whenever s < u < t.

Theorem (B., Mytnik, 2020)

Let As+ be an Fi-measurable random variable. Assume that for
some p = 2, p > 0 one has

16Asutl, < Ku|t — s|*/2F=
|E[0Asue| Full < Ka|t — s|PA(s, t) a.s..

Then there exists a process Bs; and a constant C > 0, such that
the following holds:

Me = Aslli, < [Aselle, + CKalt = /272 + CKalt = 5| A(s, B)lL,.-

20



Stochastic sewing with random controls: application
(sketch)

x)=5 [ 5(Xe) ds + W
0
X =4+ WH,

» We need to show that [[1)s — ts||r, < [t —s|7.
» Recall that if H =1/2, b is bounded, then this step is

immediate; but already for H = 1/2, b € L, this is not trivial.

21



Stochastic sewing with random controls: application

(sketch)
X(0)=5 [ 506 ds + Wi
xz¢+ﬁw
» We need to show that [[1)s — ts||r, < [t —s|7.

v

Recall that if H =1/2, b is bounded, then this step is
immediate; but already for H = 1/2, b € L, this is not trivial.

Take As ;= [ S(WH + ) dr.
Then 6Aqe = [L(WH +vu) — S(WH + vs) ds.
Hence |E[0Asut| Full < |t — s|7[1by — 15| - which is very good!

21



Further directions:
conjectures/paradoxes/open problems

22



Open problems
» Well-posedness of dX; = o(X;)dt +dW/}, H e (1/3,1/2).
> Weak existence and uniquness?

» Numerics for SDEs driven by a-stable processes. We are
planning to improve Mikulevicius—Xu, 2016.
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Open problems
» Well-posedness of dX; = o(X;)dt +dW/}, H e (1/3,1/2).
> Weak existence and uniquness?

» Numerics for SDEs driven by a-stable processes. We are
planning to improve Mikulevicius—Xu, 2016.

» B., Le, Zambotti (work in progress). Consider SPDE on [0, 1]
with Dirichlet BC

Oru = %axxu + Vrf(u)+ W.

It's invariant measure is the Gibbs measure given by

1
m(A) ::1// e ) dz y(dx),
Z Jalo

where p is the law of the Brownian Bridge 0 — 0.

» Note that 7 is well-defined even if Vf is a distribution! Can
we take Vf = §p7?
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Summary

>

| 2

Harrison and Shepp using Veretennikov—Zvonikin technique
showed that skew Brownian motion is well-defined.

Extension of this to the fractional BM case is not easy! No
Ito’s formula.

Catellier, Gubinelli used deterministic sewing to show that
SfBM is well posed for H < 1/4.

Inspired by sewing with controls of Friz—Zhang and stochastic
sewing of Le, we developed stochastic sewing with controls.

This allows to show well-posedness of SfBM for H < 1/3 and
well-posedness of skew stochastic heat equation, thus
resolving a conjecture of Bounebache-Zambotti.

The proofs are based on stochastic sewing and its variations,
which we believe to be a very flexible and useful tool. We
hope that one day it will become as popular as the
Zvonkin—Veretennikov transform.
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