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Classical control problem

Dynamics:

d

dt
x(t) = f (t, x(t), u(t)),

t ∈ [0,T ], x(t) ∈ Td , u(t) ∈ U.

Here Td is the d-dimensional torus, Td , Rd/Zd .

Payoff:
σ(x(T ))→ min .



Assumptions

I U is a metric compact;
I f , σ are continuous;
I f is Lipschitz continuous w.r.t. x .



Measurable controls

Any measurable function t 7→ u(t) ∈ U is a control.
x(·, t0, x0, u(·)) is a solution of the initial value problem:

d

dt
x(t) = f (t, x(t), u(t)), x(t0) = x0.



Differential inclusion

d

dt
x(t) ∈ co{f (t, x(t), u) : u ∈ U}, x(t0) = x0.

Denote the set of solutions of differential inclusion by X (t0, x0).

If x∗(·) ∈ X (t0, x0), then there exists a sequence of measurable
controls {un(·)}∞n=1 such that

‖x∗(·)− x(·, t0, x0, un(·))‖ → 0 as n→∞.



Value function

Val(t0, x0) , inf{σ(x(T , t0, x0, u(·))) : u(·) is measurable}
= min{σ(x(T )) : x(·) ∈ X (t0, x0)}.



Bellman equation

∂ϕ

∂x
+ H(t, x ,∇ϕ) = 0, ϕ(T , x) = σ(x).

I A function ϕ : [0,T ]× Td → R is a value function of the
control problem if and only if ϕ solves the Bellman equation in
the viscosity (minimax) sense.

I In the general case, there is no smooth solution of the Bellman
equation.

I The definition of the viscosity solution involves such concept
of nonsmooth analysis as sub-/super-differential and
directional derivatives.



Lattice approximation
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Markov decision problem

I state space: S ⊂ Td , |S| <∞;
I the dynamics is determined by the controlled Markov chain

with the Kolmogorov matrix Q(t, u) = (Qx̄ ,ȳ (t, u))x̄ ,ȳ∈S ;
I the purpose of the control is

Eσ(X (T ))→ min,

where X (·) is the stochastic process describing the state of the
system.



Strategies

1. Feedback relaxed strategies, i.e., we assume that for each
x̄ ∈ S a relaxed control γx̄ : [0,T ]→ P(U) is chosen.

2. γS(·) = (γx̄(·))x̄∈S is the feedback relaxed strategy.
3. Kolmogorov matrix: if γS = (γx̄)x̄∈S , where γx̄ ∈ P(U), then
Q(t, γS) = (Qx̄ ,ȳ (t, γx̄))x̄ ,ȳ∈S is defined by the rule

Qx̄ ,ȳ (t, γx̄) ,
∫
U
Qx̄ ,ȳ (t, u)γx̄(du).



Value function

ValQx̄0(t0) , min{Eσ(X (T )) :

γS(·) is a feedback relaxed strategy;
X (·) is the stochastic process

generated by Q(t, γS(t)),

X (t0) = x̄0, P-a.e.}.



Dynamic programming for Markov decision process

Let t ∈ [0,T ], x̄ ∈ S, φ ∈ R|S|, set

HQ
x̄ (t, φ) , min

u∈U

∑
ȳ∈S

Qx̄ ,ȳ (t, u)φȳ = min
γ∈P(U)

∑
ȳ∈S
Qx̄ ,ȳ (t, γ)φȳ ,

HQ
S (t, φ) , (HQ

x̄ (t, φ))x̄∈S .

Bellman equation:

d

dt
ϕS(t) = −HQ

S (t, ϕS), ϕx̄(T ) = σ(x̄).

Here ϕS(t) = (ϕx̄(t)) ∈ R|S|.



Dynamic programming for Markov decision process

Bellman equation:

d

dt
ϕS(t) = −HQ

S (t, ϕS), ϕx̄(T ) = σ(x̄).

Here ϕS(t) = (ϕx̄(t)) ∈ R|S|.

Property: A function ϕS is the value function of the Markov
decision problem iff it solves the Bellman equation.



Subtraction on Td

Let ` : Td × Td → Rd be a measurable function assigning to a pair
of elements x , y ∈ Td a vector z ′ ∈ x − y of the minimal norm.



Approximation condition

max
x∈Td

min
ȳ∈S
‖x − ȳ‖ ≤ ε;

max
t∈[0,T ],x̄∈S,u∈U

∥∥∥f (t, x̄ , u)

−
∑

ȳ∈S,ȳ 6=x̄

`(ȳ , x̄)Qx̄ ,ȳ (t, u)
∥∥∥ ≤ ε,

max
t∈[0,T ],x̄∈S,u∈U

∑
ȳ∈S
‖ȳ − x̄‖2Qx̄ ,ȳ (t, u) ≤ ε2.



Theorem. Approximation of control problem

If ValQ is the value function for the Markov decision problem, while
Val is the value function for the deterministic control problem,
then, for any t0 ∈ [0,T ], x0 ∈ Td

|Val(t0, x0)− ValQx̄0(t0)| ≤ Cε.

Here x̄0 ∈ S is such that ‖x0 − x̄0‖ ≤ ε, C is a constant that does
not depend on Q and S.



Lattice Markov chain

Let
I h > 0 be such that 1/h ∈ N

I Sh , hZd ∩ Td .

I f (t, x , u) = (f1(t, x , u), . . . , fd(t, x , u)),

I e i stand for the i-th coordinate vector.

Qh
x̄ ,ȳ (t, u) ,


1
h |fi (t, x , u)|, ȳ = x̄ + h

· sgn(fi (t, x , u))e i ,

− 1
h

∑d
j=1 |fj(t, x , u)|, x̄ = ȳ ,

0, otherwise.



Distance between lattice Markov chain and original system

If the matrix Q is the lattice Markov chain defined as above, then it
approximates the origanl system with

ε =
√
h ·max

{
√
R

4√
d ,

4
√
d√
2

}
,

where

R , sup{‖f (t, x , u)‖ : t ∈ [0,T ], x ∈ Td u ∈ U}.



Mean field type control problem

I dynamics of the probability m(t) obeys

∂

∂t
m(t) + div(f (t, x ,m(t), u(t, x))m(t)) = 0,

u(t, x) ∈ U;

I payoff function is
g(m(T ))→ min .



Mean field type control system

I infinitely many agents interacting via an external media;
I dynamics of each agent is given by

d

dt
x(t) = f (t, x(t),m(t), u(t, x(t))), u(t, x) ∈ U;

I m(t) is a probability on the phase space describing the
distribution of all agents at time t;

I m(t,Y ) is a fraction of agents being at time t in the set Y .



Push-forward measure

If (Ω1,Σ1), (Ω2,Σ2) are measurable spaces, m is a probability on
(Ω1,Σ1), h : Ω1 → Ω2 is a measurable function, then the
push-forward measure h]m is defined as follows: for any E ∈ Σ2,

(h]m)(E ) = m(h−1(E )).



Space of probabilities

Let (X , ρX ) be a metric space.

Pp(X ) denotes the set of probabilities m on X such that, for some
x∗ ∈ X , ∫

X
ρpX (x , x∗)m(dx) <∞.



Wasserstein metric

For m1,m2 ∈ Pp(X ),

Wp(m1,m2)

, inf

[{∫
X×X

ρpX (x1, x2)π(d(x1, x2)) : π ∈ Π(m1,m2)

}]1/p

.

Here Π(m1,m2) is the set of probabilities π on X × X such that its
marginal distributions of π are equal to m1 and m2 respectively, i.e.

Π(m1,m2) = {π ∈P(X × X ) : for any measurable E ⊂ X

π(E × X ) = m1(E ), π(X × E ) = m2(E )}.



Space of trajectories of the sample agent

I Ct0 , C ([t0,T ],Td).
I If t ∈ [t0,T ], x(·) ∈ Ct0 , then

et(x(·)) , x(t).



Mean field type control problem

I dynamics of the probability m(t) obeys

∂

∂t
m(t) + div(f (t, x ,m(t), u(t, x))m(t)) = 0,

u(t, x) ∈ U;

I payoff function is
g(m(T ))→ min .



Mean field type control system

I infinitely many agents;
I dynamics of each agent is given by

d

dt
x(t) = f (t, x(t),m(t), u(t, x(t))), u(t, x) ∈ U;

I m(t) is a probability on the phase space;
I m(t,Y ) is a fraction of agents being at time t in the set

Y ⊂ Td .



Assumptions

I U is a compact subset of a metric space;
I f , g are continuous;
I f is Lipschitz continuous w.r.t. x and m.



Dynamics of sampling agent

Let
I t 7→ m(t) be a distribution of agent (for a while);
I t0 be an initial time, x0 be an initial state.

The motion of the sampling player satisfies the differential inclusion

d

dt
x(t) ∈ co{f (t, x(t),m(t), u) : u ∈ U}, x(t0) = x0.

Any such motion can be approximated by trajectories generated by
measurable controls.



Dynamics of the flow of probabilities

Let t0 be an initial time, m0, m0 ∈ P2(Td) be an initial distribution
of agents.

We say that the flow of probabilities [t0,T ] 3 t 7→ m(t) ∈ P2(Td)
is a motion of the mean field type control system and write
m(·) ∈ X (t0,m0) if, there exists a χ ∈ P2(Ct0) such that
I m(t0) = m0;
I m(t) = et]χ;
I χ-a.e. x(·) ∈ Ct0 satisfies the differential inclusion

d

dt
x(t) ∈ co{f (t, x(t),m(t), u) : u ∈ U}.



Distribution of trajectories

Let χ ∈ P2(Ct0) be a distribution of curves in the phase space.
m(t) , et]χ ∈ P2(Td) is a distribution on the phase space.

t

x



Equivalent formulation

Theorem (Jimenez, Marigonda, Quincampoix)
The flow of probabilities m(·) ∈ X (t0,m0), if and only if,
I m(t0) = m0;
I there exists a velocity field v(t, x) such that

v(t, x) ∈ co{f (t, x ,m(t), u) : u ∈ U},
for a.e. t ∈ [t0,T ] and m(t)-a.e. x ∈ Td ,

and the equality

∂m(t)

∂t
+ div(v(t, x)m(t)) = 0

holds in the sense of distributions.



Mean field type optimal control problem

Given t0, m0, minimize
g(m(T ))

over the set X (t0,m0).



Existence of the optimal control

Theorem
There exists at least one optimal flow of probabilities.

Proof is by compactness arguments.



Value function

Val(t0,m0) = min{g(m(T )) : m(·) ∈ X (t0,m0)}.



Markov chains

Let
I S be a finite set;
I S ⊂ Td ;
I Σ be a simplex on {1, . . . , |S|}:

Σ ,

{
µ = (µx̄)x̄∈S : µx̄ ≥ 0,

∑
x∈S

µx̄ = 1

}
;

I 1ȳ = (1ȳ ,x̄)x̄∈S be a pure state; here

1ȳ ,x̄ =

{
1, x̄ = ȳ ,
0, x̄ 6= ȳ .



Σ vs P(S)

I Σ ⊂ R|S|;
I µ1 = (µ1

x̄)x̄∈S , µ
2 = (µ2

x̄)x̄∈S ∈ R|S|,

‖µ1 − µ2‖p ,

[∑
x∈S
|µ1

x̄ − µ2
x̄ |p
]1/p

;

I Isomorphism between Σ and P(S)

(µx̄)∈S = µ 7→ µ̃ =
∑
x̄∈S

µx̄δx̄ .



Σ vs P(S)

There exists constants C1 and C2 such that

‖µ1 − µ2‖p ≤ C1Wp(µ̃1, µ̃2),

Wp(µ̃1, µ̃2) ≤ C2(‖µ1 − µ2‖p)1/p.



Mean field type finite state control problem

I a decision maker controls infinitely many agents;
I distribution of agents µ = (µx̄)x̄∈S ∈ Σ;
I dynamics of each agents is given by the Markov chain with the

Kolmogorov matrix Q(t, µ, u) = (Qx̄ ,ȳ (t, µ, u))x̄ ,ȳ∈S , u ∈ U;
I The decision maker tries to minimize

ĝ(µ(T )) , g(µ̃(T )) = g

(∑
x̄∈S

µx̄δx̄

)
.



Kolmogorov equation

d

dt
µ(t) = µ(t)Q(t, µ(t), u(t)).



Conditions on Q

I for every (t, µ, u) ∈ [0,T ]× Σ× U, Qx̄ ,ȳ (t, µ, u) ≥ 0 when
x̄ 6= ȳ and ∑

ȳ∈S
Qx̄ ,ȳ (t, µ, u) = 0;

I the functions Qx̄ ,ȳ (t, µ, u) are continuous;

I there exists a constant L′ such that for any t ∈ [0,T ],
x̄ , ȳ ∈ S, µ1, µ2 ∈ Σ, u ∈ U,

|Qx̄ ,ȳ (t, µ1, u)− Qx̄ ,ȳ (t, µ2, u)| ≤ L′‖µ1 − µ2‖2.



Feedback strategies

A function [s, r ] 3 t 7→ γS(t) = (γx̄(t))x̄∈S ∈ P(U)|S| is a relaxed
feedback control for the mean field type finite state control system
provided that each function γx̄(·) is weakly measurable.

In this case we regard γx̄(t) as the instantaneous control acting
upon the agent who occupy the state x̄ at time t.

Relaxed transition rates:

Qx̄ ,ȳ (t, µ, γx̄) ,
∫
U
Qx̄ ,ȳ (t, µ, u)γx̄(du).

Kolmogorov matrix:

Q(t, µ, γS) = (Qx̄ ,ȳ (t, µ, γx̄)x̄ ,ȳ∈S .



Control problem

I control t 7→ γS = (γx̄)x̄∈S ⊂ P(U)S ;
I dynamics:

d

dt
µȳ (t) =

∑
x̄∈S

µx̄(t)Qx̄ ,ȳ (t, µ(t), γx̄(t)), ȳ ∈ S

or in the vector form

d

dt
µ(t) = µ(t)Q(t, µ(t), γS(t)),

I payoff function

ĝ(µ(T )) , g(µ̃(T )) = g

(∑
x̄∈S

µx̄δx̄

)
.



Value function of the mean field type Markov decision
problem

ValQ(t0, µ0) , min{g(µ(T )) :

µ(·) satisfying the Kolmogorov equation
with the strategy γS(·),
µ(t0) = µ0}.



Approximation condition

max
x∈Td

min
ȳ∈S
‖x − ȳ‖ ≤ ε;

max
t∈[0,T ],x̄∈S,µ∈Σ,u∈U

∥∥∥f (t, x̄ , µ̃, u)

−
∑

ȳ∈S,ȳ 6=x̄

`(ȳ , x̄)Qx̄ ,ȳ (t, µ, u)
∥∥∥ ≤ ε,

max
t∈[0,T ],x̄∈S,µ∈Σ,u∈U

∑
ȳ∈S
‖ȳ − x̄‖2Qx̄ ,ȳ (t, µ, u) ≤ ε2.



Proximal elements

For m ∈ P2(Td), denote by prS(m) an element of Σ such that

p̃rS(m) is a proximal to m element of P2(S), i.e., prS(m) minimize
the function

Σ 3 µ = (µx̄)x̄∈S 7→W2(µ̃,m) = W2

(∑
x̄∈S

µx̄δx̄ ,m

)
.



Theorem. Approximation of mean field type control problem

Assume that
I Val is the value function for the deterministic control problem;
I ValQ is the value function for the mean field type Markov

decision problem.
Then, for any t0 ∈ [0,T ], m0 ∈ P2(Td)

|Val(t0,m0)− ValQ(t0, prS(m0))| ≤ Cε.

Here C is a constant that does not depend on Q and S.



Lattice Markov chain

Let
I h > 0 be such that 1/h ∈ N

I Sh , hZd ∩ Td .

I f (t, x ,m, u) = (f1(t, x ,m, u), . . . , fd(t, x ,m, u)),

I e i stand for the i-th coordinate vector.

Qh
x̄ ,ȳ (t, µ, u) ,

1
h |fi (t, x , µ̃, u)|, ȳ = x̄ + h

· sgn(fi (t, x , µ̃, u))e i ,

− 1
h

∑d
j=1 |fj(t, x , µ̃, u)|, x̄ = ȳ ,

0, otherwise.



Distance between lattice Markov chain and original system

Let
‖f (t, x ,m1, u)− f (t, x ,m2, u)‖ ≤ L′′W1(m1,m2)

for some constant L′′.

If the matrix Q is the lattice Markov chain defined as above, then it
approximates the original system with

ε =
√
h ·max

{
√
R

4√
d ,

4
√
d√
2

}
.



Thank you for your attention!


