Lattice approximations of control dynamics

Yurii Averboukh

Higher school of economics averboukh@gmail.com

LSA Autumn Meeting 2021

Classical control problem

Dynamics:

$$egin{aligned} &rac{d}{dt}x(t)=f(t,x(t),u(t)),\ &t\in[0,T],\ x(t)\in\mathbb{T}^d,\ u(t)\in U. \end{aligned}$$

Here \mathbb{T}^d is the *d*-dimensional torus, $\mathbb{T}^d \triangleq \mathbb{R}^d / \mathbb{Z}^d$.

Payoff:

 $\sigma(x(T)) \to \min$.

Assumptions

- U is a metric compact;
- f, σ are continuous;
- ► *f* is Lipschitz continuous w.r.t. *x*.

Measurable controls

Any measurable function $t \mapsto u(t) \in U$ is a control. $x(\cdot, t_0, x_0, u(\cdot))$ is a solution of the initial value problem:

$$\frac{d}{dt}x(t) = f(t, x(t), u(t)), \ x(t_0) = x_0.$$

Differential inclusion

$$\frac{d}{dt}x(t)\in \operatorname{co}\{f(t,x(t),u):u\in U\}, \ x(t_0)=x_0.$$

Denote the set of solutions of differential inclusion by $\mathcal{X}(t_0, x_0)$.

If $x_*(\cdot) \in \mathcal{X}(t_0, x_0)$, then there exists a sequence of measurable controls $\{u_n(\cdot)\}_{n=1}^{\infty}$ such that

$$\|x_*(\cdot) - x(\cdot, t_0, x_0, u_n(\cdot))\| \to 0 \text{ as } n \to \infty.$$

Value function

$$Val(t_0, x_0) \triangleq \inf \{ \sigma(x(T, t_0, x_0, u(\cdot))) : u(\cdot) \text{ is measurable} \}$$
$$= \min \{ \sigma(x(T)) : x(\cdot) \in \mathcal{X}(t_0, x_0) \}.$$

Bellman equation

$$rac{\partial arphi}{\partial x} + H(t, x,
abla arphi) = 0, \ \ arphi(T, x) = \sigma(x).$$

- A function φ : [0, T] × T^d → ℝ is a value function of the control problem if and only if φ solves the Bellman equation in the viscosity (minimax) sense.
- In the general case, there is no smooth solution of the Bellman equation.
- The definition of the viscosity solution involves such concept of nonsmooth analysis as sub-/super-differential and directional derivatives.

Lattice approximation

Markov decision problem

- state space: $\mathcal{S} \subset \mathbb{T}^d$, $|\mathcal{S}| < \infty$;
- ► the dynamics is determined by the controlled Markov chain with the Kolmogorov matrix Q(t, u) = (Q_{x,y}(t, u))_{x,y∈S};
- the purpose of the control is

 $\mathbb{E}\sigma(X(T)) \to \min,$

where $X(\cdot)$ is the stochastic process describing the state of the system.

Strategies

- 1. Feedback relaxed strategies, i.e., we assume that for each $\bar{x} \in S$ a relaxed control $\gamma_{\bar{x}} : [0, T] \to \mathcal{P}(U)$ is chosen.
- 2. $\gamma_{\mathcal{S}}(\cdot) = (\gamma_{\bar{x}}(\cdot))_{\bar{x}\in\mathcal{S}}$ is the feedback relaxed strategy.
- 3. Kolmogorov matrix: if $\gamma_{\mathcal{S}} = (\gamma_{\bar{x}})_{\bar{x} \in \mathcal{S}}$, where $\gamma_{\bar{x}} \in \mathcal{P}(U)$, then $\mathcal{Q}(t, \gamma_{\mathcal{S}}) = (\mathcal{Q}_{\bar{x}, \bar{y}}(t, \gamma_{\bar{x}}))_{\bar{x}, \bar{y} \in \mathcal{S}}$ is defined by the rule

$$\mathcal{Q}_{\bar{x},\bar{y}}(t,\gamma_{\bar{x}}) \triangleq \int_{U} Q_{\bar{x},\bar{y}}(t,u)\gamma_{\bar{x}}(du).$$

Value function

$$\begin{aligned} \mathsf{Val}^Q_{\bar{x}_0}(t_0) &\triangleq \min\{\mathbb{E}\sigma(X(T)):\\ \gamma_{\mathcal{S}}(\cdot) \text{ is a feedback relaxed strategy;}\\ X(\cdot) \text{ is the stochastic process}\\ & \text{generated by } \mathcal{Q}(t,\gamma_{\mathcal{S}}(t)),\\ X(t_0) &= \bar{x}_0, \ \ P\text{-a.e.}\}. \end{aligned}$$

Dynamic programming for Markov decision process

Let
$$t \in [0, T]$$
, $\bar{x} \in S$, $\phi \in \mathbb{R}^{|S|}$, set
 $H^{Q}_{\bar{x}}(t, \phi) \triangleq \min_{u \in U} \sum_{\bar{y} \in S} Q_{\bar{x}, \bar{y}}(t, u) \phi_{\bar{y}} = \min_{\gamma \in \mathcal{P}(U)} \sum_{\bar{y} \in S} Q_{\bar{x}, \bar{y}}(t, \gamma) \phi_{\bar{y}},$
 $H^{Q}_{S}(t, \phi) \triangleq (H^{Q}_{\bar{x}}(t, \phi))_{\bar{x} \in S}.$

Bellman equation:

$$rac{d}{dt}arphi_{\mathcal{S}}(t)=-H^{\mathcal{Q}}_{\mathcal{S}}(t,arphi_{\mathcal{S}}), \ \ arphi_{ar{x}}(\mathcal{T})=\sigma(ar{x}).$$

Here $\varphi_{\mathcal{S}}(t) = (\varphi_{\bar{x}}(t)) \in \mathbb{R}^{|\mathcal{S}|}.$

Dynamic programming for Markov decision process

Bellman equation:

$$rac{d}{dt}arphi_{\mathcal{S}}(t)=-\mathcal{H}^Q_{\mathcal{S}}(t,arphi_{\mathcal{S}}), \ \ arphi_{ar{x}}(\mathcal{T})=\sigma(ar{x}).$$

Here $\varphi_{\mathcal{S}}(t) = (\varphi_{\bar{x}}(t)) \in \mathbb{R}^{|\mathcal{S}|}$.

Property: A function φ_S is the value function of the Markov decision problem iff it solves the Bellman equation.

Subtraction on \mathbb{T}^d

Let $\ell : \mathbb{T}^d \times \mathbb{T}^d \to \mathbb{R}^d$ be a measurable function assigning to a pair of elements $x, y \in \mathbb{T}^d$ a vector $z' \in x - y$ of the minimal norm.

Approximation condition

$$\begin{split} \max_{x \in \mathbb{T}^d} \min_{\bar{y} \in \mathcal{S}} \|x - \bar{y}\| &\leq \varepsilon; \\ \max_{t \in [0, T], \bar{x} \in \mathcal{S}, u \in U} \left\| f(t, \bar{x}, u) - \sum_{\bar{y} \in \mathcal{S}, \bar{y} \neq \bar{x}} \ell(\bar{y}, \bar{x}) Q_{\bar{x}, \bar{y}}(t, u) \right\| &\leq \varepsilon, \\ \max_{t \in [0, T], \bar{x} \in \mathcal{S}, u \in U} \sum_{\bar{y} \in \mathcal{S}} \| \bar{y} - \bar{x} \|^2 Q_{\bar{x}, \bar{y}}(t, u) &\leq \varepsilon^2. \end{split}$$

Theorem. Approximation of control problem

If Val^Q is the value function for the Markov decision problem, while Val is the value function for the deterministic control problem, then, for any $t_0 \in [0, T]$, $x_0 \in \mathbb{T}^d$

$$|\operatorname{Val}(t_0,x_0)-\operatorname{Val}_{\overline{x}_0}^Q(t_0)|\leq Carepsilon.$$

Here $\bar{x}_0 \in S$ is such that $||x_0 - \bar{x}_0|| \le \varepsilon$, *C* is a constant that does not depend on *Q* and *S*.

Lattice Markov chain

Let

▶
$$h > 0$$
 be such that $1/h \in \mathbb{N}$

$$\triangleright \ \mathcal{S}_h \triangleq h\mathbb{Z}^d \cap \mathbb{T}^d.$$

•
$$f(t, x, u) = (f_1(t, x, u), \dots, f_d(t, x, u)),$$

• e^i stand for the *i*-th coordinate vector.

$$Q^{h}_{\bar{x},\bar{y}}(t,u) \triangleq \begin{cases} \frac{1}{h}|f_{i}(t,x,u)|, & \bar{y} = \bar{x} + h \\ & \cdot \operatorname{sgn}(f_{i}(t,x,u))e^{i}, \\ -\frac{1}{h}\sum_{j=1}^{d}|f_{j}(t,x,u)|, & \bar{x} = \bar{y}, \\ 0, & \text{otherwise.} \end{cases}$$

Distance between lattice Markov chain and original system

If the matrix ${\cal Q}$ is the lattice Markov chain defined as above, then it approximates the origanl system with

$$\varepsilon = \sqrt{h} \cdot \max\left\{\sqrt{R}\sqrt[4]{d}, \frac{\sqrt[4]{d}}{\sqrt{2}}\right\},\$$

where

$$R \triangleq \sup\{\|f(t,x,u)\| : t \in [0,T], x \in \mathbb{T}^d \ u \in U\}.$$

Mean field type control problem

• dynamics of the probability m(t) obeys

$$\frac{\partial}{\partial t}m(t) + \operatorname{div}(f(t, x, m(t), u(t, x))m(t)) = 0,$$
$$u(t, x) \in U;$$

payoff function is

 $g(m(T)) \rightarrow \min$.

Mean field type control system

infinitely many agents interacting via an external media;
dynamics of each agent is given by

$$\frac{d}{dt}x(t)=f(t,x(t),m(t),u(t,x(t))), \quad u(t,x)\in U;$$

- m(t) is a probability on the phase space describing the distribution of all agents at time t;
- m(t, Y) is a fraction of agents being at time t in the set Y.

Push-forward measure

If (Ω_1, Σ_1) , (Ω_2, Σ_2) are measurable spaces, *m* is a probability on (Ω_1, Σ_1) , $h : \Omega_1 \to \Omega_2$ is a measurable function, then the push-forward measure $h \sharp m$ is defined as follows: for any $E \in \Sigma_2$,

$$(h\sharp m)(E)=m(h^{-1}(E)).$$

Space of probabilities

Let (X, ρ_X) be a metric space.

 $\mathcal{P}^p(X)$ denotes the set of probabilities m on X such that, for some $x_* \in X$,

$$\int_X \rho_X^p(x,x_*)m(dx) < \infty.$$

Wasserstein metric

For
$$m_1, m_2 \in \mathcal{P}^p(X)$$
,
 $W_p(m_1, m_2)$
 $\triangleq \inf \left[\left\{ \int_{X \times X} \rho_X^p(x_1, x_2) \pi(d(x_1, x_2)) : \pi \in \Pi(m_1, m_2) \right\} \right]^{1/p}$

Here $\Pi(m_1, m_2)$ is the set of probabilities π on $X \times X$ such that its marginal distributions of π are equal to m_1 and m_2 respectively, i.e.

$$\Pi(m_1, m_2) = \{ \pi \in \mathcal{P}(X \times X) : \text{ for any measurable } E \subset X \\ \pi(E \times X) = m_1(E), \ \pi(X \times E) = m_2(E) \}.$$

Space of trajectories of the sample agent

Mean field type control problem

• dynamics of the probability m(t) obeys

$$\frac{\partial}{\partial t}m(t) + \operatorname{div}(f(t, x, m(t), u(t, x))m(t)) = 0,$$
$$u(t, x) \in U;$$

payoff function is

 $g(m(T)) \rightarrow \min$.

Mean field type control system

- infinitely many agents;
- dynamics of each agent is given by

$$\frac{d}{dt}x(t)=f(t,x(t),m(t),u(t,x(t))), \quad u(t,x)\in U;$$

- m(t) is a probability on the phase space;
- m(t, Y) is a fraction of agents being at time t in the set Y ⊂ T^d.

Assumptions

- ► U is a compact subset of a metric space;
- ▶ f, g are continuous;
- ▶ *f* is Lipschitz continuous w.r.t. *x* and *m*.

Dynamics of sampling agent

Let

- $t \mapsto m(t)$ be a distribution of agent (for a while);
- t_0 be an initial time, x_0 be an initial state.

The motion of the sampling player satisfies the differential inclusion

$$\frac{d}{dt}x(t) \in co\{f(t, x(t), m(t), u) : u \in U\}, \ x(t_0) = x_0.$$

Any such motion can be approximated by trajectories generated by measurable controls.

Dynamics of the flow of probabilities

Let t_0 be an initial time, m_0 , $m_0 \in \mathcal{P}^2(\mathbb{T}^d)$ be an initial distribution of agents.

We say that the flow of probabilities $[t_0, T] \ni t \mapsto m(t) \in \mathcal{P}^2(\mathbb{T}^d)$ is a motion of the mean field type control system and write $m(\cdot) \in \mathcal{X}(t_0, m_0)$ if, there exists a $\chi \in \mathcal{P}^2(\mathcal{C}_{t_0})$ such that

•
$$m(t_0) = m_0;$$

$$\blacktriangleright m(t) = e_t \sharp \chi;$$

▶ χ -a.e. $x(\cdot) \in C_{t_0}$ satisfies the differential inclusion

$$\frac{d}{dt}x(t)\in \mathrm{co}\{f(t,x(t),m(t),u):u\in U\}.$$

Distribution of trajectories

Let $\chi \in \mathcal{P}^2(\mathcal{C}_{t_0})$ be a distribution of curves in the phase space. $m(t) \triangleq e_t \sharp \chi \in \mathcal{P}^2(\mathbb{T}^d)$ is a distribution on the phase space.

Equivalent formulation

Theorem (Jimenez, Marigonda, Quincampoix) The flow of probabilities $m(\cdot) \in \mathcal{X}(t_0, m_0)$, if and only if,

• $m(t_0) = m_0;$

there exists a velocity field v(t,x) such that

$$egin{aligned} \mathsf{v}(t,x) \in \mathsf{co}\{f(t,x,\mathit{m}(t),\mathit{u}): \mathit{u} \in U\}, \ & ext{for a.e. } t \in [t_0,T] ext{ and } \mathit{m}(t) ext{-a.e. } x \in \mathbb{T}^d, \end{aligned}$$

and the equality

$$\frac{\partial m(t)}{\partial t} + \operatorname{div}(v(t, x)m(t)) = 0$$

holds in the sense of distributions.

Mean field type optimal control problem

Given t₀, m₀, minimize

g(m(T))

over the set $\mathcal{X}(t_0, m_0)$.

Existence of the optimal control

Theorem

There exists at least one optimal flow of probabilities.

Proof is by compactness arguments.

Value function

 $Val(t_0, m_0) = \min\{g(m(T)) : m(\cdot) \in \mathcal{X}(t_0, m_0)\}.$

Markov chains

Let

- S be a finite set;
- $\blacktriangleright \ \mathcal{S} \subset \mathbb{T}^d;$
- Σ be a simplex on $\{1, \ldots, |\mathcal{S}|\}$:

$$\Sigma riangleq \left\{ \mu = (\mu_{ar{x}})_{ar{x} \in \mathcal{S}} : \mu_{ar{x}} \geq 0, \sum_{x \in \mathcal{S}} \mu_{ar{x}} = 1
ight\};$$

▶ $\mathbb{1}_{\bar{y}} = (\mathbb{1}_{\bar{y},\bar{x}})_{\bar{x}\in\mathcal{S}}$ be a pure state; here

$$\mathbb{1}_{ar{y},ar{x}} = \left\{ egin{array}{cc} 1, & ar{x} = ar{y}, \ 0, & ar{x}
eq ar{y}. \end{array}
ight.$$

 Σ vs $\mathcal{P}(\mathcal{S})$

$$\Sigma \subset \mathbb{R}^{|S|};$$

$$\mu^{1} = (\mu_{\bar{x}}^{1})_{\bar{x}\in\mathcal{S}}, \mu^{2} = (\mu_{\bar{x}}^{2})_{\bar{x}\in\mathcal{S}} \in \mathbb{R}^{|\mathcal{S}|},$$

$$\|\mu^{1} - \mu^{2}\|_{p} \triangleq \left[\sum_{x\in\mathcal{S}} |\mu_{\bar{x}}^{1} - \mu_{\bar{x}}^{2}|^{p}\right]^{1/p};$$

• Isomorphism between Σ and $\mathcal{P}(\mathcal{S})$

$$(\mu_{\bar{x}})_{\in\mathcal{S}} = \mu \mapsto \tilde{\mu} = \sum_{\bar{x}\in\mathcal{S}} \mu_{\bar{x}} \delta_{\bar{x}}.$$

Σ vs $\mathcal{P}(\mathcal{S})$

There exists constants C_1 and C_2 such that

$$\begin{split} \|\mu^1 - \mu^2\|_p &\leq C_1 W_p(\widetilde{\mu^1}, \widetilde{\mu^2}), \\ W_p(\widetilde{\mu^1}, \widetilde{\mu^2}) &\leq C_2 (\|\mu^1 - \mu^2\|_p)^{1/p}. \end{split}$$

Mean field type finite state control problem

- a decision maker controls infinitely many agents;
- distribution of agents $\mu = (\mu_{\bar{x}})_{\bar{x} \in S} \in \Sigma$;
- In dynamics of each agents is given by the Markov chain with the Kolmogorov matrix Q(t, µ, u) = (Q_{x,y}(t, µ, u))_{x,y∈S}, u ∈ U;
- The decision maker tries to minimize

$$\widehat{g}(\mu(T)) \triangleq \widetilde{g(\mu(T))} = g\left(\sum_{\overline{x} \in S} \mu_{\overline{x}} \delta_{\overline{x}}\right).$$

Kolmogorov equation

$$\frac{d}{dt}\mu(t)=\mu(t)Q(t,\mu(t),u(t)).$$

Conditions on Q

► for every
$$(t, \mu, u) \in [0, T] \times \Sigma \times U$$
, $Q_{\bar{x}, \bar{y}}(t, \mu, u) \ge 0$ when
 $\bar{x} \neq \bar{y}$ and
 $\sum_{\bar{y} \in S} Q_{\bar{x}, \bar{y}}(t, \mu, u) = 0$;

- the functions $Q_{\bar{x},\bar{y}}(t,\mu,u)$ are continuous;
- ► there exists a constant L' such that for any $t \in [0, T]$, $\bar{x}, \bar{y} \in S, \mu^1, \mu^2 \in \Sigma, u \in U$,

$$|Q_{ar{x},ar{y}}(t,\mu^1,u)-Q_{ar{x},ar{y}}(t,\mu^2,u)|\leq L'\|\mu^1-\mu^2\|_2.$$

Feedback strategies

A function $[s, r] \ni t \mapsto \gamma_{\mathcal{S}}(t) = (\gamma_{\bar{x}}(t))_{\bar{x} \in \mathcal{S}} \in \mathcal{P}(U)^{|\mathcal{S}|}$ is a relaxed feedback control for the mean field type finite state control system provided that each function $\gamma_{\bar{x}}(\cdot)$ is weakly measurable.

In this case we regard $\gamma_{\bar{x}}(t)$ as the instantaneous control acting upon the agent who occupy the state \bar{x} at time t.

Relaxed transition rates:

$$\mathcal{Q}_{\bar{x},\bar{y}}(t,\mu,\gamma_{\bar{x}}) \triangleq \int_{U} Q_{\bar{x},\bar{y}}(t,\mu,u)\gamma_{\bar{x}}(du).$$

Kolmogorov matrix:

$$\mathcal{Q}(t,\mu,\gamma_{\mathcal{S}}) = (\mathcal{Q}_{\bar{x},\bar{y}}(t,\mu,\gamma_{\bar{x}})_{\bar{x},\bar{y}\in\mathcal{S}}.$$

Control problem

$$rac{d}{dt} \mu_{ar{y}}(t) = \sum_{ar{x} \in \mathcal{S}} \mu_{ar{x}}(t) \mathcal{Q}_{ar{x},ar{y}}(t,\mu(t),\gamma_{ar{x}}(t)), \;\;\; ar{y} \in \mathcal{S}$$

or in the vector form

$$\frac{d}{dt}\mu(t) = \mu(t)\mathcal{Q}(t,\mu(t),\gamma_{\mathcal{S}}(t)),$$

► payoff function

$$\hat{g}(\mu(T)) \triangleq g(\widetilde{\mu(T)}) = g\left(\sum_{\overline{x} \in S} \mu_{\overline{x}} \delta_{\overline{x}}\right).$$

Value function of the mean field type Markov decision problem

$$Val^{Q}(t_{0}, \mu_{0}) \triangleq \min\{g(\mu(T)): \\ \mu(\cdot) \text{ satisfying the Kolmogorov equation} \\ \text{ with the strategy } \gamma_{\mathcal{S}}(\cdot), \\ \mu(t_{0}) = \mu_{0}\}.$$

Approximation condition

$$\begin{split} \max_{x \in \mathbb{T}^d} \min_{\bar{y} \in \mathcal{S}} \|x - \bar{y}\| &\leq \varepsilon; \\ \max_{t \in [0,T], \bar{x} \in \mathcal{S}, \mu \in \Sigma, u \in U} \left\| f(t, \bar{x}, \tilde{\mu}, u) - \sum_{\bar{y} \in \mathcal{S}, \bar{y} \neq \bar{x}} \ell(\bar{y}, \bar{x}) Q_{\bar{x}, \bar{y}}(t, \mu, u) \right\| &\leq \varepsilon, \\ \max_{t \in [0,T], \bar{x} \in \mathcal{S}, \mu \in \Sigma, u \in U} \sum_{\bar{y} \in \mathcal{S}} \|\bar{y} - \bar{x}\|^2 Q_{\bar{x}, \bar{y}}(t, \mu, u) \leq \varepsilon^2. \end{split}$$

Proximal elements

For $m \in \mathcal{P}^2(\mathbb{T}^d)$, denote by $\operatorname{pr}_{\mathcal{S}}(m)$ an element of Σ such that $\widetilde{\operatorname{pr}_{\mathcal{S}}(m)}$ is a proximal to *m* element of $\mathcal{P}^2(\mathcal{S})$, i.e., $\operatorname{pr}_{\mathcal{S}}(m)$ minimize the function

$$\Sigma \ni \mu = (\mu_{\bar{x}})_{\bar{x} \in S} \mapsto W_2(\tilde{\mu}, m) = W_2\left(\sum_{\bar{x} \in S} \mu_{\bar{x}} \delta_{\bar{x}}, m\right).$$

Theorem. Approximation of mean field type control problem

Assume that

- Val is the value function for the deterministic control problem;
- Val^Q is the value function for the mean field type Markov decision problem.
- Then, for any $t_0 \in [0, T]$, $m_0 \in \mathcal{P}^2(\mathbb{T}^d)$

$$|\operatorname{Val}(t_0,m_0)-\operatorname{Val}^Q(t_0,\operatorname{pr}_{\mathcal{S}}(m_0))|\leq Carepsilon.$$

Here C is a constant that does not depend on Q and S.

Lattice Markov chain

Let

▶
$$h > 0$$
 be such that $1/h \in \mathbb{N}$

$$\triangleright \ \mathcal{S}_h \triangleq h\mathbb{Z}^d \cap \mathbb{T}^d.$$

•
$$f(t, x, m, u) = (f_1(t, x, m, u), \dots, f_d(t, x, m, u)),$$

 \blacktriangleright e^i stand for the *i*-th coordinate vector.

$$\begin{aligned} Q_{\bar{x},\bar{y}}^{h}(t,\mu,u) &\triangleq \\ \begin{cases} \frac{1}{h} |f_{i}(t,x,\tilde{\mu},u)|, & \bar{y} = \bar{x} + h \\ & \cdot \operatorname{sgn}(f_{i}(t,x,\tilde{\mu},u))e^{i}, \\ -\frac{1}{h} \sum_{j=1}^{d} |f_{j}(t,x,\tilde{\mu},u)|, & \bar{x} = \bar{y}, \\ & 0, & \text{otherwise.} \end{aligned}$$

Distance between lattice Markov chain and original system

Let

$$||f(t,x,m_1,u) - f(t,x,m_2,u)|| \le L'' W_1(m_1,m_2)$$

for some constant L''.

If the matrix Q is the lattice Markov chain defined as above, then it approximates the original system with

$$\varepsilon = \sqrt{h} \cdot \max\left\{\sqrt{R}\sqrt[4]{d}, \frac{\sqrt[4]{d}}{\sqrt{2}}
ight\}.$$

Thank you for your attention!