Upper density estimates for the marginal law of an stable process and its supremum: From simulation to theory

Arturo Kohatsu-Higa
(joint with Jorge González Cázares and Aleksandar Mijatović from Warwick University-Turing Institute)

Ritsumeikan University, Mathematics Department

From Valentin's work we learned how to use the parametrix method as a two way road between approximations and their limits.

Konakov-Mammen:Local limit theorems for transition densities of Markov chains converging to diffusions (2000) PTRF 551-587

Here we give another different twist at the story for the couple of the supremum and the current value of a stable process.

The goal is to obtain an almost optimal upper bound for the joint density.

Stable process

A general α-stable process is a Lévy process with characteristic function $(\alpha \in(0,2))$

$$
-\log \left(\mathbb{E}\left[e^{i \theta X_{t}}\right]\right)=c t|\theta|^{\alpha}(1-i \boldsymbol{\operatorname { s g n }}(\theta) \tan (\pi \alpha(2 \rho-1) / 2))
$$

-Here, $\rho:=\mathbb{P}\left(X_{t} \geq 0\right)$ is the positivity parameter.
-The generator of the Markov process X is (non-local operator)

$$
\begin{aligned}
& L f(x)=\gamma f^{\prime}(x)+\int\left(f(x+y)-f(x)-f^{\prime}(x) 1_{(-1,1)}(y)\right) v(d y) \\
& v(d y)=\frac{d y}{|y|^{1+\alpha}}\left(\rho 1_{(0, \infty)}(y)+(1-\rho) 1_{(-\infty, 0)}(y)\right)
\end{aligned}
$$

- Our goal: Study of the joint law of $\left(X_{T}, \bar{X}_{T}\right) \equiv\left(X_{T}, \sup _{s \in[0, T]} X_{s}\right)$ on the domain $O:=\left\{(x, y) \in \mathbb{R}^{2} ; y \geq x \vee 0\right\}$ (including the behavior close to the diagonal and for $x, y \approx 0$ or $x, y \approx \infty$)
- Many previous results: R.A. Doney and M.S. Savov (2010).

$$
\begin{array}{ll}
\partial_{y}^{3} \mathbb{P}\left(\bar{X}_{T} \in d y\right)^{y \rightarrow \infty} \widetilde{\approx} T y^{-\alpha-1} ; & \partial_{y}^{3} \mathbb{P}\left(\bar{X}_{T} \in d y\right)^{y \rightarrow 0}{ }^{2} T^{-\rho} y^{\alpha \rho-1} . \\
\partial_{x}^{3} \mathbb{P}\left(X_{T} \in d x\right)^{x \rightarrow \infty}{ }^{\approx} T x^{-\alpha-1} ; \quad \partial_{x}^{3} \mathbb{P}\left(X_{T} \in d x\right)^{x \rightarrow 0}{ }^{-1 / \alpha} .
\end{array}
$$

Analytical arguments based on stable meanders (excursion identities). ρ appears in the constants.

- 4 domains required: We will see that the domains are determined by the lines $y=T^{1 / \alpha}$ and $y=x+T^{1 / \alpha}, y \geq x \vee 0$.
- Expansion results for the density of \bar{X}_{T} have been obtained by Kuznetsov $(2011,2013)$

Excursion/Fluctuation based equation:

Let X denote a generic Lévy process which is not compound Poisson. S and I will be the associated supremum and infimum processes, we will write L and L^{*} for the local times at zero of the reflected processes $S-X$ and $X-I$, respectively, and n and n^{*} will denote the characteristic measures of the excursions away from 0 of these processes. We write ε for a typical excursion, ζ for its lifetime and $\overline{\pi^{*}}(t)=n^{*}(\zeta>t)$.
LEMMA 6 . There is a constant, $0<k<\infty$, which depends only on the normalization of L and L^{*}, such that, for $t, x>0$,
$k P\left(S_{t}>x\right)=\int_{0}^{t} n^{*}\left(\varepsilon_{t-s}>x, \zeta>t-s\right)(b+\bar{\pi}(s)) d s+\Delta n^{*}\left(\varepsilon_{t}>x, \zeta>t\right)$
where Δ denotes the drift, b the killing rate and $\bar{\pi}(s)=n(\zeta>s)$ the tail of the Lévy measure of the increasing ladder time process T.

Main statement

Let $O=\left\{(x, y) \in \mathbb{R}^{2}: y>x \vee 0\right\}, n, m \geq 1, T>0$.
Theorem
Let $F(x, y):=\mathbb{P}\left(X_{T} \leq x, \bar{X}_{T} \leq y\right)$ be the law of $\left(X_{T}, \bar{X}_{T}\right)$. Then $F \in C^{\infty}(O)$.
Moreover, for any fixed $\alpha^{\prime} \in[0, \alpha)$ there is $C>0$ s.t. for all $(x, y) \in O$,

$$
\begin{aligned}
& \left|\partial_{x}^{n} \partial_{y}^{m} F(x, y)\right| \leq C y^{-m}(y-x)^{1-n-m}(2 y-x)^{m-1} \\
& \quad \times \min \left\{f_{\alpha^{\prime}}^{00}(x, y), f_{\alpha^{\prime}}^{01}(x, y), f_{\alpha^{\prime}}^{10}(x, y), f_{\alpha^{\prime}}^{11}(x, y)\right\},
\end{aligned}
$$

Density function: $n=m=1$

$$
\left.\begin{array}{l}
\min \left\{T^{-\frac{\alpha^{\prime}}{\alpha}}(y-x)^{-1+\alpha^{\prime}(1-\rho)} y^{-1+\alpha^{\prime} \rho}, T^{\frac{\alpha^{\prime}}{\alpha}}(y-x)^{-1+\alpha^{\prime}(1-\rho)} y^{-1-\alpha^{\prime}},\right. \\
T^{\frac{\alpha^{\prime}}{\alpha}}(1-\rho) \\
\end{array}(y-x)^{-1-\alpha^{\prime}} y^{-1+\alpha^{\prime} \rho}, T^{2 \frac{\alpha^{\prime}}{\alpha}}(y-x)^{-1-\alpha^{\prime}} y^{-1-\alpha^{\prime}}\right\} .
$$

4 Domains: Behavior at ∞. Behavior at 0 . This result is optimal in time and almost optimal in space taking $\alpha^{\prime} \approx \alpha$. The main reason is that there is some Chebyshev's type argument used. The term $2 y-x$ appears due to "weak reflection principle" $\bar{X}_{T}-\left(X_{T}-\bar{X}_{T}\right)$

The set $O=\left\{(x, y) \in \mathbb{R}^{2}: y>\max \{x, 0\}\right\}$ (shaded in the figure) is the support of the joint density of (X_{T}, \bar{X}_{T}). According to our Theorem, the support can be partitioned into 4 sub-regions according to which of the functions $f_{\alpha}^{i j}, i, j \in\{0,1\}$, is the smallest in the (optimal) case $\alpha^{\prime}=\alpha$.

Sample of consequences

-Assume that $\alpha \in(0,2)$. Then the distribution function
$F(y):=\mathbb{P}\left(\bar{X}_{T} \leq y\right) \in C^{\infty}(0, \infty)$ and, for every $\alpha^{\prime} \in[0, \alpha)$ and $n \geq 1$, there exists some constant $C>0$ such that for all $y>0$ and $T>0$, we have for $n \geq 1$

$$
\left|\partial_{y}^{n} F(y)\right| \leq C y^{-n} \min \left\{T^{\frac{\alpha^{\prime}}{\alpha}} y^{-\alpha^{\prime}}, T^{-\frac{\alpha^{\prime}}{\alpha} \rho} \boldsymbol{y}^{\alpha^{\prime} \rho}\right\}
$$

- Define $\tau_{y_{0}}:=\inf \left\{t>0: X_{t}>y_{0}\right\}, y_{0}>T^{1 / \alpha}$. Then the density of $\tau_{y_{0}}$ is smooth and the following estimate is satisfied for $n \geq 1$:

$$
\left|\partial_{T}^{n} \mathbb{P}\left(\tau_{y_{0}} \leq T\right)\right| \leq C T^{-\frac{1}{\alpha}-n} \times \min \left\{T^{\frac{\alpha^{\prime}}{\alpha}} y_{0}^{-\alpha^{\prime}}, 1\right\}
$$

- If $\alpha(1-\rho) \geq 1$ there is no blow up of the density at the boundary $y=x$. Blow up appears with density derivatives.
- Assume that $\alpha \in(0,2)$ and let $y_{0} \geq T^{1 / \alpha}, x_{0} \leq 0$. Then for any $\alpha^{\prime} \in(0, \alpha)$

$$
\mathbb{P}\left(X_{T} \leq x_{0}, \tau_{y_{0}}<T\right) \leq C T^{2 \frac{\alpha}{\alpha^{\prime}}} \times \min \left\{y_{0}^{-2 \alpha^{\prime}}, y_{0}^{-\alpha^{\prime}}\left(-x_{0}\right)^{-\alpha^{\prime}}\right\}
$$

Corollary

Fix $-x_{0}>y_{0}>t^{1 / \alpha}>0, \alpha \in(1,2)$. Then for any $\alpha^{\prime} \in(0, \alpha)$, we have

$$
\varlimsup_{u-t \downarrow 0} \mathbb{P}\left(X_{u} \in d x_{0}, \tau_{y_{0}} \in d t\right) \leq C t^{\frac{2+\alpha^{\prime}}{\alpha}} y_{0}^{-1-\alpha^{\prime}}\left|x_{0}-y_{0}+t^{1 / \alpha}\right|^{-\alpha} .
$$

Classical and non-classical

Malliavin Calculus based on a indep. increment process X uses

$$
D_{s}=\frac{\partial}{\partial \Delta X_{s}}
$$

Are there any other variations of this definition?
If the functional $F(X)$ can be approximated using functions F_{n}

$$
F_{n} \equiv F_{n}\left(E_{1}, \ldots, E_{n}, G_{1}, \ldots, G_{n}, U_{1}, \ldots, U_{n}\right) \stackrel{\mathcal{L}}{\Rightarrow} F(X)
$$

One may try to do the analysis based on the i.i.d. sequence $\left\{E_{i}, G_{i}, U_{i}\right\}_{i \in \mathbb{N}}$ if densities are explicit.
Danger 1: The convergence rate is not good enough. R.N. Bhattacharaya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions. SIAM Classics, 2010

- In our situation the convergence is of exponential order !
- The method will perform integration by parts using the i.i.d. exponentially distributed random variables $\left\{E_{i}\right\}$ and condition on the other r.v.'s $\left\{G_{i}, U_{i}\right\}_{i \in \mathbb{N}}$.

$$
\mathbb{E}\left[f^{\prime}\left(F_{n}\right) \Phi_{n}\right]=\mathbb{E}\left[D_{E} f\left(F_{n}\right) \Phi_{n}\right]=\mathbb{E}\left[f\left(F_{n}\right) H\left(F_{n}, \Phi_{n}\right)\right]
$$

$$
\mathbb{E}\left[f^{\prime}\left(F_{n}\right) \Phi_{n}\right]=\mathbb{E}\left[D_{E} f\left(F_{n}\right) \Phi_{n}\right]=\mathbb{E}\left[f\left(F_{n}\right) H\left(F_{n}, \Phi_{n}\right)\right]
$$

Danger 2: The used variables $\left\{E_{i}\right\}_{i \in \mathbb{N}}$ are not explaining the main density behavior of $F(X)$.Because one concentrates on $F(X)$ one may loose track of other relevant path behavior
Danger 3: Need to analyze the explicit expression of $H\left(F_{n}, \Phi_{n}\right)$. In particular, one needs to see the optimal bounds and Exploding moments may create problems

Malliavin Calculus for jumps

Can it be used?

Bichteler,Gravereaux and Jacod, Nualart-Nualart,Kunita,Ishikawa, Nualart, Bouleau-Denis

- Fournier-Printems, Bally, V. and Caramellino: L. Stochastic Integration by Parts. Advanced Courses in Mathematics - CRM Barcelona, 2016
- Key questions:
1)How to choose the approximations?

2) Which random variables to use? (Partial Malliavin Calculus)

- Main answers:

1) Convex majorants of Lévy processes (50's~) with multi-level (2008) will give fast convergence
2) Chambers-Mallows-Stuck decomposition method (recall that explicit stable laws are not available)('76, Kanter ('75)). Base the calculations on exponential r.v.'s $\left\{E_{i}\right\}_{i \in \mathbb{N}}$. That is, the "length" of stable increments.

Convex majorants

Selecting the first three faces of the concave majorant: U_{1}, U_{2}, U_{3} are uniform with length $T, T-\left(d_{1}-g_{1}\right)$ and $T-\left(d_{1}-g_{1}\right)-\left(d_{2}-g_{2}\right)$, respectively. $C_{g_{1}}-C_{d_{1}}$ has the stable distribution with time $g_{1}-d_{1}$ with an associated positive or negative sign.

Mathematical Definition

Exponentially converging stick-breaking process: $\ell=\left(\ell_{k}\right)_{k \geq 1}$ on $[0, T]$, defined using $U_{k} \sim U[0,1]$

$$
\begin{aligned}
\ell_{1} & =T\left(1-U_{1}\right) \\
\ell_{k} & =T U_{1} \ldots U_{k-1}\left(1-U_{k}\right) \\
\text { @ } \quad \mathbb{E}\left[\ell_{k}^{r / \alpha}\right] & =T^{r}\left(1+\frac{r}{\alpha}\right)^{-k} .
\end{aligned}
$$

i.i.d. stable r.v.'s $\left(S_{k}\right)_{k \geq 1}$ with parameters (α, ρ) (i.e. $\left.S_{k}{ }^{d} X_{1}\right)$.

$$
\begin{aligned}
& \bar{X}_{T}=X_{+}=\sum_{k=1}^{\infty} \ell_{k}^{1 / \alpha}\left[S_{k}\right]^{+} \\
& X_{T}=X_{+}-X_{-}=X_{+}-\sum_{k=1}^{\infty} \ell_{k}^{1 / \alpha}\left[S_{k}\right]^{-}
\end{aligned}
$$

Remark: One looses some information about the path!

Chambers-Mallows-Stuck/Kanter

Next step: Probabilistic representation:(Chambers-Mallows-Stuck, $\alpha \in(0,1) \cup\{1\} \cup(1,2))$. E_{k} : length. G_{k} : oscillations

$$
S_{k} \stackrel{\mathcal{L}}{=} E_{k}^{1-1 / \alpha} G_{k} \quad \text { and } \quad G_{k}=g\left(V_{k}\right), \quad k \in \mathbb{N},
$$

for i.i.d. $\operatorname{Exp}(1) \sim\left(E_{k}\right)_{k \geq 1} \perp\left(V_{k}\right)_{k \geq 1} \sim \mathrm{U}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$g(x)=\frac{\sin \left(\alpha\left(x+\pi\left(\rho-\frac{1}{2}\right)\right)\right)}{\cos ^{1 / \alpha}(x) \cos ^{1-1 / \alpha}\left((1-\alpha) x-\alpha \pi\left(\rho-\frac{1}{2}\right)\right)}, \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Note that indeed $\mathbb{P}\left(S_{k}>0\right)=\rho$.

$$
\rho=\mathbb{P}\left(S_{k}>0\right) \in[1-1 / \alpha, 1 / \alpha] \cap(0,1) .
$$

semi-linear structure in the representation for $\left(X_{T}, \bar{X}_{T}\right) \equiv\left(X_{+}, X_{-}\right)$

$$
\begin{aligned}
& \bar{X}_{T}=X_{+}=\sum_{k=1}^{\infty} e_{k}^{1 / \alpha} E_{k}^{1-1 / \alpha}\left[G_{k}\right]^{+} \\
& x_{T}=X_{+}-X_{-}=X_{+}-\sum_{k=1}^{\infty} e_{k}^{1 / \alpha} E_{k}^{1-1 / \alpha}\left[G_{k}\right]^{-} .
\end{aligned}
$$

coordinate change and n-th order approx. to $X=\left(X_{+}, X_{-}\right)$:
$X_{n}=\left(X_{+, n}, X_{-, n}\right)$
$a_{n}:=T^{1 / \alpha} \kappa^{n}$ with $\kappa \in(0,1)$. Let η_{+}and $\eta_{-} \sim \operatorname{Exp}(1)$

$$
x_{ \pm, n}=\sum_{k=1}^{n} \ell_{k}^{1 / \alpha} E_{k}^{1-1 / \alpha}\left[G_{k}\right]^{ \pm}+a_{n} \eta_{+}^{1-1 / \alpha} .
$$

$$
\begin{aligned}
n=0, & X_{ \pm, 0} \equiv 0,[x]^{+}=\max \{x, 0\}, \\
& 0 \neq X_{ \pm, n}-X_{ \pm, n-1}=\ell_{n}^{1 / \alpha} E_{n}^{1-1 / \alpha}\left[G_{n}\right]^{ \pm}+\left(a_{n}-a_{n-1}\right) \eta_{ \pm}^{1-1 / \alpha}
\end{aligned}
$$

Intuitively, if the sequence $\left\{a_{n}\right\}$ decays too fast, then it will not serve its purpose. In particular, given the assumption below moments estimates will follow.
Assumption $[\mathrm{A}-\kappa] a_{n}:=T^{1 / \alpha} \kappa^{n}, n \in \mathbb{N}$ where $\kappa^{\alpha} \in[\rho \vee(1-\rho), 1)$.

Reconstructive derivative operator and IBP

$$
\left.\mathcal{D}_{n}^{ \pm}=\eta_{ \pm} \partial_{\eta_{ \pm}}+\sum_{k=1}^{n} E_{k} \mathbf{1}_{\left\{\left[G_{k}\right]\right.}\right]^{ \pm}>0 \mid \partial_{E_{k}},
$$

© The factor $\left(\eta_{ \pm}, E_{k}\right)$ cancels boundary terms and has a regenerative property for $\mathcal{D}_{n}^{ \pm} X_{ \pm, n}=(1-1 / \alpha) X_{ \pm, n}$. This keeps the stable moments controlled! . It also shows that G_{k} does not need to be differentiated.
$\mathcal{S}_{n}(\Omega)=\left\{\Phi \in L^{0}(\Omega) ; \exists \phi \in \mathcal{S}_{\infty}\left((0, \infty)^{3 n+3} ; \mathbb{R}\right), \Phi=\phi\left(\bar{E}_{n}, \bar{U}_{n}, \bar{V}_{n}, \eta_{+}, \eta_{-}\right)\right\}$, Theorem (The approx. but exploding IBP formula)
Fix $n, m \in \mathbb{N}$ with $m \geq n$. Then for any $\Phi \in \mathcal{S}_{m}(\Omega)$ and f smooth,

$$
\begin{gathered}
\mathbb{E}\left[\partial_{ \pm} f\left(X_{n}\right) \Phi\right]=\mathbb{E}\left[f\left(X_{n}\right) H_{n, m}^{ \pm}(\Phi)\right] \\
H_{n, m}^{ \pm}(\Phi):=\frac{\alpha /(\alpha-1)}{X_{ \pm, n}}\left(\left(\eta_{ \pm}-\frac{1}{\alpha}+\sum_{k=1}^{m}\left(E_{k}-1\right) \mathbf{1}_{\left\{\left[G_{k}\right]^{ \pm}>0\right\}}\right) \Phi-\mathcal{D}_{m}^{ \pm}[\Phi]\right) .
\end{gathered}
$$

m : number of variables used for the IBP
n : approximation parameter
\triangle The numerator grows polynomically fast w.r.t. m. \rightarrow Explosion
\triangle Note that time rescaling is clear in the denominator. Malliavin variance

Multi-level in IBP and iterations

$$
H_{n, m}^{ \pm, k+1}(\Phi)=H_{n, m}^{ \pm}\left(H_{n, m}^{ \pm, k}(\Phi)\right) \quad \text { for } k \geq 0, \text { where } \quad H_{n, m}^{ \pm, 0}(\Phi)=\Phi .
$$

Theorem (The ∞-dim. IBP formula)
Let $\Phi \in \cap_{n \in \mathbb{N}} \mathcal{S}_{n}(\Omega)$. For any $n \geq 1, k_{+}, k \geq 0$ and $f \in C_{\epsilon}^{k_{+}+k_{-}}\left(\mathbb{R}_{+}^{2}\right)$ we have
$\mathbb{E}\left[\partial_{+}^{k_{+}^{+}} \partial_{-}^{k_{-}} f\left(X_{+}, X_{-}\right) \Phi\right]=\mathbb{E}\left[f\left(X_{n}\right) H_{n, n}^{+, K_{+}}\left(H_{n, n}^{-, k_{-}}(\Phi)\right)\right]$

$$
+\sum_{k=n}^{\infty} \mathbb{E}\left[f\left(X_{k+1}\right) H_{k+1, k+1}^{+, k_{+}}\left(H_{k+1, k+1}^{-, k}(\Phi)\right)-f\left(X_{k}\right) H_{k, k+1}^{+, k_{+}}\left(H_{k, k+1}^{-, k}(\Phi)\right)\right] .
$$

\triangle The convergence in the above sum is geometric in n due to the difference $X_{k+1}-X_{k}$.
\triangle The weight $H_{k, k+1}^{+, k_{+}}$only grows polynomically in n.
\triangle Positive and negative moment estimates are needed!

The magic re-scaling estimates

Let $f\left(x_{+}, x_{-}\right)=\left[x_{+}-x\right]^{+}\left[x_{-}-y\right]^{+}$and $Z_{m}=\eta_{+}+\eta_{-}+\sum_{k=1}^{m} E_{k}$

$$
\begin{aligned}
& \left|f\left(X_{n+1}\right) H_{n+1, n+1}^{+, k_{+}}\left(H_{n+1, n+1}^{-, k}(\Phi)\right)-f\left(X_{n}\right) H_{n, n+1}^{+,,_{+}}\left(H_{n, n+1}^{-, k_{-}}(\Phi)\right)\right|^{p} \\
& \quad=\left|\frac{f\left(X_{n+1}\right)}{X_{+, n+1}^{k_{+}} X_{-, n+1}^{k-}}-\frac{f\left(X_{n}\right)}{X_{+, n}^{k+} X_{-, n}^{k}}\right|^{p}\left|H_{n, n+1}^{+, k_{+}}\left(H_{n, n+1}^{-, k}(\Phi)\right) X_{+, n}^{k_{+}^{+}} X_{-, n}^{k-}\right|^{p} \\
& \quad \leq\left|\frac{f\left(X_{n+1}\right)}{X_{+, n+1}^{k_{+}} X_{-, n+1}^{k}}-\frac{f\left(X_{n}\right)}{X_{+, n}^{k_{+}} X_{-, n}^{k-}}\right|^{p} p_{K_{+}, k-}^{\phi}\left(Z_{n+1}, n+1\right)^{p} .
\end{aligned}
$$

Here p is a polynomial of order $k_{+}+k_{-}$. Now, recall

$$
0 \leq X_{ \pm, n}-X_{ \pm, n-1} \leq \ell_{n}^{1 / \alpha}\left[S_{n}\right]^{+}+\left(a_{n}-a_{n-1}\right) \eta_{+}^{1-1 / \alpha}
$$

How the moments are used: At infinity, there is an exchange of space variable and random variable. At zero, something more complicated (but similar) happens. For example,

$$
\mathbf{1}_{X_{+}>x} \leq \frac{X_{+}^{p}}{x^{p}}
$$

Some main points

- Integrate by parts up to obtaining a semi-linear function in order to earn the re-scaling property.
- Average in an orderly fashion, using independence leaving the exponentials at the end.
- Two different situations: positive moments and negative moments
- Geometric rates of convergence are embedded in the stick breaking process. In fact, $\mathbb{E}\left[\ell_{n}^{\frac{r}{\alpha}}\right]=\left(1+\frac{r}{\alpha}\right)^{-n}$.
- Inverse moments are obtained using the Gamma function trick:

$$
\Gamma(p) \mathbb{E}\left[X_{+, n}^{-p}\right]=\int_{0}^{\infty} \lambda^{p-1} \mathbb{E}\left[e^{-\lambda X_{+, n}}\right] d \lambda
$$

Non trivial estimate for + part of non-symmetric stable law:

$$
\mathbb{E}\left[e^{-\lambda[G]^{+}}\right] \leq 1-\rho+\rho \min \left\{1,(\alpha \rho \lambda)^{-1}\right\}
$$

Many products of this type appear together with $\mathbb{E}\left[e^{-\lambda a_{n} \eta_{+}}\right]$

Some judgements on Malliavin Calculus

Classical Malliavin Calculus

- It is always sub-optimal
- Its framework is always fixed through the process increments
- No irregular functionals can be treated efficiently
- It is only interesting for hypoelliptic cases
- It is a pathwise approach

Positive conclusions of the methodology used

- Find your own framework which expresses the irregularity of the functional even if it can not describe the whole path
- If the class of processes to be treated is too large you are bound to obtain sub-optimal results
- There is a weak type approach through probabilistic representations.
- This formula does not converge to a "continuous" version. Still, one hopes to obtain continuous IBP formulas for other applications
[1] Kohatsu-Higa A. and Takeuchi A. Jump SDEs and the Study of Their Densities : A self-study book. Universitext. Springer, 2019.
[2] Vlad Bally, Marie-Pierre Bavouzet, and Marouen Messaoud. Integration by parts formula for locally smooth laws and applications to sensitivity computations. Ann. Appl. Probab., 17(1):33-66, 022007.
[3] Vlad Bally and Lucia Caramellino. Stochastic Integration by Parts. Advanced Courses in Mathematics - CRM Barcelona. Springer International Publishing, 2016.
[4] Klaus Bichteler, Jean-Bernard Gravereaux, and Jean Jacod. Malliavin Calculus for Processes with Jumps. Stochastic Monographs: Theory and Applications of Stochastic Processes, Vol 2. Gordon and Breach Science Publishers, 1987.
[5] Nicolas Bouleau and Laurent Denis. Energy image density property and the lent particle method for poisson measures. Journal of Functional Analysis, 257(4):1144-1174, 2009.
[6] Ronald A. Doney and Mladen S. Savov. The asymptotic behavior of densities related to the supremum of a stable process. Ann. Probab., 38(1):316-326, 2010.
[7] Michael B. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607-617, 2008.
[8] Jorge I. González Cázares, Aleksandar Mijatović, and Gerónimo Uribe Bravo. Exact simulation of the extrema of stable processes. Adv. in Appl. Probab., 51(4), 122019.
[9] Y. Ishikawa. Stochastic Calculus of Variations: For Jump Processes. De Gruyter Studies in Mathematics. De Gruyter, 2016.
[10] Hiroshi Kunita. Stochastic Flows and Jump-Diffusions. Springer Singapore, 2019.
[11] A. Kuznetsov. On the density of the supremum of a stable process. Stochastic Processes and their Applications, 123(3):986-1003, 2013.
[12] Alexey Kuznetsov. On extrema of stable processes. Ann. Probab., 39(3):1027-1060, 2011.
[13] David Nualart. The Malliavin calculus and related topics. Probability and its Applications. Springer-Verlag, New York, 2006.
[14] David Nualart and Eulalia Nualart. Introduction to Malliavin Calculus, page 158-181. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2018.
[15] Jean Picard. On the existence of smooth densities for jump processes. Probab. Th. Rel. Fields, 105:481-511, 1996.
[16] Jean Picard. Erratum to: On the existence of smooth densities for jump processes. Probab. Th. Rel. Fields, 147:711-713, 2010.
[17] Jim Pitman and Gerónimo Uribe Bravo. The convex minorant of a Lévy process. Ann. Probab., 40(4):1636-1674, 2012.
[18] Rafał Weron. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statistics \& Probability Letters, 28(2):165-171, 1996.

