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From Valentin’s work we learned how to use the parametrix method
as a two way road between approximations and their limits.

Konakov-Mammen:Local limit theorems for transition densities of
Markov chains converging to diffusions (2000) PTRF 551-587

Here we give another different twist at the story for the couple of
the supremum and the current value of a stable process.

The goal is to obtain an almost optimal upper bound for the joint
density.



Stable process

A general α-stable process is a Lévy process with characteristic
function (α ∈ (0, 2))

− log
(
E

[
e iθXt

])
= ct |θ|α(1 − isgn(θ) tan (πα(2ρ − 1)/2))

•Here, ρ := P(Xt ≥ 0) is the positivity parameter.
•The generator of the Markov process X is (non-local operator)

Lf (x) =γf ′(x) +
∫

(f (x + y) − f (x) − f ′(x)1(−1,1)(y))ν(dy)

ν(dy) =
dy
|y |1+α

(
ρ1(0,∞)(y) + (1 − ρ)1(−∞,0)(y)

)
.

• Our goal: Study of the joint law of (XT , X̄T ) ≡ (XT , sups∈[0,T ] Xs)

on the domain O := {(x, y) ∈ R2; y ≥ x ∨ 0} (including the behavior
close to the diagonal and for x, y ≈ 0 or x, y ≈ ∞)



•Many previous results: R.A. Doney and M.S. Savov (2010).

∂3
yP(X̄T ∈ dy)

y→∞
≈ Ty−α−1; ∂3

yP(X̄T ∈ dy)
y→0
≈ T−ρyαρ−1.

∂3
xP(XT ∈ dx)

x→∞
≈ Tx−α−1; ∂3

xP(XT ∈ dx)
x→0
≈ T−1/α.

Analytical arguments based on stable meanders (excursion
identities). ρ appears in the constants.
• 4 domains required: We will see that the domains are
determined by the lines y = T1/α and y = x + T1/α, y ≥ x ∨ 0.
• Expansion results for the density of X̄T have been obtained by
Kuznetsov (2011,2013)



Excursion/Fluctuation based equation:

Let X denote a generic Lévy process which is not compound
Poisson. S and I will be the associated supremum and infimum
processes, we will write L and L∗ for the local times at zero of the
reflected processes S − X and X − I, respectively, and n and n∗ will
denote the characteristic measures of the excursions away from 0
of these processes. We write ε for a typical excursion, ζ for its
lifetime and π∗(t) = n∗(ζ > t).
LEMMA 6. There is a constant, 0 < k < ∞, which depends only on
the normalization of L and L∗, such that, for t , x > 0,

kP (St > x) =
∫ t

0
n∗ (εt−s > x, ζ > t − s) (b+π̄(s))ds+∆n∗ (εt > x, ζ > t)

where ∆ denotes the drift, b the killing rate and π̄(s) = n(ζ > s) the
tail of the Lévy measure of the increasing ladder time process T .



Main statement
Let O = {(x, y) ∈ R2 : y > x ∨ 0}, n,m ≥ 1, T > 0.

Theorem
Let F(x, y) := P(XT ≤ x,XT ≤ y) be the law of (XT ,XT ). Then F ∈ C∞(O).
Moreover, for any fixed α′ ∈ [0, α) there is C > 0 s.t. for all (x, y) ∈ O,

|∂n
x∂

m
y F(x, y)| ≤ Cy−m(y − x)1−n−m(2y − x)m−1

×min
{
f00
α′ (x, y), f01

α′ (x, y), f10
α′ (x, y), f11

α′ (x, y)
}
,

Density function:n = m = 1
min

{
T−

α′

α (y − x)−1+α′(1−ρ)y−1+α′ρ,T
α′

α ρ(y − x)−1+α′(1−ρ)y−1−α′ ,

T
α′

α (1−ρ)(y − x)−1−α′y−1+α′ρ,T2 α′

α (y − x)−1−α′y−1−α′
}
.

4 Domains: Behavior at ∞. Behavior at 0. This result is optimal in
time and almost optimal in space taking α′ ≈ α. The main reason is that
there is some Chebyshev’s type argument used. The term 2y − x
appears due to “weak reflection principle” X̄T − (XT − X̄T )



y = x

xf00
α

(x, y) ∝ T−
1 (y −

x)−1+α(1−ρ
) y−

1+αρ

f01
α

(x, y) ∝ Tρ (y −
x)−1+α(1−ρ

) y−
1−α

f10
α

(x, y) ∝ T1−ρ (y −
x)−1−α y−

1+αρ

f11
α

(x, y) ∝ T2 (y −
x)−1−α y−

1−α

(0, 0)

y = T1/α

y = x + T1/α

The set O = {(x, y) ∈ R2 : y > max{x, 0}} (shaded in the figure) is the
support of the joint density of (XT ,XT ). According to our Theorem, the
support can be partitioned into 4 sub-regions according to which of the
functions f ij

α, i, j ∈ {0, 1}, is the smallest in the (optimal) case α′ = α.



Sample of consequences
•Assume that α ∈ (0, 2). Then the distribution function
F(y) := P(XT ≤ y) ∈ C∞(0,∞) and, for every α′ ∈ [0, α) and n ≥ 1,
there exists some constant C > 0 such that for all y > 0 and T > 0,
we have for n ≥ 1

|∂n
yF(y)| ≤ Cy−n min

{
T

α′

α y−α
′

,T−
α′

α ρyα
′ρ}.

• Define τy0 := inf{t > 0 : Xt > y0}, y0 > T1/α. Then the density of
τy0 is smooth and the following estimate is satisfied for n ≥ 1:

|∂n
T P(τy0 ≤ T )| ≤ CT−

1
α−n ×min{T

α′

α y−α
′

0 , 1}.

• If α(1 − ρ) ≥ 1 there is no blow up of the density at the boundary
y = x. Blow up appears with density derivatives.
• Assume that α ∈ (0, 2) and let y0 ≥ T1/α, x0 ≤ 0. Then for any
α′ ∈ (0, α)

P(XT ≤ x0, τy0 < T ) ≤ CT2 α
α′ ×min{y−2α′

0 , y−α
′

0 (−x0)−α
′

}



Corollary
Fix −x0 > y0 > t1/α > 0, α ∈ (1, 2). Then for any α′ ∈ (0, α), we
have

lim
u−t↓0

P(Xu ∈ dx0, τy0 ∈ dt) ≤ Ct
2+α′
α y−1−α′

0 |x0 − y0 + t1/α|−α.



Classical and non-classical
Malliavin Calculus based on a indep. increment process X uses

Ds =
∂

∂∆Xs

Are there any other variations of this definition?
If the functional F(X ) can be approximated using functions Fn

Fn ≡ Fn(E1, ...,En,G1, ...,Gn,U1, ...,Un)
L
⇒ F(X )

One may try to do the analysis based on the i.i.d. sequence
{Ei ,Gi ,Ui}i∈N if densities are explicit.
Danger 1: The convergence rate is not good enough. R.N.
Bhattacharaya and R. Ranga Rao, Normal Approximation and
Asymptotic Expansions. SIAM Classics, 2010
•In our situation the convergence is of exponential order !
• The method will perform integration by parts using the i.i.d.
exponentially distributed random variables {Ei} and condition on
the other r.v.’s {Gi ,Ui}i∈N.

E[f ′(Fn)Φn] = E[DE f (Fn)Φn] = E[f (Fn)H(Fn,Φn)]



E[f ′(Fn)Φn] = E[DE f (Fn)Φn] = E[f (Fn)H(Fn,Φn)]

Danger 2: The used variables {Ei}i∈N are not explaining the main
density behavior of F(X ).Because one concentrates on F(X ) one
may loose track of other relevant path behavior
Danger 3: Need to analyze the explicit expression of H(Fn,Φn). In
particular, one needs to see the optimal bounds and Exploding
moments may create problems



Malliavin Calculus for jumps
Can it be used?

Bichteler,Gravereaux and Jacod, Nualart-Nualart,Kunita,Ishikawa,
Nualart, Bouleau-Denis
• Fournier-Printems, Bally, V. and Caramellino: L. Stochastic
Integration by Parts. Advanced Courses in Mathematics - CRM
Barcelona, 2016
• Key questions:
1)How to choose the approximations?
2) Which random variables to use? (Partial Malliavin Calculus)
• Main answers:
1) Convex majorants of Lévy processes (50’s∼) with multi-level
(2008) will give fast convergence
2) Chambers-Mallows-Stuck decomposition method (recall that
explicit stable laws are not available)(’76, Kanter (’75)). Base the
calculations on exponential r.v.’s {Ei}i∈N. That is, the “length” of
stable increments.



Convex majorants
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Selecting the first three faces of the concave majorant: U1 ,U2 ,U3 are uniform with length T , T − (d1 − g1) and

T − (d1 − g1) − (d2 − g2), respectively. Cg1 − Cd1 has the stable distribution with time g1 − d1 with an associated positive

or negative sign.



Mathematical Definition

Exponentially converging stick-breaking process: ` = (`k )k≥1 on
[0,T ], defined using Uk ∼ U[0, 1]

`1 =T (1 − U1)

`k =TU1...Uk−1(1 − Uk )

" E[`r/α
k ] =T r

(
1 +

r
α

)−k
.

i.i.d. stable r.v.’s (Sk )k≥1 with parameters (α, ρ) (i.e. Sk
d=X1).

XT =X+ =
∞∑

k=1

`1/α
k [Sk ]+

XT =X+ − X− = X+ −

∞∑
k=1

`1/α
k [Sk ]−.

Remark: One looses some information about the path!



Chambers-Mallows-Stuck/Kanter

Next step: Probabilistic representation:(Chambers-Mallows-Stuck,
α ∈ (0, 1) ∪ {1} ∪ (1, 2)). Ek : length. Gk : oscillations

Sk
L= Ek

1−1/αGk and Gk = g(Vk ), k ∈ N,

for i.i.d. Exp(1) ∼ (Ek )k≥1 ⊥ (Vk )k≥1 ∼ U(−π2 ,
π
2 )

g(x) =
sin

(
α
(
x + π

(
ρ − 1

2
)))

cos1/α(x) cos1−1/α (
(1 − α)x − απ

(
ρ − 1

2
)) , x ∈

(
−
π

2
,
π

2

)
.

Note that indeed P(Sk > 0) = ρ.

ρ = P(Sk > 0) ∈ [1 − 1/α, 1/α] ∩ (0, 1).



semi-linear structure in the representation for (XT , X̄T ) ≡ (X+,X−)

XT =X+ =
∞∑

k=1

`1/α
k E1−1/α

k [Gk ]+

XT =X+ − X− = X+ −

∞∑
k=1

`1/α
k E1−1/α

k [Gk ]−.

coordinate change and n-th order approx. to X = (X+,X−):
Xn = (X+,n,X−,n)
an := T1/ακn with κ ∈ (0, 1). Let η+ and η− ∼ Exp(1)

X±,n =
n∑

k=1

`1/α
k E1−1/α

k [Gk ]± + anη
1−1/α
+ .

n = 0, X±,0 ≡ 0, [x]+ = max{x, 0},
0 , X±,n − X±,n−1 = `1/α

n E1−1/α
n [Gn]± + (an − an−1)η1−1/α

±

Intuitively, if the sequence {an} decays too fast, then it will not serve its
purpose. In particular, given the assumption below moments estimates
will follow.
Assumption[A-κ] an := T1/ακn, n ∈ N where κα ∈ [ρ ∨ (1 − ρ), 1).



Reconstructive derivative operator and IBP

D±n = η±∂η± +
n∑

k=1

Ek 1{[Gk ]±>0}∂Ek ,

"The factor (η±,Ek ) cancels boundary terms and has a regenerative
property for D±n X±,n = (1 − 1/α)X±,n. This keeps the stable moments
controlled! . It also shows that Gk does not need to be
differentiated.

Sn(Ω) = {Φ ∈ L0(Ω);∃φ ∈ S∞((0,∞)3n+3;R),Φ = φ(Ēn, Ūn, V̄n, η+, η−)},

Theorem (The approx. but exploding IBP formula)
Fix n,m ∈ N with m ≥ n. Then for any Φ ∈ Sm(Ω) and f smooth,

E[∂±f (Xn)Φ] = E[f (Xn)H±n,m(Φ)],

H±n,m(Φ) :=
α/(α − 1)

X±,n

((
η± −

1
α

+
m∑

k=1

(Ek − 1)1{[Gk ]±>0}

)
Φ −D±m[Φ]

)
.

m: number of variables used for the IBP
n: approximation parameter
"The numerator grows polynomically fast w.r.t. m.→ Explosion
" Note that time rescaling is clear in the denominator. Malliavin variance



Multi-level in IBP and iterations

H±,k+1
n,m (Φ) = H±n,m(H±,kn,m(Φ)) for k ≥ 0, where H±,0n,m(Φ) = Φ.

Theorem (The ∞-dim. IBP formula)
Let Φ ∈

⋂
n∈N Sn(Ω). For any n ≥ 1, k+, k− ≥ 0 and f ∈ Ck++k−

ε (R2
+) we have

E
[
∂k+

+ ∂
k−
− f (X+,X−)Φ

]
= E

[
f (Xn)H+,k+

n,n
(
H−,k−n,n (Φ)

)]
+
∞∑

k=n

E
[
f (Xk+1)H+,k+

k+1,k+1
(
H−,k−k+1,k+1(Φ)

)
− f (Xk )H+,k+

k ,k+1
(
H−,k−k ,k+1(Φ)

)]
.

" The convergence in the above sum is geometric in n due to the
difference Xk+1 − Xk .
" The weight H+,k+

k ,k+1 only grows polynomically in n.
" Positive and negative moment estimates are needed!



The magic re-scaling estimates
Let f (x+, x−) = [x+ − x]+[x− − y]+ and Zm = η+ + η− +

∑m
k=1 Ek∣∣∣f (Xn+1)H+,k+

n+1,n+1
(
H−,k−n+1,n+1(Φ)

)
− f (Xn)H+,k+

n,n+1
(
H−,k−n,n+1(Φ)

)∣∣∣p
=

∣∣∣∣∣∣∣ f (Xn+1)

Xk+
+,n+1Xk−

−,n+1

−
f (Xn)

Xk+
+,nXk−

−,n

∣∣∣∣∣∣∣
p ∣∣∣H+,k+

n,n+1
(
H−,k−n,n+1(Φ)

)
Xk+

+,nXk−
−,n

∣∣∣p
≤

∣∣∣∣∣∣∣ f (Xn+1)

Xk+
+,n+1Xk−

−,n+1

−
f (Xn)

Xk+
+,nXk−

−,n

∣∣∣∣∣∣∣
p

pφk+,k−
(Zn+1, n + 1)p .

Here p is a polynomial of order k+ + k−. Now, recall

0 ≤ X±,n − X±,n−1 ≤`
1/α
n [Sn]+ + (an − an−1)η1−1/α

+

How the moments are used: At infinity, there is an exchange of space
variable and random variable. At zero, something more complicated (but
similar) happens. For example,

1X+>x ≤
Xp

+

xp .



Some main points
I Integrate by parts up to obtaining a semi-linear function in

order to earn the re-scaling property.
I Average in an orderly fashion, using independence leaving the

exponentials at the end.
I Two different situations: positive moments and negative

moments
I Geometric rates of convergence are embedded in the stick

breaking process. In fact, E[`
r
α
n ] = (1 + r

α )−n.
I Inverse moments are obtained using the Gamma function

trick:

Γ(p)E[X−p
+,n] =

∫ ∞

0
λp−1E[e−λX+,n ]dλ

Non trivial estimate for + part of non-symmetric stable law:

E[e−λ[G]+ ] ≤ 1 − ρ + ρmin{1, (αρλ)−1}.

Many products of this type appear together with E[e−λanη+ ]



Some judgements on Malliavin Calculus
Classical Malliavin Calculus

I It is always sub-optimal

I Its framework is always fixed through the process increments

I No irregular functionals can be treated efficiently

I It is only interesting for hypoelliptic cases

I It is a pathwise approach

Positive conclusions of the methodology used

I Find your own framework which expresses the irregularity of the
functional even if it can not describe the whole path

I If the class of processes to be treated is too large you are bound to
obtain sub-optimal results

I There is a weak type approach through probabilistic
representations.

I This formula does not converge to a “continuous” version. Still, one
hopes to obtain continuous IBP formulas for other applications
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