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Statement of the problem:
parametrix for filtering SPDEs



Motivation: SPDEs from filtering theory

» Let (X, Z) be a diffusion

» extract information about X from FZ = o(Zs, s < t)

E[f(X) | F7] = / pi(a) f(2)de

p¢(z) is the conditional density of X; given F7
>
dpi(x) = Lype(2)dt + Gype(x)dWy
where
o L; second-order, G, first-order operators

¢ the coefficients depend on ¢, z, Z; and are therefore random
and not smooth

» if X and Z are independent then G; = 0 and L; is the
Fokker-Planck (forward Kolmogorov) operator



Cauchy problem for parabolic SPDEs

> [P theory
Pardoux (1975), Rozovskii and Krylov (1977), Flandoli
(1990), Krylov (1999) ...

» Holder theory
Rozovskii (1975), Shimizu (1982), Chow and Jiang (1992)

Analytical techniques for SPDEs

» Duhamel principle: Chow-Jiang (1992), Mikulevicius
(2000), Kleptsyna-Piatnitski-Popier (2020)

» Schauder estimates: Du-Liu (2019), Zhang-Zhang (2021)
» Moser’s iteration: Denis, Matoussi and Stoica (2005)

» Hormander’s theorem: Krylov (2015), Qiu (2018)



Constant coefficients: forward heat SPDE

duy(z) = E@mut(x)dt + 00yu(x)dWy

2

ug(x) = uo(x /c%;xus ds+a/ Opus(z

Stochastic characteristics: ui(x) = U(t,x + cWy) then

2
7 8,,U

U =2

Stochastic fundamental solution: for ¢t > s

1 (gt oW - W))?
V2m(a—02)(t—s) p< 2(@a—0?)(t—s) >

p(s;y;t, x) =

» damping effect of noise: coercivity condition a — o > 0
» distinctive asymptotic behaviour at pole (Sowers, 1994)
» t— p(s,y;t,x) is adapted and Holder continuous



Uniformly parabolic SPDEs
with Holder coefficients



Functional setting

> “Standard” Hoélder space: C’tojT
measurable functions f = fs(x) on [t,T] x R? s.t.

sup ‘fs(x) — fs(y)‘

sl T —y|*
T#yY

< 00

» Stochastic Holder space: Cir

predictable processes f = fy(2;w) on [t,T] x R% x
such that fs(z;-) € Cf'p almost surely

» Similarly higher orders



Stochastic fundamental solution

S

p(s,y;-,-) € C2, is a “classical” solution to the forward SPDE

» fort>s

t t
p(s,y;t,l’)=5y+/ pr(s,y;nw)dﬂr/ G.p(s,y; 7, 2)dW;

Operators in the SPDE:

1 A .
Lt = iatj (m)awzm] + bi(l‘)axl + Ct(x) Gt = Gz(x)azz + Vt(x)



Parametrix method for SPDEs: two problems

» lack of the Duhamel principle (cf. Sowers (1998))

» roughness of the coefficients (only measurable in time)



Parametrix method and Duhamel principle

dyue = 30 t
{ et TR uy () :/ /g(s,y)phea“(s,y;t,fv)dyds
up =0 0 JR

The fundamental solution solves

therefore we look for p in the form

t
p(O,ﬁ;t,w)zphe“(O,f;t,fIf)Jr/ /g(07£;s,y)p“e“(&y;t,w)dyds
0 R

where g has to be determined by imposing the PDE



Naive Parametrix for SPDEs
Also for the heat SPDE

dui(z) = %&mut(:c)dt + (00zue(x) + ge(x)) AWy

by the It6 formula, we have the Duhamel formula

t
() = /0 /R g, (y)"™ (s, y: t, ) dy IV,

but...
1 (x+a(Wt—WS)—y)2>
heat (g it 1) 1= ————— X (—
P (s,y;t, @) ol —5) P 20— )
either

» o =0 as in Mikulevicius (2000) and others
> g =0, but g is needed in the parametrix method



Another approach: the Ito-Wentzell formula

ij ‘
du(x) = a 2(x) Oijug(x)dt + of(x)0ue(x)dWy

Consider the stochastic flow of diffeomorphisms of R?

t
Xi(x) =2 — /0 os(Xs(x))dWs, t>0

It6-Wentzell change of coordinates

() = ue(Xi(x))

Watanabe (1994): backward SPDE with a = oo™



Ito-Wentzell: from SPDEs to random PDEs

u solves the SPDE

ij '
du(x) = A 2(30) Oijue(x)dt + oy (z)0;us(z)dWy

if and only if 4 (z) = u(X¢(z)) solves the PDE with random
coeflicients

i )
diiy(z) = (L(””)aijat(x) + b (x)ajﬂt(x)>dt
where
ar = VXi (& — 6067) (VXY by =4,V X,

Assumption: a; — oy0; is uniformly (in z) positive definite

Problem: estimate VX;(z) uniformly w.r.t.




A special case

If 04 is independent of = then

Xi(z) =2 — /Ot osdW
and the gradient is simply
VXi(z) =1d
This is easy but not interesting at all!

General case:
t
Xi(z) ==z —/ os(Xs(x))dWs
0

VX (z) = Id - /0 (Vo) (Xs(2))V Xy (2)dW,



Coercivity of the flow

VX, (z) = exp </0t vaf((;(x))dws L >

General question. How to estimate a z-dependent It6 integral

| R,

~ ‘ ZFtk(x) (Wtk+1 - Wtk) ‘ S VA
k
with a random variable Z independent of x?

Theorem. There exist positive random matrices ¢, C' such that

c<VXi(x)<C z € R P-as.



Coercivity of the flow

_ /0 Vo (X ()T,

> LP(Q)-estimates for the flow X from assumption (¢ > 0)

sup |z[°|0°04(z)] < 0o for 1 <|B| <2, P-as.
s€[0,T]
zeRd

» Doob’s and Burkholder’s inequalities give

ya
2

E ”h( )HwnzaRd) t
» Sobolev’s embedding + Kolmogorov continuity

sup |[i(z;w)| < c(w)t® a.e. weQ
zeR?

> Sobolev embedding is independent of w € (2



Schilling (2000): Sobolev implies Kolmogorov

Kolmogorov’s continuity theorem is an analytic result

It follows from Sobolev’s embedding theorem (for Bessel
potential spaces)



Time-dependent parametrix

Apply It6-Wentzell and fix the trajectory w € Q:

1
L; = §at(x)8m + b (x)0y + ()

uniformly elliptic PDO with measurable in time coefficients

The parametrix is the Gaussian solution of

1
Liz = §at(gz)am + bi(Z)0y + 1 (Z)



Existence of a fundamental solution

dut(x) = Ltut(x)dt + Gtut(l')th
Gaussian estimates

1 1 B _
ol (t—s X} () —y) <p(s,yit,x) < pal™ (t — 5, X,/ (2) — )

H2 —
|02,0(s, y3 t, )| < \/ﬁr’“ (t—s X5/ (x) —y)

}&WC] 7,&t, x)! < t’fsf‘“(t— s,X;tl(x) —y)

where

» 11 and uo positive random variables

» I'* is the fundamental solution of the heat operator 5A — 0



Derivation of the filtering SPDE

X signal, Z observation:

B (£ | 72) = [ plosyston) fla)da

» Classical approach (from 1980):
Pardoux, Kallianpur, Krylov, Rozovsky, Kunita

> “Direct” approaches:

» Krylov-Zatezalo (2000): forward SPDE

dp(s,y;t,x) = Lip(s,y;t, x)dt + Gip(s,y; t, x)dW;

» Veretennikov (1994): backward SPDE

—dp(s,y;t,x) = Lgp(s,y; t,x)ds + Gs(s,y; t, ) x dWj



SPDEs under the
weak Hormander condition



Model operator: Kolmogorov (1934)

Langevin model (Ornstein-Ulhenbeck)

dXy = Vidt position / drift / transport
dVy = odW; velocity / diffusion

Fokker-Planck (forward) PDE

2
0+ v0:)f = %O (t,7,0) € R?

Applications
» Kinetic theory: also non-linear (Boltzmann-Landau)

» Finance: Asian options, path-dependent models



Eqgs with constant coefficients:
the Lie group structure



Kolmogorov Eqs and linear SDEs
dXt = BXtdt + O'th

W' d-dimensional Brownian motion
B constant N x N matrix

o constant N X d matrix

Solution:
t
X, =¢'B (x +/ e_SBJdWS> , zeRY
0

X, is a Gaussian process:
> Mean




Equivalent non-degeneracy conditions

SDE dXt == BXtdt + O'th
1
PDE atf + <B$ vf) (UU )uaac x; f

» Probability: the covariance matrix C(¢) is positive definite

> PDE theory: weak Hormander condition

rank Lie (0, ,...,0z,,Y) =N +1, Y =0, + (Bz,V)

» Control theory: Kalman condition

rank (o, Bo, B%0,--- ,BN"'o) = N



Transition density / fundamental solution

SDE dX; = BXdt + odW;
1
PDE of+ (Bx,Vf)= 500*8;1,.;,;f

If the covariance matrix C(t) is positive definite then

» Gaussian fundamental solution

= ! ex —} 1)z, x
polt, @) = (2m)N det C(t) p( 2<C (t)e. >>

> X has transition density

p(s,y;t,x) = po (t — 5T — e(t*s)By) ,  t>s



Analysis on Lie groups

0_2

K= ?aw — 00y — O
is invariant w.r.t. the left-x-translations (non-commutative)
(T, X, V)« (t,z,v) =(T+t, X+ +tV,V +v)
and homogeneous of degree two w.r.t. the dilations
Sx(t,z,v) = (N2, Nz, \v) A>0
(R3, %, 6) is a Lie group with é-homogeneous norm
[(t,z,0) |k = [H2 + [2]5 + [o]

and distance

di ((t,z,v), (T, X,V)) = (T, X, V)" (t,z,v)|k



New problems

» It0-Wentzell modifies the drift from linear to non-linear:
freezing the coefficients is not sufficient

» how to handle space-time regularity on Lie groups



Intrinsic Holder continuity



Semigroup approach: distributional solutions

Anisotropic spatial a-Holder condition

F(X,V) = f(z,0)| S|X — 2|5 +|V — v

» homogeneous norm + Euclidean translations
» introduced by Da Prato-Lunardi (1995)

» used by Lorenzi (2005), Priola (2009), Menozzi (2010)
and many others

P> no smoothing in time: Schauder estimates
> suitable for the stochastic setting

» Lévy SDEs: Hao-Wu-Zhang (2020), Marino (2021)



Lie group approach: classical solutions

Intrinsic a-Holder condition

(T, X, V) = f(t,z,0)| ST —t|2 +|X —a —tV|5 + |V —v|*

» homogeneous norm -+ intrinsic translations
» introduced by Lanconelli-Polidoro (1994)

» used by Manfredini (1997), Di Francesco-P. (2005),
Imbert-Mouhot (2020) and many others

P joint space-time regularity: Schauder estimates

» Pagliarani-P.-Pignotti (2016): optimal definition of
Hoélder regularity and intrinsic Taylor formula

» restrictive in the stochastic framework:
space-time regularity cannot be decoupled



So close, no matter how far

Points that are far from each other in the Euclidean sense, can
be very close in the intrinsic sense:

X —z X -z
P=|tax —— =T X, —
<,x’t—T>, Q < ) ’t—T)

have intrinsic distance equal to |1 — t|% for any x, X € R

If f = f(z) is Holder in the intrinsic sense then

If(z) — fF(X)| < |t—T|2

f is necessarily constant



Intrinsic solution (P.-Pesce, 2021)

Let Y = v0, + 0¢ and ~:(x, v) its integral curve from (z,v)
Langevin PDE Yf=a0uwf
SPDE dy f = ady, fdt + o0, fdW;

Solution: continuous process f = fi(z,v) s.t. Oy, f exists and

t
Fe(wlz,0)) = folw,v) + /O s(15(, 0)) oo fo(s (2, v))ds

t
+/ Og ’Ys €, U 8 fs(’Ys(x U))dW
0



Parametrix construction: main steps

» [to6-Wentzel: from SPDEs to random PDEs

P> time-dependent parametrix:
convergence as in Delarue-Menozzi (2010)

» Fleming transform: a logarithmic transform of the
remainder is seen as the value function of a stochastic
optimization problem

» stochastic control techniques
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Thank you!



Thank you!



General results for Kolmogorov PDEs



Kolmogorov equations with Holder coefficients

d d
L= aij(t,x)0a, + (Bx,V)+ 0, + > ai(t,)0s, + a(t, )
ig—1 \—3?_’ i—1

> (t,z) e R xRN
» utIga < (ai;) < plga intrinsic. Holder continuous
» K = Apa+Y is hypoelliptic (C > 0)

» a;,a are bounded and intrinsic Holder continuous



Parametrix method

>

Existence of a fundamental solution
Weber (1951), Polidoro (1995) Di Francesco-P. (2005)

Gaussian upper bounds of I' and derivatives:

+
I'(t,x) < ¢

< \/?C(t) exp (—c

|Oxixjf(t, x)| +|YD(t,z)| < e exp (—ct (C_l(t)x,w)

ty/det C(t)

e (t), )

Harnack inequality, lower bounds: Polidoro (1997)

T(t,2) > ——

— /detC(t)

Well-posedness of the martingale problem and density
estimates: Delarue-Menozzi (2010), Menozzi (2018)

exp (—¢ (' (t)z, 2)



Non-local case

The Brownian part can be replaced with a Lévy-type part

Imbert-Silvestre (2019)
Hao-Wu-Zhang (2020)

Marino (2021),
Manfredini-Pagliarani-Polidoro (2021)



