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Statement of the problem:

parametrix for filtering SPDEs



Motivation: SPDEs from filtering theory

▶ Let (X,Z) be a diffusion

▶ extract information about X from FZ
t = σ(Zs, s ≤ t)

E
[
f(Xt) | FZ

t

]
=

∫
pt(x)f(x)dx

pt(x) is the conditional density of Xt given FZ
t

▶
dpt(x) = Ltpt(x)dt+Gtpt(x)dWt

where

⋄ Lt second-order, Gt first-order operators

⋄ the coefficients depend on t, x, Zt and are therefore random
and not smooth

▶ if X and Z are independent then Gt = 0 and Lt is the
Fokker-Planck (forward Kolmogorov) operator



Cauchy problem for parabolic SPDEs

▶ Lp theory
Pardoux (1975), Rozovskii and Krylov (1977), Flandoli
(1990), Krylov (1999) ...

▶ Hölder theory
Rozovskii (1975), Shimizu (1982), Chow and Jiang (1992)

Analytical techniques for SPDEs

▶ Duhamel principle: Chow-Jiang (1992), Mikulevicius
(2000), Kleptsyna-Piatnitski-Popier (2020)

▶ Schauder estimates: Du-Liu (2019), Zhang-Zhang (2021)

▶ Moser’s iteration: Denis, Matoussi and Stoica (2005)

▶ Hörmander’s theorem: Krylov (2015), Qiu (2018)



Constant coefficients: forward heat SPDE

dut(x) =
a

2
∂xxut(x)dt+ σ∂xut(x)dWt

ut(x) = u0(x) +
a

2

∫ t

0
∂xxus(x)ds+ σ

∫ t

0
∂xus(x)dWs

Stochastic characteristics: ut(x) = U(t, x+ σWt) then

∂tU =
a− σ2

2
∂xxU

Stochastic fundamental solution: for t > s

p (s, y; t, x) :=
1√

2π (a− σ2) (t− s)
exp

(
−(x− y + σ(Wt −Ws))

2

2 (a− σ2) (t− s)

)
▶ damping effect of noise: coercivity condition a− σ2 > 0

▶ distinctive asymptotic behaviour at pole (Sowers, 1994)

▶ t 7→ p (s, y; t, x) is adapted and Hölder continuous



Uniformly parabolic SPDEs

with Hölder coefficients



Functional setting

▶ “Standard” Hölder space: Cα
t,T

measurable functions f = fs(x) on [t, T ]× Rd s.t.

sup
s∈[t,T ]
x ̸=y

|fs(x)− fs(y)|
|x− y|α

< ∞

▶ Stochastic Hölder space: Cα
t,T

predictable processes f = fs(x;ω) on [t, T ]× Rd × Ω

such that fs(x; ·) ∈ Cα
t,T almost surely

▶ Similarly higher orders



Stochastic fundamental solution

p(s, y; ·, ·) ∈ C2
s,t is a “classical” solution to the forward SPDE

▶ for t > s

p(s, y; t, x) = δy +

∫ t

s
Lτp(s, y; τ, x)dτ +

∫ t

s
Gτp(s, y; τ, x)dWτ

Operators in the SPDE:

Lt =
1

2
aijt (x)∂xixj + bi

t(x)∂xi + ct(x) Gt = σi
t(x)∂xi + νt(x)



Parametrix method for SPDEs: two problems

▶ lack of the Duhamel principle (cf. Sowers (1998))

▶ roughness of the coefficients (only measurable in time)



Parametrix method and Duhamel principle

{
∂tut =

1
2∂xxut + g

u0 = 0
⇐⇒ ut(x) =

∫ t

0

∫
R
g(s, y)pheat(s, y; t, x)dyds

The fundamental solution solves

{
∂tp(0, ξ; t, ·) = Lp(0, ξ; t, ·)
p(0, ξ; 0, ·) = δξ

therefore we look for p in the form

p(0, ξ; t, x) = pheat(0, ξ; t, x)+

∫ t

0

∫
R
g(0, ξ; s, y)pheat(s, y; t, x)dyds

where g has to be determined by imposing the PDE



Näıve Parametrix for SPDEs

Also for the heat SPDE

dut(x) =
1

2
∂xxut(x)dt+ (σ∂xut(x) + gt(x)) dWt

by the Itô formula, we have the Duhamel formula

ut(x) =

∫ t

0

∫
R
gs(y)p

heat (s, y; t, x) dy dWs

but...

pheat (s, y; t, x) :=
1√

2π(t− s)
exp

(
−(x+ σ(Wt −Ws)− y)2

2(t− s)

)
either

▶ σ = 0 as in Mikulevicius (2000) and others

▶ g ≡ 0, but g is needed in the parametrix method



Another approach: the Itô-Wentzell formula

dut(x) =
aijt (x)

2
∂ijut(x)dt+ σi

t(x)∂iut(x)dWt

Consider the stochastic flow of diffeomorphisms of Rd

Xt(x) = x−
∫ t

0
σs(Xs(x))dWs, t ≥ 0

Itô-Wentzell change of coordinates

ût(x) = ut(Xt(x))

Watanabe (1994): backward SPDE with a = σσ∗



Itô-Wentzell: from SPDEs to random PDEs

u solves the SPDE

dut(x) =
aijt (x)

2
∂ijut(x)dt+ σi

t(x)∂iut(x)dWt

if and only if ût(x) = ut(Xt(x)) solves the PDE with random
coefficients

dût(x) =
(aijt (x)

2
∂ij ût(x) + bjt (x)∂j ût(x)

)
dt

where

at = ∇Xt (ât − σ̂tσ̂
∗
t ) (∇Xt)

∗ bt = ât∇2Xt

Assumption: at − σtσ
∗
t is uniformly (in x) positive definite

Problem: estimate ∇Xt(x) uniformly w.r.t. x



A special case

If σt is independent of x then

Xt(x) = x−
∫ t

0
σsdWs

and the gradient is simply

∇Xt(x) = Id

This is easy but not interesting at all!

General case:

Xt(x) = x−
∫ t

0
σs(Xs(x))dWs

∇Xt(x) = Id−
∫ t

0
(∇σs)(Xs(x))∇Xs(x)dWs



Coercivity of the flow

∇Xt(x) = exp

(∫ t

0
∇σs(Xs(x))︸ ︷︷ ︸

Fs(x)

dWs + · · ·
)

General question. How to estimate a x-dependent Itô integral∣∣∣ ∫ t

0
Fs(x)dWs

∣∣∣ ≈ ∣∣∣∑
k

Ftk(x)
(
Wtk+1

−Wtk

) ∣∣∣ ≤ Z

with a random variable Z independent of x?

Theorem. There exist positive random matrices c, C such that

c ≤ ∇Xt(x) ≤ C x ∈ Rd, P -a.s.



Coercivity of the flow

It(x; ·) :=
∫ t

0
∇σs(Xs(x))dWs

▶ Lp(Ω)-estimates for the flow X from assumption (ε > 0)

sup
s∈[0,T ]

x∈Rd

|x|ε|∂βσs(x)| < ∞ for 1 ≤ |β| ≤ 2, P -a.s.

▶ Doob’s and Burkholder’s inequalities give

E
[
∥It(·;ω)∥pW 1,p(Rd)

]
≲ t

p
2

▶ Sobolev’s embedding + Kolmogorov continuity

sup
x∈Rd

|It(x;ω)| ≤ c(ω)tα a.e. ω ∈ Ω

▶ Sobolev embedding is independent of ω ∈ Ω



Schilling (2000): Sobolev implies Kolmogorov

Kolmogorov’s continuity theorem is an analytic result

It follows from Sobolev’s embedding theorem (for Bessel
potential spaces)



Time-dependent parametrix

Apply Itô-Wentzell and fix the trajectory ω ∈ Ω:

Lt =
1

2
at(x)∂xx + bt(x)∂x + ct(x)

uniformly elliptic PDO with measurable in time coefficients

The parametrix is the Gaussian solution of

Lt,x̄ =
1

2
at(x̄)∂xx + bt(x̄)∂x + ct(x̄)



Existence of a fundamental solution

dut(x) = Ltut(x)dt+Gtut(x)dWt

Gaussian estimates

1

µ2
Γ

1
µ1 (t− s,X−1

s,t (x)− y) ≤ p(s, y; t, x) ≤ µ2Γ
µ1(t− s,X−1

s,t (x)− y)

|∂xip(s, y; t, x)| ≤
µ2√
t− s

Γµ1(t− s,X−1
s,t (x)− y)

∣∣∂xixjp(τ, ξ; t, x)
∣∣ ≤ µ2

t− s
Γµ1(t− s,X−1

s,t (x)− y)

where

▶ µ1 and µ2 positive random variables

▶ Γµ is the fundamental solution of the heat operator µ
2∆−∂t



Derivation of the filtering SPDE
X signal, Z observation:

E
[
f(Xs,y

t ) | FZ
t

]
=

∫
p(s, y; t, x)f(x)dx

▶ Classical approach (from 1980):

Pardoux, Kallianpur, Krylov, Rozovsky, Kunita

▶ “Direct” approaches:

▶ Krylov-Zatezalo (2000): forward SPDE

dp(s, y; t, x) = L∗
t p(s, y; t, x)dt+G∗

t p(s, y; t, x)dWt

▶ Veretennikov (1994): backward SPDE

−dp(s, y; t, x) = Lsp(s, y; t, x)ds+Gs(s, y; t, x) ⋆ dWs



SPDEs under the

weak Hörmander condition



Model operator: Kolmogorov (1934)

Langevin model (Ornstein-Ulhenbeck){
dXt = Vtdt position / drift / transport

dVt = σdWt velocity / diffusion

Fokker-Planck (forward) PDE

(∂t + v∂x)f =
σ2

2
∂vvf (t, x, v) ∈ R3

Applications

▶ Kinetic theory: also non-linear (Boltzmann-Landau)

▶ Finance: Asian options, path-dependent models



Eqs with constant coefficients:

the Lie group structure



Kolmogorov Eqs and linear SDEs

dXt = BXtdt+ σdWt

W d-dimensional Brownian motion

B constant N ×N matrix

σ constant N × d matrix

Solution:

Xt = etB
(
x+

∫ t

0
e−sBσdWs

)
, x ∈ RN

Xt is a Gaussian process:

▶ Mean
E [Xt] = etBx

▶ Covariance matrix

C(t) =
∫ t

0
esBσ

(
esBσ

)∗
ds



Equivalent non-degeneracy conditions

SDE dXt = BXtdt+ σdWt

PDE ∂tf + ⟨Bx,∇f⟩ = 1

2
(σσ∗)ij∂xixjf

▶ Probability: the covariance matrix C(t) is positive definite

▶ PDE theory: weak Hörmander condition

rank Lie (∂x1 , . . . , ∂xd
,Y) = N + 1, Y = ∂t + ⟨Bx,∇⟩

▶ Control theory: Kalman condition

rank
(
σ,Bσ,B2σ, · · · , BN−1σ

)
= N



Transition density / fundamental solution

SDE dXt = BXtdt+ σdWt

PDE ∂tf + ⟨Bx,∇f⟩ = 1

2
σσ∗∂xxf

If the covariance matrix C(t) is positive definite then

▶ Gaussian fundamental solution

p0(t, x) =
1√

(2π)N det C(t)
exp

(
−1

2
⟨C−1(t)x, x⟩

)

▶ X has transition density

p(s, y; t, x) = p0

(
t− s, x− e(t−s)By

)
, t > s



Analysis on Lie groups

K =
σ2

2
∂vv − v∂x − ∂t

is invariant w.r.t. the left-∗-translations (non-commutative)

(T,X, V ) ∗ (t, x, v) = (T + t,X + x+ tV , V + v)

and homogeneous of degree two w.r.t. the dilations

δλ(t, x, v) = (λ2t, λ3x, λv) λ > 0

(R3, ∗, δ) is a Lie group with δ-homogeneous norm

|(t, x, v)|K = |t|
1
2 + |x|

1
3 + |v|

and distance

dK ((t, x, v), (T,X, V )) = |(T,X, V )−1 ∗ (t, x, v)|K



New problems

▶ Itô-Wentzell modifies the drift from linear to non-linear:
freezing the coefficients is not sufficient

▶ how to handle space-time regularity on Lie groups



Intrinsic Hölder continuity



Semigroup approach: distributional solutions

Anisotropic spatial α-Hölder condition

|f(X,V )− f(x, v)| ≲ |X − x|
α
3 + |V − v|α

▶ homogeneous norm + Euclidean translations

▶ introduced by Da Prato-Lunardi (1995)

▶ used by Lorenzi (2005), Priola (2009), Menozzi (2010)
and many others

▶ no smoothing in time: Schauder estimates

▶ suitable for the stochastic setting

▶ Lévy SDEs: Hao-Wu-Zhang (2020), Marino (2021)



Lie group approach: classical solutions

Intrinsic α-Hölder condition

|f(T,X, V )− f(t, x, v)| ≲ |T − t|
α
2 + |X − x− tV |

α
3 + |V − v|α

▶ homogeneous norm + intrinsic translations

▶ introduced by Lanconelli-Polidoro (1994)

▶ used by Manfredini (1997), Di Francesco-P. (2005),
Imbert-Mouhot (2020) and many others

▶ joint space-time regularity: Schauder estimates

▶ Pagliarani-P.-Pignotti (2016): optimal definition of
Hölder regularity and intrinsic Taylor formula

▶ restrictive in the stochastic framework:
space-time regularity cannot be decoupled



So close, no matter how far

Points that are far from each other in the Euclidean sense, can
be very close in the intrinsic sense:

P =

(
t, x,

X − x

t− T

)
, Q =

(
T,X,

X − x

t− T

)
have intrinsic distance equal to |T − t|

1
2 for any x,X ∈ R

If f = f(x) is Hölder in the intrinsic sense then

|f(x)− f(X)| ≲ |t− T |
α
2

f is necessarily constant



Intrinsic solution (P.-Pesce, 2021)

Let Y = v∂x + ∂t and γt(x, v) its integral curve from (x, v)

Langevin PDE Yf = a∂vvf

SPDE dYf = a∂vvfdt+ σ∂vfdWt

Solution: continuous process f = ft(x, v) s.t. ∂vvf exists and

ft(γt(x, v)) = f0(x, v) +

∫ t

0
as(γs(x, v))∂vvfs(γs(x, v))ds

+

∫ t

0
σs(γs(x, v))∂vfs(γs(x, v))dWs



Parametrix construction: main steps

▶ Itô-Wentzel: from SPDEs to random PDEs

▶ time-dependent parametrix:

convergence as in Delarue-Menozzi (2010)

▶ Fleming transform: a logarithmic transform of the
remainder is seen as the value function of a stochastic
optimization problem

▶ stochastic control techniques
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Thank you!



Thank you!



General results for Kolmogorov PDEs



Kolmogorov equations with Hölder coefficients

L =

d∑
i,j=1

aij(t, x)∂xixj + ⟨Bx,∇⟩+ ∂t︸ ︷︷ ︸
Y

+

d∑
i=1

ai(t, x)∂xi + a(t, x)

▶ (t, x) ∈ R× RN

▶ µ−1 IRd ≤ (aij) ≤ µ IRd intrinsic. Hölder continuous

▶ K = △Rd +Y is hypoelliptic (C > 0)

▶ ai, a are bounded and intrinsic Hölder continuous



Parametrix method

▶ Existence of a fundamental solution
Weber (1951), Polidoro (1995) Di Francesco-P. (2005)

▶ Gaussian upper bounds of Γ and derivatives:

Γ(t, x) ≤ C+√
det C(t)

exp
(
−c+⟨C−1(t)x, x

)
∣∣∂xixjΓ(t, x)

∣∣+ |YΓ(t, x)| ≤ C+

t
√
det C(t)

exp
(
−c+⟨C−1(t)x, x

)
▶ Harnack inequality, lower bounds: Polidoro (1997)

Γ(t, x) ≥ C−√
det C(t)

exp
(
−c−⟨C−1(t)x, x

)
▶ Well-posedness of the martingale problem and density

estimates: Delarue-Menozzi (2010), Menozzi (2018)



Non-local case

The Brownian part can be replaced with a Lévy-type part

Imbert-Silvestre (2019)
Hao-Wu-Zhang (2020)
Marino (2021),
Manfredini-Pagliarani-Polidoro (2021)


