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Based on joint work with Mark Freidlin
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Concept for reference: Small perturbations of dynamical
systems with multiple invariant sets (Freidlin-Wentzell theory).
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Freidlin-Wentzell Theory

The process is governed by

dX x ,ε
t = v(X x ,ε

t )dt + εdWt , X x ,ε
0 = x .

For times t = t(ε) such that 1� t(ε)� eλ/ε
2

for each λ > 0,
X x ,ε

t(ε) is very close to the “nearest" stable attractor. It takes
exponential, in ε2, time to go from one attractor to another.

The order of transitions and the transsition times are
determined by constants Vij (values of the quasi-potential).
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Quasi-potential and the action functional

Vij = inf(S(ϕ) : ϕ(0) ∈ Si , ϕ(T ) ∈ Sj),

where

S(ϕ) =
1
2

∫ T

0
||ϕ̇(t)− v(ϕ(t))||2dt

(“difficulty" of following the curve ϕ for time T ).

For example, if x is close to Si , it takes time of order
exp(minj(Vij)/ε

2) for X x ,ε
t to go to the “next" attractor. The

process of transitions between the attractors resembles a
Markov process with very small (ε-dependent) transition rates.
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Metastability

Generically, there exist 0 = λ0 < λ1 < ... < λn =∞ such that
for almost every x and each time scale t(ε) satisfying

λk/ε
2 � ln(t(ε))� λk+1/ε

2,

X x ,ε
t(ε) is found in the vicinity of Si with i determined by k and x .

Si is the metastable state of the process starting at x at the
time scale t(ε).
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Random perturbations of degenerate diffusions

Degenerate process:

dX x
t = v0(X x

t )dt +
d∑

i=1

vi(X x
t ) ◦ dW i

t , X x
0 = x ∈ Rd ,

The Stratonovich form is convenient here since it allows one to
provide a coordinate-independent description of the process.
The generator:

Lu = L0 +
1
2

d∑
i=1

L2
i ,

where Li is the operator of differentiation along vi .
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We assume that S1, ...,Sm ⊂ Rd are smooth non-intersecting
surfaces (or curves), the process is non-degenerate outside the
surfaces, each of the surfaces is invariant for the process, and
the diffusion restricted to a single surface is an ergodic process.
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Perturbed (non-degenerate) process:

dX x ,ε
t = (v0 + ε2ṽ0)(X x ,ε

t )dt +
d∑

i=1

vi(X
x ,ε
t ) ◦ dW i

t +

+ε
d∑

i=1

ṽi(X
x ,ε
t ) ◦ dW̃ i

t , X x ,ε
t = x .

non-degeneracy: span(ṽ1(x), ..., ṽd (x)) = Rd for each x .

Generator: Lε = L + ε2L̃, with

L̃u = L̃0 +
1
2

d∑
i=1

L̃2
i ,

where L̃i is differentiation along ṽi .
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Goal: Understand the behavior of X x ,ε
t(ε) at different time scales

t(ε).

Now, the characteristic time scales are not going to be
exponential in ε2. Instead, we’ll have

t0(ε)� t1(ε)� ...� tn(ε)

with t0 ≡ 1, t1 = | ln(ε)|, t2, ..., tn−1 -powers of ε, tn ≡ ∞, such
that X x ,ε

t(ε) has a limit, provided that

tk (ε)� t(ε)� tk+1(ε).

The limiting distribution will not necessarily be supported on
one of the surfaces ...
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Setup suitable for PDE results

Let D be bounded domain with ∂D = S1
⋃

S2
⋃
...
⋃

Sm. Here,
the surfaces are (d − 1)− dimensional . The process X x ,ε

t is
considered on D, reflected on the boundary.
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First initial-boundary value problem:

∂uε(t , x)

∂t
= Lεuε(t , x), t > 0, x ∈ D;

uε(0, x) =g(x), x ∈ D; uε(t , x) = ψ(x), t > 0, x ∈ ∂D,

g ∈ C(D), ψ ∈ C(∂D).

Second initial-boundary value problem:

∂uε(t , x)

∂t
= Lεuε(t , x), t > 0, x ∈ D;

uε(0, x) =g(x), x ∈ D;
∂uε(t , x)

∂nε(x)
= 0, t > 0, x ∈ ∂D,

where nε(x) is the co-normal to ∂D at x .
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Theorem: For each of the problems, there is a finite sequence
of characteristic time scales t0(ε)� t1(ε)� ...� tn(ε) such
that

lim
ε↓0

uε(t(ε), x) = ck

uniformly on any compact subset of D, provided that
tk (ε)� t(ε)� tk+1(ε). The constants ck are determined by
integrating the initial and/or boundary data with respect to the
measures π1, ..., πm, ν1, ..., νm, µ. These measures need to be
explained.
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The “special" measures

π1, ..., πm - just the invariant measures for the unperturbed
process restricted to S1,...,Sm.

Each νk is defined as the limit of the exit measures. That is, we
consider the process X x ,ε

t conditioned on reaching ∂D at Sk .
Theorem: The measures induced by such process, stopped at
Sk , converge, as ε ↓ 0, for each x ∈ D, to the same measure,
which will be called νk .

µ is the invariant measure for the unperturbed process in D.
Such a measure exists if all the boundary components are
repelling (to be discussed next).
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Near-boundary behavior

Simple 1-d example: Consider the process on [0,∞):

dX x
t = βX x

t dt +
√

2αX x
t dWt , X x

0 = x > 0, (α > 0)

Generator:
Lu = αx2u′′ + βxu′.

We have the attracting and repelling cases:

lim
t→∞

X x
t = 0 with positive probability if α > β,

lim
t→∞

X x
t 6= 0 with probability one if α < β.
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Near-boundary behavior, classifying boundary
components

Fix S = Sk . Use (y , z)- local coordinates; y - along S, z - in the
orthogonal direction. The generator of the process X x ,ε

t in (y , z)
coordinates can be written as:

Lεu = Lyu + z2α(y)
∂2u
∂z2 + zβ(y)

∂u
∂z

+ zDy
∂u
∂z

+ Ru + ε2L̃u.

Ly - restriction of L to S;
Dy differential operator with first-order derivatives in y ;
β and α are the leading terms for the drift and diffusion
coefficients in the direction normal to the boundary;
R - perturbation that contains higher-order terms in z, and can
be viewed as a perturbation when z is small.
Define

ᾱ =

∫
S
α(y)dπ(y), β̄ =

∫
S
β(y)dπ(y),

where π is the invariant measure on S. 16 / 24



ᾱ =

∫
S
α(y)dπ(y), β̄ =

∫
S
β(y)dπ(y),

Attracting surface: ᾱ > β̄
Repelling surface: ᾱ < β̄

However, understanding further properties of the process near
the boundary requires more delicate analysis.
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Time to approach the a boundary component or to
leave its neighborhood

Lemma. If ᾱ > β̄ (ᾱ < β̄), then there exist γ > 0 (γ < 0) and a
positive-valued function ϕ ∈ C1(S) satisfying

∫
S ϕdπ = 1 such

that
Lyϕ+ αγ(γ − 1)ϕ+ βγϕ + γDyϕ = 0.

Such γ are ϕ are determined uniquely.

This lemma associates one number, γ, to each component of
the boundary. For example, the time it takes the process X x ,ε

t ,
starting at x ∈ S, to leave a κ-wide neighborhood of S scales
as (κ/ε)γ if ε and κ are small, ε� κ, and the boundary is
attracting.
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We used:

Lεu ≈ Lyu + z2α(y)
∂2u
∂z2 + zβ(y)

∂u
∂z

+ zDy
∂u
∂z
.

This works for ε� z � 1. For z ∼ ε, we need (y , z/ε)
coordinates. The operator there looks like:

Lεu ≈ Lyu + (z2α(y) + ρ(y))
∂2u
∂z2 + zβ(y)

∂u
∂z

+ zDy
∂u
∂z
.

The exit distribution can be understood from this operator. ρ(y)
is the coefficient, on the boundary, in the perturbation L̃ at the
diffusion term orthogonal to the boundary.
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Understanding meta-stable distributions for X x ,ε
t .

Need to:

(a) Undestand the times to approach Sk and to leave a
neighborhood of Sk - discussed above (based on the spectral
lemma).

(b) Understand the transition probabilities between different Sk
- these are nearly ε-independent. (Understood by conditioning
the non-perturbed process not to return to Sk .)

(c) Once we understood the transition probabilities and times,
in which order are Sk visited? (Similar to hierarchy of cycles.)
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Parameter-dependent Markov Renewal Processes

Let x ∈ ∂D, let σx ,ε
0 = 0, and, assuming that X x ,ε

σx,ε
n
∈ Sk , let

σx ,ε
n+1 = inf{t ≥ σx ,ε

n : X x ,ε
t ∈ ∂D \ Sk}.

Markov renewal process (Xx ,ε
n ,Tx ,ε

n ), n ∈ Z+, is defined as:

Xx ,ε
n = X x ,ε

σx,ε
n
, Tx ,ε

n = σx ,ε
n − σx ,ε

n−1, n ≥ 1.

The corresponing semi-Markov process on S1
⋃
...
⋃

Sm is just
X x ,ε

t = X x ,ε
σx,ε

n
for σx ,ε

n ≤ t < σx ,ε
n+1, n ≥ 0.
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Abstract Formulation

Let (Xx ,ε
n ,Tx ,ε

n ) be a Markov renewal process on the state space
M = S1

⋃
...

⋃
Sm.

Now, S1, ...,Sm need not be smooth surfaces, but are just
disjoint measurable sets in a metric space M.

Qε(x ,Sk ) - transition probability from x ∈ M to Sk . We assume
that Qε(x ,Sk ) = 0 for x ∈ Sk .

Tx ,ε
n , conditioned on Xx ,ε

n ∈ Sk , is assummed to be the same as
that of a random variable ξx ,ε

k (there is no dependence on n
since the process is assumed to be time-homogeneous).
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Assumptions on the Markov Renewal Process

(a) There are quantities qij(ε) and τij(ε) such that

lim
ε↓0

Qε(x ,Sj)

qij(ε)
= 1, lim

ε↓0

Eξx ,ε
j

τij(ε)
= 1, uniformly in x ∈ Si , i 6= j ,

provided that Qε(x ,Sj) is not identically zero.

(b) ξx ,ε
j /τij(ε) are uniformly integrable in x ∈ Si , ε > 0 and that

P(ξx ,ε
j /τij(ε) < c)→ 0 as c ↓ 0, uniformly in x ∈ Si , ε > 0.

(c) Complete Asymptotic Regularity.

lim
ε↓0

qa1b1(ε)

qc1d1(ε)
·

qa2b2(ε)

qc2d2(ε)
· · · qar br (ε)

qcr dr (ε)
· τab(ε)

τcd (ε)
∈ [0,∞]

exist for every r ∈ N and every a,ai ,b,bi , c, ci , c,di with ai 6= bi ,
ci 6= di , a 6= b, and c 6= d , for which the ratios appearing in the
limits are defined.
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We are interested in the behavior of the semi-Markov process
X x ,ε

t(ε), where X x ,ε
t = Xx ,ε

n for Tx ,ε
0 + ...Tx ,ε

n ≤ t < Tx ,ε
0 + ...Tx ,ε

n+1.

Under the above assumptions, there is a finite sequence of
characteristic time scales t0(ε)� t1(ε)� ...� tn(ε), with t0 ≡ 1
and tn ≡ ∞, such that the limiting distribution of X x ,ε

t(ε) can be
identified, as long as

ti(ε)� t(ε)� ti+1(ε)

for some i .
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