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S. Molchanov 80 & V. Konakov 75
Congratulations & many years of fruitful research to both!

It is unbelievable for me to hear these figures 80 and 75
above. Because I remember both jubilees much younger. I

steel from my talk a few minutes to recall two episodes.

S.Molchanov was one of my tutors in my MSU studentship.
In my very first International conference in Vilnius 1978

(S.A. was just about 37!) I gave a short talk. After my talk
S.A. approached me and said: "Shame on you!" I did not
understand: why, what I did wrong?! "You used Greeks in
your talk, and Kiyoshy Ito who was sleeping in the first raw

had to wake up each time you pronounced "eta" [i:ta]!

Once I was walking quietly in the centre near Notre Dame
de Paris, and suddenly met Valentin (∼50y.o.) who was also
quietly walking. What did we do then? We stopped and we
were talking, I think, for an hour if not more about maths.
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Abstract; Svetlana Anulova

Positive recurrence of d-dimensional diffusion with an
additive Wiener process and with switching and with one
recurrent and one transient regime is established under
suitable conditions on the drift in both regimes and on the
intensities of switching. These intensities may depend on
the diffusion component at each moment of time. The paper
is a continuation of the earlier publication [Veretennikov A.
(2021) On Positive Recurrence of One-Dimensional
Diffusions with Independent Switching. In: Shiryaev A.N.,
Samouylov K.E., Kozyrev D.V. (eds) Recent Developments
in Stochastic Methods and Applications. ICSM-5 2020.
Springer Proceedings in Mathematics & Statistics, vol 371,
242 - 252. Springer, Cham] as well as of several earlier joint
papers with S. Anulova . The paper above is in memory
of her.
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The setting

Let us consider the process (Xt ,Zt ) with a continuous
component X ∈ Rd and a discrete one Z ∈ {0,1} described
by the stochastic differential equation

dXt = b(Xt ,Zt ) dt + dWt , t ≥ 0, X0 = x , Z0 = z, (1)

for the component X , while Zt is a continuous-time
conditionally Markov process given X on the state space
S = {0,1} with positive intensities of respective transitions
λ01(x) =: λ0(x), &λ10(x) =: λ1(x); here the variable x
signifies a certain (arbitrary Borel measurable) dependence
on the component X ; the trajectories of Z are assumed to
be càdlàg; the probabilities of jumps for Z are conditionally
independent given the trajectory of the component X (see
the precise description in what follows).
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b and λ

Denote
b(x ,0) = b−(x), b(x ,1) = b+(x),

λ0 := sup
x ,z

λ0(x), λ0 := inf
x ,z
λ0(x),

λ1 := sup
x ,z

λ1(x), λ1 := inf
x ,z
λ1(x).

It is assumed that

0 < λ0 ∧ λ1 ≤ λ0 ∨ λ1 <∞. (2)

These conditions along with the boundedness of the
function b in x suffice for the process (Xt ,Zt ) to be
well-defined.
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Rigorous construction

A rigorous construction of the system (X ,Z ) of this type may be
given by the SDE system

dXt = b(Xt ,Zt ) dt + dWt , t ≥ 0, X0 = x ∈ Rd ,

(3)

dZt = 1(Zt = 0)dπ0
t − 1(Zt = 1)dπ1

t , Z0 ∈ {0,1},

where πi
t , i = 0,1, are two Poisson processes with intensities

λi (Xt ), i = 0,1, respectively. More precisely,

πi
t = π̄i

φi (t),

where π̄i
t , i = 0,1, are, in turn, two standard Poisson processes

with a constant intensity one, independent of the Wiener process
(Wt ) and of each other, and the time changes

t 7→ φi (t) :=

∫ t

0
λi (Xs)ds, i = 0,1,

are applied to each of them, respectively.
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Strong solution exists

By virtue of the assumption (2) the equation between the
jumps only concerns the diffusion part of the SDE (3), for
which it is well-known since 1979 that the equation has a
pathwise unique strong solution. The jump moments are
stopping times with respect to the filtration
(Ft = FW ,π0,π1

t , t ≥ 0), and the position of the system after
any jump (Xτ ,Zτ ) is uniquely determined by the left limiting
values (Xτ−,Zτ−): X is continuous, while Z changes its
position,

Xτ = Xτ−, Zτ = 1(Zτ− = 0).



Diffusion &
switching

Thanks

Setting

Main result

Auxiliaries

Proof of
theorem

Further
reseaarch

Thanks

Generator of Markov process

After any such jump, the diffusion part of the SDE is solved
starting from the position Xτ until the next jump, say, τ ′, of
the component Z , and the moment of this next jump is
determined by the trajectories of π0

t and (or) of π1
t and by

the intensity λZs (Xs), s < τ ′. Since there might be only a
finite numbers of jumps on any bounded interval of time,
then pathwise (and, hence, also weak) uniqueness follows
on [0,∞). Therefore, the process (X ,Z ) exists and is
markovian. Its generator has a form

Lh(x , z) =
1
2

∆x ,zh(x , z) + bz(x)∇x ,zh(x , z)

+λz(x) (h(x , z̄)− h(x , z)),

where z̄ := 1(z = 0) (that is, z̄ is not a z, the other state
from the set {0,1}).
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PDE system

For any t > 0 fixed let us define the function

v(s, x , z) := Es,x ,z f (Xt ,Zt ).

The vector-function v(s, x) = (v(s, x ,0), v(s, x ,1)) satisfies
the system of PDEs

vs(s, x ,0) + L0v(s, x ,0) + λ0(x) (v(s, x ,1)− v(s, x ,0)) = 0,
v(t , x ,0) = f (x ,0),

vs(s, x ,1) + L1v(s, x ,1) + λ1(x) (v(s, x ,0)− v(s, x ,1)) = 0,
v(t , x ,1) = f (x ,1),

where
Li =

1
2

∆ + 〈b(x , i),∇x ,z〉, i = 0,1.
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Feller process; strong Markov property

Due to the classical results in [A.V.Solonnikov 1965,
Theorem 5.5] its solution is continuous in the variable s for
any bounded and continuous f . Hence, the process is
Feller’s (that is, Ex ,zh(Xt ) is continuous in x and, of course,
bounded for any h ∈ Cb and any t > 0). Since the process
is Markov and càdlàg, then it is also strong Markov
according to the Feller sufficient condition which guarantees
that in this case any Markov process is also strong Markov.
This is important for the rest of the talk because allows to
use stopping times.

Actually, Solonnikov’s results allow to use Ito-Krylov’s
formula applied to the solution with the process (Xt ,Zt )
substituted in it, which is also of a great importance in
principle; however, in this talk we will not use it.
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Some references

The SDE solution is assumed ergodic under the regime
Z = 0 and transient under Z = 1. We are looking for
sufficient conditions for positive recurrence of the strong
Markov process (Xt ,Zt ). Such a problem was considered by
Cloez, B. & Hairer, M. 2015 for the exponentially recurrent
case; for other references see Khasminskii 2012, Mao, Yin
& Yuan 2007, Shao & Yuan 2019, and the references
therein. Under weak ergodic and transient conditions the
setting was earlier investigated in A.V.2021 for the case of
the constant intensities λ0, λ1. Here we tackle the general
case, not assuming any continuity, where the lengths of
intervals between successive jumps of the discrete
component are not independent of W , and, hence, not
independent of each other. This difficulty will be overcome
with the help of certain comparison arguments.
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Main theorem

Theorem

Let the drift b = (b+,b−) be bounded and Borel
measurable, and let there exist r−, r+,M > 0 such that

0 < λ0 ∧ λ1 ≤ λ̄0 ∨ λ̄1 <∞, (4)

xb−(x) ≤ −r−, xb+(x) ≤ +r+ , ∀ |x | ≥ M, (5)

2r− > d & λ1(2r− − d) > λ0(2r+ + d) . (6)

Then the process (X ,Z ) is positive recurrent; moreover,
there exists C > 0 such that for all M1 large enough and all
x ∈ R and for z = 0,1

Ex ,zτM1 ≤ C(x2 + 1), (7)

where τM1 := inf(t ≥ 0 : |Xt | ≤ M1).
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Proof preliminaries: embedding Markov chain
by stopping (switching) times

Denote ‖b‖ = supx ,z |b(x , z)|. Let M1 � M (the value M1 will
be specified later). Let

T0 := inf(t ≥ 0 : Zt = 0),

and
0 ≤ T0 < T1 < T2 < . . . ,

where for each n > 1 is defined by induction as

Tn := inf(t > Tn−1 : ZTn − ZTn− 6= 0).

Let
τ := inf(Tn ≥ 0 : |XTn | ≤ M1).
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(6) λ1(2r−−d) > λ0(2r++d) implies ∃ε>0 s.t.
λ1(2r− − d − ε) > λ0(2r+ + d + ε); Lemma 1

To prove the theorem it suffices to evaluate from above the
value Ex ,zτ because τ ≥ τM1 . Let ε > 0 be a positive value
solving the equation

λ0(2r+ + d + ε) = qλ1(2r− − d − ε) (8)

with some q < 1 (see (6)). It suffices to assume |x | > M.

Lemma (1)

Under the assumptions of the theorem for any δ > 0 there
exists M1 such that

max

[
sup
|x |>M1

Ex ,z

(∫ T1

0
1( inf

0≤s≤t
|Xs|≤M)dt |Z0 =0

)
,

(9)

sup
|x |>M1

Ex ,z

(∫ T0

0
1( inf

0≤s≤t
|Xs|≤M)dt |Z0 =1

)]
< δ.
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Auxiliary diffusions (without switching)

We skip the proof of this lemma because, as I hope, its
claim is intuitively evident. (If not, it will be commented
during the talk.)

Let us denote by X i
t , i = 0,1 the solutions of the equations

dX i
t = b(X i

t , i) dt + dWt , t ≥ 0, X i
0 = x . (10)
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Lemma 2

Lemma (2)

If M1 is large enough, then under the assumptions of the
theorem for any |x | > M1 for any k = 0,1, . . .

Ex ,z(X 2
T2k+1∧τ |Z0 = 0,FT2k ) ≤ Ex ,z(X 2

T2k∧τ |Z0 = 0,FT2k )

−1(τ >T2k )E(T2k+1∧τ−T2k∧τ |Z0 =0,FT2k )((2r−−d)−ε)
≤ Ex ,z(X 2

T2k∧τ |Z0 = 0,FT2k )− 1(τ > T2k )λ̄−1
0 ((2r− − d)− ε),

Ex ,z(X 2
T2k+2∧τ |Z0 = 1,FT2k+1) ≤ Ex ,z(X 2

T2k+1∧τ |Z0 = 1,FT2k+1)

+ 1(τ > T2k+1)E(T2k+2 ∧ τ − T2k+1 ∧ τ |Z0 = 1,FT2k+1)

×((2r− + d) + ε)

≤ Ex ,z(X 2
T2k+1∧τ |Z0 = 1,FT2k+1)

+1(τ > T2k+1)λ−1
1 ((2r+ + d) + ε).
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Corollary 1

Corollary (1) (under the assumptions of the theorem)

If M1 is large enough, then ∀ |x | > M1 and ∀ k = 0,1, . . .

Ex ,0X 2
T2k+1∧τ − Ex ,0X 2

T2k∧τ

≤ −Ex ,01(τ > T2k )Ex ,0(T2k+1 ∧ τ − T2k ∧ τ |FT2k )

×((2r− − d)− ε)
= −Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)((2r− − d)− ε)

≤ −Ex ,01(τ > T2k )λ̄−1
0 ((2r− − d)− ε),

and

Ex ,1X 2
T2k+2∧τ − Ex ,1X 2

T2k+1∧τ

≤Ex ,11(τ >T2k+1)(T2k+2∧τ−T2k+1∧τ)((2r−+d)+ε)

= Ex ,1(T2k+2 ∧ τ − T2k+1 ∧ τ)((2r− + d) + ε)

≤ Ex ,11(τ > T2k+1)λ−1
1 ((2r+ + d) + ε).
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Lemma 3

Lemma (3) (under the assumptions of the theorem )

If M1 is large enough, then for any k = 0,1, . . .

Ex ,z(X 2
T2k+2∧τ |Z0 = 0,FT2k+1) ≤ Ex ,z(X 2

T2k+1∧τ |Z0 = 0,FT2k+1)

+1(τ > T2k+1)Ex ,z(T2k+2 ∧ τ − T2k+1 ∧ τ |Z0 = 0,FT2k+1))

×((2r+ + 1) + ε))

≤ Ex ,z(X 2
T2k+1∧τ |Z0 = 0,FT2k+1) + 1(τ > T2k+1)λ−1

1

×((2r+ + 1) + ε)),

and

Ex ,z(X 2
T2k+1∧τ |Z0 = 1,FT2k ) ≤ Ex ,z(X 2

T2k∧τ |Z0 = 1,FT2k )

+1(τ > T2k )Ex ,z(T2k+1 ∧ τ − T2k ∧ τ |Z0 = 0,FT2k ))

≤ Ex ,z(X 2
T2k∧τ |Z0 = 1,FT2k )− 1(τ > T2k )λ

−1
0 ((2r− − 1)− ε)).
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Corollary 2

Corollary (2) under the assumptions of the theorem)

If M1 is large enough, then for any k = 0,1, . . .

Ex ,0X 2
T2k+2∧τ − Ex ,0X 2

T2k+1∧τ

≤ Ex ,01(τ > T2k+1)(T2k+2 ∧ τ − T2k+1 ∧ τ)((2r+ + 1) + ε)

≤ Ex ,01(τ > T2k+1)λ−1
1 ((2r+ + 1) + ε)),

and

Ex ,1X 2
T2k+1∧τ − Ex ,1X 2

T2k∧τ

≤ Ex ,11(τ > T2k )(T2k+1 ∧ τ − T2k ∧ τ)

≤ −Ex ,11(τ > T2k )λ
−1
0 ((2r− − 1)− ε)).
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Proof of the theorem, idea

The idea based on the lemmata and two corollaries is as
follows:

Instead of EτM1 for τM1 := inf(t ≥ 0 : |Xt | ≤ M1) we
evaluate Eτ for τ := inf(Tn ≥ 0 : |XTn | ≤ M1);

1(τ > T2k ) ≥ 1(τ > T2k+1);

According to the lemmata and their corollaries, on
average the increase of EX 2

Tn
on the next step is

dominated by its decrease on the previous one;
Hence, Eτ is estimated from above by X 2

0 by virtue of
the standard technique (which will be shown on the
next slides after the proofs of the lemmata);
The next (and the last) lemma in this talk is the last
preparation to the proof of the theorem.
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Lemma 4

Lemma (4) (under the assumptions of the theorem)

For any k = 0,1, . . .

1(τ > T2k+1)EXT2k+1
,1(T2k+2 ∧ τ − T2k+1 ∧ τ)

≤ 1(τ > T2k+1)λ−1
1 ,

and

1(τ > T2k )EXT2k
,0(T2k+1 ∧ τ − T2k ∧ τ)

≥ 1(τ > T2k )λ̄−1
0 .
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Corollary 3

Corollary (3): under the assumptions of the theorem)

For any k = 0,1, . . .

λ1EXT2k+1
,1(T2k+2 ∧ τ − T2k+1 ∧ τ) ≤ 1,

and

λ̄0EXT2k
,0(T2k+1 ∧ τ − T2k ∧ τ) ≥ 1.

In particular,

λ1EXT2k+1
,1(T2k+2∧τ−T2k+1∧τ)≤ λ̄0EXT2k

,0(T2k+1∧τ−T2k∧τ)

or

EXT2k+1
,1(T2k+2∧τ−T2k+1∧τ)≤ λ̄0

λ1
EXT2k

,0(T2k+1∧τ−T2k∧τ)
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Proof of lemma 2
(I will only show the beginning of the proof; lemma 3 is established similarly)

1. If Z0 = 0 then T0 = 0, and the process Xt coincides with
X 0

t until T1. Hence, we have on [0,T1] by Ito’s formula

dX 2
t − 2XtdWt = (2Xtb−(Xt ) + d) dt ≤ (−2r− + d)dt ,

on the set (|Xt | > M) due to the assumptions (5). We get∫ T1∧τ

0
2Xtb−(Xt )dt =

∫ T1∧τ

0
2Xtb−(Xt )1(|Xt | > M)dt

+

∫ T1∧τ

0
2Xtb−(Xt )1(|Xt | ≤ M)dt

≤ −2r−
∫ T1∧τ

0
1(|Xt | > M)dt +

∫ T1∧τ

0
2M‖b‖1(|Xt | ≤ M)dt

= −2r−
∫ T1∧τ

0
1dt +

∫ T1∧τ

0
(2M‖b‖+ 2r−)1(|Xt | ≤ M)dt

≤ −2r−
∫ T1∧τ

0
1dt + (2M‖b‖+ 2r−)

∫ T1∧τ

0
1(|Xt | ≤ M)dt .
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Proof of lemma 2, ctd

Thus, always for |x | > M1,

Ex ,z

∫ T1∧τ

0
2Xtb−(Xt )dt ≤ −2r−Ex ,z

∫ T1∧τ

0
1dt

+(2M‖b‖+ 2r−)Ex ,z

∫ T1∧τ

0
1(|Xt | ≤ M)dt

= (2M‖b‖+ 2r−)Ex ,z

∫ T1∧τ

0
1(|Xt | ≤ M)dt

−2r−E
∫ T1∧τ

0
1dt ≤ −2r−E

∫ T1∧τ

0
1dt

+(2M‖b‖+ 2r−)Ex ,z

∫ T1

0
1(|Xt | ≤ M)dt

≤ −2r−E
∫ T1∧τ

0
1dt + (2M‖b‖+ 2r−)δ.
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(Repeat the latter inequality)
Ex,z

∫ T1∧τ
0 2Xtb−(Xt)dt≤−2r−E

∫ T1∧τ
0 1dt+(2M‖b‖+2r−)δ

For our fixed ε > 0 let us choose δ = λ̄−1
0 ε/(2M‖b‖+ 2r−).

Then, since |x | > M1 implies T1 ∧ τ = T1 on (Z0 = 0), and
since

λ̄−1
0 ≤ Ex ,0T1 ≤ λ−1

0 , (11)

we get with z = 0

Ex ,zX 2
T1∧τ − x2 ≤ −(2r− − d)Ex ,z

∫ T1

0
dt + λ

−1
0 ε

= −(2r− − d)Ex ,zT1 + λ
−1
0 ε

!
≤ −λ−1

0 ((2r− − d)− ε).

Substituting here x by XT2k and writing Ex ,z(·|FT2k ) instead
of Ex ,z(·), and multiplying by 1(τ > T2k ), we obtain the first
two bounds of the lemma 2, as required. The other two
bounds of the lemma can be established similarly. QED
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The double bound (11) explained

Note that the bound (11) itself follows straightforwardly from

Ex ,0T1 =

∫ ∞
0

Px ,0(T1 ≥ t)dt =

∫ ∞
0

Ex ,0Px ,0(T1 ≥ t |FX 0

t )dt

= Ex ,0

∫ ∞
0

exp(−
∫ t

0
λ0(X 0

s )ds)dt ≤
∫ ∞

0
exp(−

∫ t

0
λ0ds)dt

=

∫ ∞
0

exp(−tλ0)dt = λ−1
0 ,

and similarly

Ex ,0T1 =

∫ ∞
0

Ex ,0 exp(−
∫ t

0
λ0(X 0

s )ds)dt

≥
∫ ∞

0
exp(−

∫ t

0
λ0ds)dt =

∫ ∞
0

exp(−tλ0)dt = λ
−1
0 .
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Proof of lemma 4

Both corollaries follow from the corresponding lemmata just
by taking expectations.

Proof of lemma 4
On the set τ > T2k+1 we have,

EXT2k+1
,1(T2k+2 ∧ τ − T2k+1 ∧ τ)

= EXT2k+1
,1(T2k+2 − T2k+1) ∈ [λ̄−1

1 , λ−1
1 ].

Similarly, on the set τ > T2k

EXT2k
,0(T2k+1 ∧ τ − T2k ∧ τ)

= EXT2k
,0(T2k+1 − T2k ) ∈ [λ̄−1

0 , λ−1
0 ].

Lemma 4 follows. QED
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Proof of theorem (now the real start)
Consider the case Z0 = 0 where T0 = 0. We have, since Tn ↑ ∞ a.s.

τ ∧ Tn = T0 +
n−1∑
m=0

((Tm+1 ∧ τ)− (Tm ∧ τ))

and

Ex ,z(τ ∧ Tn) = Ex ,zT0 + Ex ,z

n−1∑
m=0

((Tm+1 ∧ τ)− (Tm ∧ τ)),

As Tn ↑ ∞, we get by the monotone convergence theorem

Ex ,zτ = Ex ,zT0 +
∞∑

m=0

Ex ,z((Tm+1 ∧ τ)− (Tm ∧ τ))

= Ex ,zT0 +
∞∑

k=0

Ex ,z((T2k+1 ∧ τ)− (T2k ∧ τ)) (12)

+
∞∑

k=0

Ex ,z((T2k+2 ∧ τ)− (T2k+1 ∧ τ)).

??? Using (??) and (??), we obtain

Ex ,z(T2k+1 ∧ τ − T2k ∧ τ) ≤ ((2r− − d)− ε)−1
(
Ex ,zX 2

T2k+1∧τ − Ex ,zX 2
T2k∧τ

)
.
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According to the corollary 1,

Ex ,0X 2
T2k+1∧τ − Ex ,0X 2

T2k∧τ

≤ −((2r− − d)− ε)Ex ,0(T2k+1 ∧ τ − T2k ∧ τ),

and due to the corollary 2,

Ex ,0X 2
T2k+2∧τ − Ex ,0X 2

T2k+1∧τ

≤ ((2r+ + 1) + ε)Ex ,01(τ > T2k+1)(T2k+2 ∧ τ − T2k+1 ∧ τ)

So, summing up from zero to m, we estimate (on the next
slide)
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Ex ,0X 2
T2m+2∧τ − x2

≤ ((2r+ + d) + ε)
m∑

k=0

Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

−((2r− − d)− ε)
m∑

k=0

Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)

=
m∑

k=0

(
−((2r− − d)− ε)Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)

+((2r+ + d) + ε)Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)
)
.
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Ex ,0X 2
T2m+2∧τ − x2

≤
m∑

k=0

(
−((2r− − d)− ε)Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)

+((2r+ + d) + ε)Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)
)
,

or, changing the lhs and rhs and dropping −Ex ,0X 2
T2m+2∧τ ,

x2 ≥ ((2r− − d)− ε)
m∑

k=0

(Ex ,0(T2k+1 ∧ τ − T2k ∧ τ) (13)

−((2r+ + d) + ε)
m∑

k=0

Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ).
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Ctd
Now we show that the term +

∑
here dominates the negative term −

∑
1(τ >T2k+1)≤1(τ >T2k ) =⇒ Px ,0(τ >T2k+1)≤Px ,0(τ >T2k );

λ0Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)− λ1Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

= λ0Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)1(τ ≥ T2k )

−λ1Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)1(τ ≥ T2k+1)

= λ0Ex ,01(τ > T2k )EXT2k
(T2k+1 ∧ τ − T2k ∧ τ)

−λ1Ex ,01(τ > T2k+1)EXT2k+1
(T2k+2 ∧ τ − T2k+1 ∧ τ)

≥ λ0Ex ,01(τ > T2k )λ
−1
0 − λ1Ex ,01(τ > T2k+1)λ−1

1 ≥ 0
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Recall (8): λ0(2r+ + d + ε) = qλ1(2r− − d − ε)
with q < 1

Therefore, we estimate

((2r+ + d) + ε)
m∑

k=0

Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

≤ ((2r+ + d) + ε)
λ0

λ1

m∑
k=0

Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)

= q((2r− − d)− ε)
m∑

k=0

Ex ,0(T2k+1 ∧ τ − T2k ∧ τ).

By Corollary 3

Ex ,z(T2k+2∧τ−T2k+1∧τ)≤
λ̄0
λ1

Ex ,z(T2k+1∧τ−T2k∧τ) (14)
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Return to (13):
x2 ≥ ((2r− − d)− ε)

∑m
k=0(Ex,0(T2k+1 ∧ τ − T2k ∧ τ)

−((2r+ + d) + ε)
∑m

k=0 Ex,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

Due to (8) [λ0(2r+ + d + ε) = qλ1(2r− − d − ε) with q < 1]
we estimate the absolute value of the negative term in (13)
from above:

((2r+ + d) + ε)
m∑

k=0

Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

(14)

≤ ((2r+ + d) + ε)
λ0

λ1

m∑
k=0

Ex ,0(T2k+1 ∧ τ − T2k ∧ τ) (15)

(8)
= q((2r− − d)− ε)

m∑
k=0

Ex ,0(T2k+1 ∧ τ − T2k ∧ τ).
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So, due to the balance condition
(recall (8): λ0(2r+ + d + ε) = qλ1(2r− − d − ε))

x2
(13)

≥ ((2r− − d)− ε)
m∑

k=0

(Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)

−((2r+ + d) + ε)
m∑

k=0

Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ)

(15)

≥ (1− q)((2r− − d)− ε)
m∑

k=0

(Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)

(8)

≥ 1− q
2

((2r− − d)− ε)
m∑

k=0

(Ex ,0(T2k+1 ∧ τ − T2k ∧ τ)

+
1− q

2q
((2r+ + d) + ε)

m∑
k=0

Ex ,0(T2k+2 ∧ τ − T2k+1 ∧ τ).

Denoting

c := min

(
1− q

2q
((2r+ + d) + ε),

1− q
2

((2r− − d)− ε)
)

, we

conclude that

x2 ≥ c
2m∑

k=0

Ex ,0(Tk+1 ∧ τ − Tk ∧ τ).
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Recall (12): Ex,zτ = Ex,zT0 +
∑∞

m=0 Ex,z((Tm+1 ∧ τ)− (Tm ∧ τ))

Denoting c :=min
(

1−q
2q ((2r++d)+ε), 1−q

2 ((2r−−d)−ε)
)

, we
conclude that

x2 ≥ c
2m∑

k=0

Ex ,0(Tk+1 ∧ τ − Tk ∧ τ).

So, as m ↑ ∞, we get

∞∑
k=0

Ex ,0(Tk+1 ∧ τ − Tk ∧ τ) ≤ c−1x2.

Due to (12) (with Ex ,0T0 = 0), this implies that

Ex ,0τ ≤ c−1x2, (16)

as required. For z = 1 the proof is likewise, cf. (12). QED
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Further research

The next step would be to allow a multiplicative Wiener
process in the SDequation:

dXt = b(Xt ,Zt )dt + σ(Xt ,Zt )dWt ,

with similar intensities for the jumps of the component Z ,

λz(x), z = 1,2.

There should be no big new difficulties, at least, for
uniformly nondegenerate bounded σσ∗; however, it should
be carefully written to make sure.
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80 & 75

Again congratulations to Stanislav Molchanov
and Valenetin Konakov
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