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Based on joint work with Mark Freidlin
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Concept for reference: Small perturbations of dynamical
systems with multiple invariant sets (Freidlin-Wentzell theory).

3/24



Freidlin-Wentzell Theory

The process is governed by
aX;® = v(X*%)dt + edW, Xg’s = X.

For times t = f(¢) such that 1 < t(¢) <« e"/<* for each A > 0,
Xt’zf) is very close to the “nearest" stable attractor. It takes
exponential, in €2, time to go from one attractor to another.

The order of transitions and the transsition times are
determined by constants Vj; (values of the quasi-potential).
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Quasi-potential and the action functional

Vj = inf(S(s) : #(0) € ;. o(T) € )
where ;T
S(e) = 5 [ 116(0) =~ vie(t)l e

(“difficulty" of following the curve ¢ for time T).

For example, if x is close to S;, it takes time of order
exp(min;(Vj)/£2) for X;° to go to the “next" attractor. The
process of transitions between the attractors resembles a
Markov process with very small (s-dependent) transition rates.
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Metastability

Generically, there exist 0 = Ag < A1 < ... < Ap = oo such that
for almost every x and each time scale t(¢) satisfying

Me/e? < In(t(e)) < Aky1/e?,

X;Ef) is found in the vicinity of S; with i determined by k and x.

S; is the metastable state of the process starting at x at the
time scale f(¢).
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Random perturbations of degenerate diffusions

Degenerate process:

d
aXY = vo(XX)dt + > vi(XF)odW, X§=xeR,
i=1
The Stratonovich form is convenient here since it allows one to

provide a coordinate-independent description of the process.
The generator:

d
1
Lu=Lo+5) L,
i=1
where L; is the operator of differentiation along v;.
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We assume that Sy, ..., Sy,  RY are smooth non-intersecting
surfaces (or curves), the process is non-degenerate outside the
surfaces, each of the surfaces is invariant for the process, and
the diffusion restricted to a single surface is an ergodic process.

Vo 2, :/ < V4
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Perturbed (non-degenerate) process:

d
aX{*® = (Vo + 20) (XYt + > vi(X[%) o Wi+
i=1

d
+e Y WX o d W, X =x.
i=1

non-degeneracy: span(¥;(x), ..., Vg(x)) = R for each x.

Generator: L& = L + 2L, with

l\l

||

l\x
I\J\

where L, is differentiation along ;.
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Goal: Understand the behavior of X;Ef) at different time scales
t(e).

Now, the characteristic time scales are not going to be
exponential in £2. Instead, we’ll have

h(e) < t(e) € ... < ty(e)

with iy =1, ty = |In(¢)], b, ..., t,_1 -powers of ¢, t, = oo, such
that Xt’Ef) has a limit, provided that
t(e) < te) < ty1(e).

The limiting distribution will not necessarily be supported on
one of the surfaces ...
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Setup suitable for PDE results

Let D be bounded domain with 90D = Sy |J Sz ... | Sm- Here,
the surfaces are (d — 1) — dimensional. The process X, is
considered on D, reflected on the boundary.

SJ\ g"

Sy
’D .

S
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First initial-boundary value problem:

OUs(t, x)
ot
u°(0,x) =g(x), xe D; u(t,x)=1(x), t>0,x €D,

= L°u(t,x), t>0,xeD;

g € C(D), ¢ € C(aD).

Second initial-boundary value problem:

mla(;’x) = L°u°(t,x), t>0,xeD;
u°(0,x) =9g(x), x € D, 85’/758())() =0, t>0,xe€dD,

where n°(x) is the co-normal to 9D at x.
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Theorem: For each of the problems, there is a finite sequence
of characteristic time scales fp(c) < ti(¢) < ... < ty(e) such
that

limu®(t(e), x) = ¢

lim (t(e), x) = cx
uniformly on any compact subset of D, provided that
() < t(e) < tr1(g). The constants ¢k are determined by
integrating the initial and/or boundary data with respect to the
measures 7y, ..., Tm, 1, ---, Vm, f. 1hese measures need to be
explained.
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The “special" measures

w1, ..., Tm - just the invariant measures for the unperturbed
process restricted to Sy,...,Spm.

Each v is defined as the limit of the exit measures. That is, we
consider the process X, conditioned on reaching 9D at S.
Theorem: The measures induced by such process, stopped at
Sk, converge, as ¢ | 0, for each x € D, to the same measure,
which will be called v.

u is the invariant measure for the unperturbed process in D.

Such a measure exists if all the boundary components are
repelling (to be discussed next).
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Near-boundary behavior

Simple 1-d example: Consider the process on [0, co):
aX{ = pX{dt + V2aX{dW;, X§=x>0, (a>0)

Generator:
Lu = ax?u” + Bxu'.

We have the attracting and repelling cases:

lim X =0 with positive probability if « > £,
t—oco

lim XX £ 0 with probability one if a < 3.
t—o0
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Near-boundary behavior, classifying boundary
components

Fix S = Sk. Use (y, z)- local coordinates; y - along S, z - in the
orthogonal direction. The generator of the process Xt’“E in(y,2)
coordinates can be written as:

o%u ou o
2T zB(y ) + Dya + Ru+ e“Lu.
Ly - restriction of L to S;

D, differential operator with first-order derivatives in y;

B and « are the leading terms for the drift and diffusion
coefficients in the direction normal to the boundary;

R - perturbation that contains higher-order terms in z, and can
be viewed as a perturbation when z is small.

Define

Lfu = Lyu+ Z2a(y)

& = / a(y)dn(y), B= / B(y)dn(y)
S S

where 7 is the invariant measure on S. 16/24



G- / a(y)dr(y), f= / B(y)dn(y),
S S

Attracting surface: a > /3
Repelling surface: a <

However, understanding further properties of the process near
the boundary requires more delicate analysis.
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Time to approach the a boundary component or to
leave its neighborhood

Lemma. If @ > 3 (& < /), then there existy > 0 (y < 0) and a
positive-valued function ¢ € C'(S) satisfying | gwdm =1 such
that

Lyp +ay(y = 1)+ By +9Dyp = 0.

Such v are ¢ are determined uniquely.

This lemma associates one number, -, to each component of
the boundary. For example, the time it takes the process th,e,
starting at x € S, to leave a »-wide neighborhood of S scales
as (»/e)" if e and s are small, ¢ < s, and the boundary is
attracting.
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We used:

ou

d%u
Lfu~ Lyu+ Z2a(y) -5 + 2B(y ) + Dyaz.

922
This works for e < z < 1. For z ~ ¢, we need (y, z/¢)
coordinates. The operator there looks like:

d%u ou ou
92 + zﬂ(y)E + ZD"E'

The exit distribution can be understood from this operator. p(y)
is the coefficient, on the boundary, in the perturbation L at the
diffusion term orthogonal to the boundary.

Lfu~ Lyu+ (Z2a(y) + p(y))
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Understanding meta-stable distributions for X;*.

Need to:

(a) Undestand the times to approach Si and to leave a
neighborhood of Sy - discussed above (based on the spectral
lemma).

(b) Understand the transition probabilities between different Sy
- these are nearly e-independent. (Understood by conditioning
the non-perturbed process not to return to Sk.)

(c) Once we understood the transition probabilities and times,
in which order are Sy visited? (Similar to hierarchy of cycles.)
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Parameter-dependent Markov Renewal Processes

Let x € 9D, let 5y = 0, and, assuming that X%, € Sk, let

opey = inf{t > oy : X° € 0D\ Sk}

Markov renewal process (X5, Ty), n € Z., is defined as:

X,e X, X,E X,e X,e
Xy :Xfer;’E’ T =op —0,°y, n>1.

The corresponing semi-Markov process on Sy ... Sy is just

X, yX,E X,E X,€
X" = Xaﬁg forop” <t< 0,0, N> 0.
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Abstract Formulation

Let (X, T)y°) be a Markov renewal process on the state space
M=S5U..USn

Now, Sq, ..., Sm need not be smooth surfaces, but are just
disjoint measurable sets in a metric space M.

Q¢ (x, Sk) - transition probability from x € M to Sx. We assume
that Q°(x, Sk) = 0 for x € Sk.

TX <, conditioned on X} € Sy, is assummed to be the same as

that of a random variable 5,)("5 (there is no dependence on n
since the process is assumed to be time-homogeneous).
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Assumptions on the Markov Renewal Process

(a) There are quantities gji(<) and (<) such that

¢ (x, S; B¢ o
lim @ 35) =1, lim—— =1, uniformlyinx € S;, i #J,
10 gj(e) =0 Tj(€)

provided that Q°(x, §;) is not identically zero.

(b) 5;“5/7,-,-(5) are uniformly integrable in x € S;, € > 0 and that
P(&°/7j(e) < €) — 0 as ¢ | 0, uniformly in x € S, ¢ > 0.

(c) Complete Asymptotic Regularity.

i 920 () Gasby(€)  Qan(e) Tab(e)
|m . .. .

el0 Qo0 (€)  Goa0(€) Qe (€)  Ted(e)
exist for every r € N and every a, a;, b, b;, ¢, ¢;, ¢, d; with a; # b;,
Ci # dj, a# b, and ¢ # d, for which the ratios appearing in the
limits are defined.

€ [0, o0]
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We are interested in the behavior of the semi-Markov process

X, X, X, X X
Xy, where X% = X5~ for To® + . Tp® <t <Tp" + .. To0.

Under the above assumptions, there is a finite sequence of
characteristic time scales f(c) < () < ... < ty(e ) with o = 1
and t, = oo, such that the limiting dlstrlbutlon of X( ) can be
identified, as long as

ti(e) < t(e) < tivq(e)

for some J.
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