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Viability property

Let X be a set.
Dynamic system: X 3 x0 ( Φt(x0) ⊂ X satisfying

Φs ◦ Φr = Φs+r .

A function [0,T ] 3 t 7→ x(t) ∈ X is a motion if x(t) ∈ Φt(x(0)).

A set K ⊂ X is called viable if, for any x0 ∈ K , there exists a
motion x(t), t ∈ [0,T ] such that

x(t) ∈ K , x(0) = x0.



Viability theory

Viability theory characterizes the viability property in the terms of
nonsmooth analysis.

The viability theory provides
I sustainability conditions in the different areas of science;
I forms of dynamical systems with the desired properties;
I link between control theory and PDEs;



Nonsmooth analysis

Objects:
I directional derivatives;
I sub- and superdifferentials;
I tangent cone;
I normal cone.

Nonsmooth analysis is used in
I optimization;
I control theory;
I theory of PDEs;



Viability in Rd

ẋ(t) = f (x(t), u(t)), u(t) ∈ U.

Here u is a control parameter. U is a metric compact.
Choice of u:

I u is constant;
I u(t) is a measurable function;
I relaxed control: ξ(t, du).



Example

{
ẋ1 = cos u
ẋ2 = sin u

, u ∈ [0, π].

Is it possible to stay at x1 = x2 = 0, i.e. to minimize
∫ T
0 ‖x(t)‖2dt

using only measurable controls?

ẋ1

ẋ2



Example

{
ẋ1 = cos u
ẋ2 = sin u

, u ∈ [0, π].

Is it possible to stay at x1 = x2 = 0 using measurable controls?
No, but the control

uε(t) =

{
0, t ∈ [2kε, (2k + 1)ε)
π, t ∈ [2(k + 1)ε, 2(k + 1)ε)

provides that the corresponding motion is

‖x1(t)‖ ≤ ε, ‖x2(t)‖ = 0.



Relaxed controls

A weakly measurable function [0,T ] 3 t 7→ ξ(t, du) ∈ P(U) is
called a relaxed control.

If x0 ∈ Rd , then the corresponding motion is a solution of

ẋ(t) =

∫
U
f (x(t), u)ξ(t, du), x(0) = x0.

Any relaxed control can be approximate by the measurable controls.



Example. Relaxed controls

If we put

u(t) ,
1
2
δ0 +

1
2
δπ,

then the corresponding motion is

x1(t) = x2(t) ≡ 0.

ẋ1

ẋ2



Differential inclusion

Since{∫
U
f (x , u)ξ(du) : ξ ∈ P(U)

}
= co{f (x , u) : u ∈ U} =: F (x),

we can replace the control system with the differential inclusion

ẋ ∈ F (x).



Viability in Rd

A set K is called viable under the differential inclusion ẋ ∈ F (x) if,
for any x0 ∈ K , there exists a x(·) such that

I x(0) = x0;
I ẋ(t) ∈ F (x(t)), t ∈ [0,T ];
I x(t) ∈ K , t ∈ [0,T ].



Viability theorem

Tangent cone:

TK (x) ,

{
v ∈ Rd : lim

τ↓0

1
τ

dist(x + τv ,K ) = 0
}
.

Theorem (Nagumo)
The closed set K ⊂ Rd is viable if and only if

TK (x) ∩ F (x) 6= ∅, x ∈ K .



Mean field type control problem

d

dt
m(t) = 〈f (·,m(t), u(t, ·)),∇〉m(t),

or (equivalently)

∂tm(t) + div(f (x ,m(t), u(t, x))m(t)) = 0.

Here m(t) is a probability on the phase space.



Space of probability measures

I (X , ρX ) is a metric space.
I B(X ) is a Borel σ-algebra on X .
I P(X ) stands for the set of probability measures.
I Pp(X ) is the set of probabilities m ∈ P(X ) such that, for

some x0 ∈ X ,
∫
X (ρX (x , x0))pm(dx) <∞.

I p-th Kantorovich (Wasserstein) distance between
m′,m′′ ∈ Pp(X ):

Wp(m′,m′′) ,
[

inf
π∈Π(m′,m′′)

∫
X×X

ρpX (x ′, x ′′)π(d(x ′, x ′′))
]1/p

.

Here Π(m′,m′′) denotes the set of probabilities on X × X with
marginals equal to m′ and m′′ respectively.



Control of each agent

The mean field type control system corresponds to the control
system of similar agents with the dynamics

ẋ(t) = f (x(t),m(t), u).



Notation and assumptions

I phase space: Td , Rd/Zd ;
I curves on [s, r ]: x(·) ∈ C ([s, r ];Td);
I if x(·) ∈ C ([s, r ];Td), then

et(x(·)) , x(t);

I pi (x1, x2) = xi ;
I f is Lipschitz in Td × Pp(Td).



Mean field type differential inclusion

d

dt
m(t) ∈ 〈F (x(t),m(t)),∇〉m(t),

where F (x ,m) , co{f (x ,m, u) : u ∈ U}.



Solutions of MFDI

We say that [0, t] 3 t 7→ m(t) ∈ Pp(Td) solves MFDI if there
exists a probability χ ∈ Pp(C ([0,T ];Td)) such that

I χ-a.e. x(·) satisfy ẋ(t) ∈ F (x(t),m(t));
I m(t) = et]χ.



Equivalent condition

Theorem (Marigonda, Quincampoix)
The flow of probabilities m(t) solves MFDI iff there exists a
function v(t, x) such that

I v(t, x) ∈ F (x ,m(t)) m(t)-a.s.;
I ∂tm(t) + div(v(t, x)m(t)) = 0 in the sense of distributions.



Viability in the Wasserstein space

We say that K ⊂ Pp(Td) is viable under MFDI if, given m0 ∈ K ,
there exists m(t), t ∈ [0,T ] such that

I m(0) = m0;
I m(t) solves MFDI;
I m(t) ∈ K , t ∈ [0,T ].



Distributions on tangent bundle

Let m ∈ Pp(Td).
I A probability β ∈ Pp(Td × Rd) such that p1 ]β = m is a

tangent distribution to m;
I if a > 0, then

La(m) , {β ∈ Pp(Td × Ba) : p1 ]β = m};

I Θτ (x , v) , x + τv ;
I Θτ ]β is a shift of m along β.



Tangent cone in Pp(Td)

Let K ⊂ Pp(Td).
We say that β ∈ La(m) is a tangent distributions to K at
m ∈ Pp(Td) with the radius a, if there exist sequences
{τn}∞n=1 ⊂ (0,+∞), {βn}∞n=1 ⊂ La(m) such that

1
τn

dist(Θτn]βn,K )→ 0, Wp(βn, β)→ 0, τn → 0 as n→∞.

Denote the set of tangent distributions of the radius a to K at m
by T a

K (m).



Nagumo type viability theorem

Theorem (A.)
The closed set K ⊂ Pp(Td) is viable under MFDI if and only if
there exists a > 0 such that

T a
K (m) ∩ F(m) 6= ∅, m ∈ K .

Here

F(m) , {β ∈ Pp(Td × Rd) : p1 ]β = m, supp(β) ⊂ gr(F (·,m)}.

Proof is by compactness arguments.



Feedback control

Aim: design the way providing viability or approximate viability.



Feedback control in Rd

ẋ = f (x , u(x)).

I any function u : Rd → U is called a feedback strategy;
I if ∆ = {ti}ni=0, then x [t, x0, u,∆] = x(t) is step-by-step

motion satisfying

ẋ(t) = f (x(t), u[x(ti )]), t ∈ [ti , ti+1], x(0) = x0.



Extremal shift

Let K ⊂ Rd .

I if x ∈ K , then put û[x ] an arbitrary control;
I if x /∈ K , then pick y to be a nearest to x point of K ;

〈x − y , f (x , û[x ])〉 = min
u∈U
〈x − y , f (x , u)〉.



Normal cones

I Proximal normal cone:
NP
K (x) , {w ∈ Rd : dist(x + tw ,K ) = t‖w‖};

I Normal cone:
NK (x) = T ∗K (x) = {w ∈ Rd : 〈w , v〉 ≤ 0 ∀v ∈ TK (x)};

I

NK (x) = co Limy→x :y∈K NP
K (y).



Clarke-Ledyaev viability theorem

Let
H(x ,w) , min

u∈U
〈w , f (x , u)〉.

Theorem (Clarke, Ledyaev)
Assume that

H(x ,w) ≤ 0 for every x ∈ K , w ∈ NP
K (x).

Then, for any x0 ∈ K

lim
δ↓0

sup{dist(x [t, x0, û,∆],K ) : t ∈ [0,T ],

∆ is a partition of [0,T ], d(∆) ≤ δ} = 0.



Clarke-Ledyaev viability theorem

The set K is viable if and only if H(x ,w) ≤ 0 for every
x ∈ K , w ∈ NP

K (x).



Feedback control in P2(Td)

d

dt
m(t) = 〈f (·,m(t), u(·,m(t))),∇〉m(t).

Feedback strategy: u[m] is a probability on P2(Td × U) such that
p1 ]u[m] = m.



Motion produced by feedback strategy

Given [s, r ] 3 t 7→ m(t) ∈ P2(Td), let trajs,rm(·) assign to
(y , u) ∈ Td × U the solution of the initial value problem

ẋ(t) = f (x(t),m(t), u), x(s) = y .



Motion produced by feedback strategy

Let m0 ∈ P2(Td), ∆ = {ti}ni=0, we say that m(t) = m[t,m0, u,∆]
is a step-by-step motion if there exist χ0, . . . , χn−1 such that

I m(0) = m0;
I χi ∈ P2(C ([ti , ti+1];Td));
I m(t) = et]χi , t ∈ [ti , ti+1], i = 0, . . . , n − 1;
I χi = traj

ti ,ti+1
m(·) ]u[m(ti )].



Extremal shift in P2(Td)

I If x , y ∈ Td , then `(x , y) is a vector w ∈ x − y of the minimal
norm;

I If, additionally, m ∈ P2(Td), then let û(x , y ,m) minimize

〈`(x , y), f (x ,m, u)〉.

I Let ν ∈ P2(Td), be a nearest to m element of K ;
I π optimal plan between m and ν.

û[m] , (p1, û(·, ·,m))]π.



Proximal normals in P2(Td)

Let
I K ⊂ P2(Td),
I m ∈ K ,
I µ ∈ P2(Td) be such that dist(µ,K ) = W2(µ,m);
I π be a optimal plan between µ and m.

Then,
γ , (p2, `)]π

is called a proximal normal.

The set of proximal normals is denoted by NP
K (m).



Clarke-Ledyaev type viability theorem

Let m ∈ P2(Td), γ ∈ P2(Td × Rd), p1 ]γ = m. Put

H(m, γ) ,
∫
Td×Rd

min
u∈U
〈w , f (x ,m, u)〉γ(d(x ,w)).

Theorem (A., Marigonda, Quincampoix)
Assume that H(m, γ) ≤ 0, for any m ∈ K , γ ∈ NP

K (m). Then,
m0 ∈ K

lim
δ↓0

sup{dist(m[t,m0, û,∆],K ) : t ∈ [0,T ],

∆ is a partition of [0,T ], d(∆) ≤ δ} = 0.



Clarke-Ledyaev type viability theorem

The set K is viable under MFDI if and only if H(m, γ) ≤ 0, for any
m ∈ K , γ ∈ NP

K (m).



Example

Let G ⊂ Td be closed; K , P2(G ).

Property. K is viable under MFDI if and only if

min
u∈U
〈w , f (x ,m, u)〉 ≤ 0

for every x ∈ G , w ∈ NP
K (x).



Conclusion

I We define tangent and proximal normal sets to a set in the
space of probabilities.

I The definitions are reasonable due to the viability theorems.
I Future works include normal set and the relation between

normal, proximal normal and tangent elements.



Thank you for your attention!


