On the value of a non-Markovian Dynkin games with partial and asymmetric information

Jan Palczewski

Joint work with Tiziano De Angelis and Nikita Merkulov

University of Leeds

Moscow, 22 October 2020

Jan Palczewski On the value of a non-Markovian Dynkin games with partial and asymmetric information 1 / 23

Outline

- Motivation
- Pandomised stopping times
- Oynkin games with asymmetric information
- Main result
- Sketch of the proof

Optimal stopping problem

Optimal stopping

$$x\mapsto \sup_{\sigma\leq T}\mathbb{E}_{x}[g(X_{\sigma})]$$

Horizon: T > 0Probability space: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$ Markov process: $(X_t)_{t \in [0, T]}$ Control: σ - an \mathcal{F}_t -stopping time

Optimal stopping problem

Optimal stopping

$$x\mapsto \sup_{\sigma\leq T}\mathbb{E}_{x}[g(X_{\sigma})]$$

Horizon: T > 0Probability space: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$ Markov process: $(X_t)_{t \in [0, T]}$ Control: σ - an \mathcal{F}_t -stopping time

Introduce an opponent:

Dynkin, E.B. (1969) Game variant of a problem of optimal stopping Soviet Math. Dokl.

3 / 23

Jan Palczewski On the value of a non-Markovian Dynkin games with partial and asymmetric information

Minimiser

chooses stopping time au

Maximiser

chooses stopping time σ

$$N(x,\tau,\sigma) = \mathbb{E}_{x} \Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f(X_{\tau}) + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g(X_{\sigma}) + \mathbf{1}_{\sigma = \tau = T} h(X_{\tau}) \Big]$$

Minimiser

chooses stopping time au

Maximiser

chooses stopping time σ

$$N(x,\tau,\sigma) = \mathbb{E}_{x} \Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f(X_{\tau}) + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g(X_{\sigma}) + \mathbf{1}_{\sigma = \tau = T} h(X_{T}) \Big]$$

Value of the game $V_*(x) = V^*(x)$ $V_*(x) = \sup_{\sigma} \inf_{\tau} N(x, \tau, \sigma)$ $V^*(x) = \inf_{\tau} \sup_{\sigma} N(x, \tau, \sigma)$

Nash equilibrium (τ^*, σ^*) $N(x, \tau, \sigma^*) \ge N(x, \tau^*, \sigma^*) \quad \forall \tau$ $N(x, \tau^*, \sigma) \le N(x, \tau^*, \sigma^*) \quad \forall \sigma$

4 / 23

UNIVERSITY OF LEEDS

$$N(x,\tau,\sigma) = \mathbb{E}_{x} \left[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f(X_{\tau}) + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g(X_{\sigma}) + \mathbf{1}_{\sigma = \tau = T} h(X_{T}) \right]$$

E. Ekström, G. Peskir (2008) Optimal Stopping Games for Markov Processes, SICON

Assumptions:

$$f(x) \geq h(x) \geq g(x)$$

Theorem. If (X_t) is strong Markov and càdlàg, and f, g, h continuous, then the game has a value:

$$\sup_{\sigma} \inf_{\tau} N(x,\tau,\sigma) = \inf_{\tau} \sup_{\sigma} N(x,\tau,\sigma).$$

$$N(x,\tau,\sigma) = \mathbb{E}_{x} \left[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f(X_{\tau}) + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g(X_{\sigma}) + \mathbf{1}_{\sigma = \tau = T} h(X_{T}) \right]$$

E. Ekström, G. Peskir (2008) Optimal Stopping Games for Markov Processes, SICON

Assumptions:

$$f(x) \geq h(x) \geq g(x)$$

Theorem. If (X_t) is strong Markov and càdlàg, and f, g, h continuous, then the game has a value:

$$\sup_{\sigma} \inf_{\tau} N(x,\tau,\sigma) = \inf_{\tau} \sup_{\sigma} N(x,\tau,\sigma).$$

Theorem. If, additionally, (X_t) is quasi left-continous, then there is a Nash equilibrium.

Zero-sum non-Markovian stopping game

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

J.P. Lepeltier, M.A. Maingueneau (1984) *Le Jeu de Dynkin en Theorie Generale Sans L'Hypothese de Mokobodski*, Stochastics

 (f_t) , (g_t) càdlàg bounded processes

$$f_t \geq g_t, \qquad f_{T-} \geq h \geq g_{T-}$$

Theorem. The value exists:

$$\sup_{\sigma} \inf_{\tau} N(\tau, \sigma) = \inf_{\tau} \sup_{\sigma} N(\tau, \sigma).$$

Zero-sum non-Markovian stopping game

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

J.P. Lepeltier, M.A. Maingueneau (1984) *Le Jeu de Dynkin en Theorie Generale Sans L'Hypothese de Mokobodski*, Stochastics

 (f_t) , (g_t) càdlàg bounded processes

$$f_t \geq g_t, \qquad f_{T-} \geq h \geq g_{T-}$$

Theorem. The value exists:

$$\sup_{\sigma} \inf_{\tau} N(\tau, \sigma) = \inf_{\tau} \sup_{\sigma} N(\tau, \sigma).$$

Proof. Snell envelope type approach $+ \varepsilon$ -optimal strategies

Zero-sum non-Markovian stopping game

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

J.P. Lepeltier, M.A. Maingueneau (1984) *Le Jeu de Dynkin en Theorie Generale Sans L'Hypothese de Mokobodski*, Stochastics

 (f_t) , (g_t) càdlàg bounded processes

$$f_t \geq g_t, \qquad f_{T-} \geq h \geq g_{T-}$$

Theorem. The value exists:

$$\sup_{\sigma} \inf_{\tau} N(\tau, \sigma) = \inf_{\tau} \sup_{\sigma} N(\tau, \sigma).$$

Proof. Snell envelope type approach $+ \varepsilon$ -optimal strategies

Touzi, Vieille (2002) Continuous-time Dynkin games with mixed strategies, SICON

Y. Kifer (2000) *Game options*, Finance and Stochastics

Buyer gets a payoff $(S_t - K)^+$ when exercises at tSeller incurs a penalty $(S_t - K)^+ + L$ when recalls at t**Theorem.** Price = value of the game

Y. Kifer (2000) *Game options*, Finance and Stochastics

Buyer gets a payoff $(S_t - K)^+$ when exercises at tSeller incurs a penalty $(S_t - K)^+ + L$ when recalls at t**Theorem.** Price = value of the game

What if players have access to different information, for example, one is an insider?

Partial/asymmetric information

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

- (Ω, F, (F_t)_{t∈[0,T]}, ℙ) filtered probability space satisfying usual conditions
- f, g are (\mathcal{F}_t) -adapted processes; h is an (\mathcal{F}_T) -measurable random variable

Partial/asymmetric information

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$ filtered probability space satisfying usual conditions
- f, g are (F_t)-adapted processes; h is an (F_T)-measurable random variable

Minimiser

Observation $(\mathcal{F}_t^1) \subset (\mathcal{F}_t)$ Chooses (\mathcal{F}_t^1) -stopping time τ

Maximiser

Observation $(\mathcal{F}_t^2) \subset (\mathcal{F}_t)$ Chooses (\mathcal{F}_t^2) -stopping time σ

Does the game has a value

$$\sup_{\sigma} \inf_{\tau} N(\tau, \sigma) = \inf_{\tau} \sup_{\sigma} N(\tau, \sigma)?$$

Partial/asymmetric information

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$ filtered probability space satisfying usual conditions
- f, g are (F_t)-adapted processes; h is an (F_T)-measurable random variable

Minimiser

Observation $(\mathcal{F}_t^1) \subset (\mathcal{F}_t)$ Chooses (\mathcal{F}_t^1) -stopping time τ

Maximiser

Observation $(\mathcal{F}_t^2) \subset (\mathcal{F}_t)$ Chooses (\mathcal{F}_t^2) -stopping time σ

• Does the game has a value

$$\sup_{\sigma} \inf_{\tau} N(\tau, \sigma) = \inf_{\tau} \sup_{\sigma} N(\tau, \sigma)?$$

• It is well known that the value does not exist in general.

8 / 23

UNIVERSITY OF LEEDS

Randomised stopping times

Definition

For $(\mathcal{G}_t) \subset (\mathcal{F}_t)$, a r.v. τ_R is a (\mathcal{G}_t) -randomised stopping time if there are

• $U \sim U(0,1)$ independent from ${\cal F}_{{\cal T}}$, and

• (G_t)-adapted non-decreasing càdlàg (ξ_t) with $\xi_{0-} = 0$ and $\xi_T = 1$ such that

 $\tau_R = \inf\{t \ge 0 : \xi_t > U\}.$

Randomised stopping times

Definition

For $(\mathcal{G}_t) \subset (\mathcal{F}_t)$, a r.v. τ_R is a (\mathcal{G}_t) -randomised stopping time if there are

• $U \sim U(0,1)$ independent from $\mathcal{F}_{\mathcal{T}}$, and

• (G_t)-adapted non-decreasing càdlàg (ξ_t) with $\xi_{0-} = 0$ and $\xi_T = 1$ such that

$$\tau_R = \inf\{t \ge 0 : \xi_t > U\}.$$

Examples.

- pure stopping time au corresponds to $\xi_t = \mathbf{1}_{ au \leq t}$
- stopping with intensity $\lambda(t)$ corresponds to absolutely continuous (ξ_t)
- but also singular processes e.g. given by local times.

Randomised stopping times

Definition

For $(\mathcal{G}_t) \subset (\mathcal{F}_t)$, a r.v. τ_R is a (\mathcal{G}_t) -randomised stopping time if there are

• $U \sim U(0,1)$ independent from $\mathcal{F}_{\mathcal{T}}$, and

• (\mathcal{G}_t)-adapted non-decreasing càdlàg (ξ_t) with $\xi_{0-} = 0$ and $\xi_T = 1$ such that

$$\tau_R = \inf\{t \ge 0 : \xi_t > U\}.$$

Examples.

- pure stopping time au corresponds to $\xi_t = \mathbf{1}_{\tau \leq t}$
- stopping with intensity $\lambda(t)$ corresponds to absolutely continuous (ξ_t)
- but also singular processes e.g. given by local times.

Remark. This definition is equivalent to a more classical definition of mixed strategy when $\tau_R : \Omega \times (0, 1) \rightarrow [0, T]$ is such that

- it is $\mathcal{G}_1\otimes\mathcal{B}(0,1)$ -measurable,
- $\omega \mapsto \tau_R(\omega, u)$ is a (\mathcal{G}_t) -stopping time for each fixed $u \in (0, 1)$.

UNIVERSITY OF LEEDS

Existing literature

Grün (2013) On Dynkin games with infomplete information, SICON

- Markovian setting with a diffusion (X_t)
- finite number of regimes θ selecting payoff functions $f^{\theta}(x)$, $g^{\theta}(x)$ and $h^{\theta}(x)$
- $\bullet\,$ only one player knows $\theta\,$
- existence of value for randomised strategies for both players
- convex and differential techniques adapted from Cardaliaguet (2007) Differential games with asymmetric information SICON

Gensbittel, Grün (2019) Zero-sum stopping games with asymmetric information, Mathematics of Operations Research

- each player observes own stochastic process (finite state space Markov process)
- payoff depends on both processes
- existence of value in randomised strategies
- convex and differential techniques as in the other paper

Existing literature

De Angelis, Ekstrom, Glover (2018) Dynkin games with incomplete and asymmetric information arxiv:1810.07674

- univariate dynamics $dX_t = \mu^{\theta}(X_t)dt + \sigma(X_t)dW_t$
- verification result proved
- explicit solution for GBM and linear payoffs: ξ_t is absolutely continuous wrt local time at some $B \in \mathbb{R}$

Existing literature

De Angelis, Ekstrom, Glover (2018) Dynkin games with incomplete and asymmetric information arxiv:1810.07674

- univariate dynamics $dX_t = \mu^{\theta}(X_t)dt + \sigma(X_t)dW_t$
- verification result proved
- explicit solution for GBM and linear payoffs: ξ_t is absolutely continuous wrt local time at some $B \in \mathbb{R}$

Touzi, Vieille (2002) Continuous-time Dynkin games with mixed strategies, SICON

- distinct from the above approaches
- uses Sion's min-max theorem
- payoffs (f_t) and (g_t) semimartingales with integrable sup-norm

Main theorem

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

Minimiser

Observation $(\mathcal{F}_t^1) \subset (\mathcal{F}_t)$ Chooses $\tau \in \mathcal{T}^R(\mathcal{F}_t^1)$ Maximiser Observation $(\mathcal{F}_t^2) \subset (\mathcal{F}_t)$ Chooses $\sigma \in \mathcal{T}^R(\mathcal{F}_t^2)$

12 / 23

Theorem

Under the assumptions on the next slide, the value exists in randomised strategies, i.e.

$$\inf_{\tau \in \mathcal{T}^{R}(\mathcal{F}^{1}_{t})} \sup_{\sigma \in \mathcal{T}^{R}(\mathcal{F}^{2}_{t})} N(\tau, \sigma) = \sup_{\sigma \in \mathcal{T}^{R}(\mathcal{F}^{2}_{t})} \inf_{\tau \in \mathcal{T}^{R}(\mathcal{F}^{1}_{t})} N(\tau, \sigma).$$

Assumptions

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

- All filtrations satisfy usual conditions
- $\mathbb{E}\left[\sup_{t\in[0,T]}\left(|f_t|+|g_t|\right)\right]<\infty$
- $f_t \ge g_t$ and $f_T \ge h \ge g_T$
- $f_t = f_t^1 + f_t^2$, $g = g_t^1 + g_t^2$, where
 - $(f_t^1), (g_t^1)$ are (\mathcal{F}_t) -adapted regular processes

P.A. Meyer (1978) Convergence faible et compacité des temps d'arrêt, d'après Baxter et Chacón, Sèminaire de probabilités

- $(f_t^2), (g_t^2)$ are (\mathcal{F}_t) -adapted càdlàg piecewise constant processes of integrable variation with no jumps at 0 and T
- either (f_t^2) is non-increasing or (g_t^2) is non-decreasing

Assumptions

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

- All filtrations satisfy usual conditions
- $\mathbb{E}\left[\sup_{t\in[0,T]}\left(|f_t|+|g_t|\right)\right]<\infty$
- $f_t \ge g_t$ and $f_T \ge h \ge g_T$
- $f_t = f_t^1 + f_t^2$, $g = g_t^1 + g_t^2$, where
 - $(f_t^1), (g_t^1)$ are (\mathcal{F}_t) -adapted regular processes

P.A. Meyer (1978) Convergence faible et compacité des temps d'arrêt, d'après Baxter et Chacón, Sèminaire de probabilités

- $(f_t^2), (g_t^2)$ are (\mathcal{F}_t) -adapted càdlàg piecewise constant processes of integrable variation with no jumps at 0 and T
- either (f_t^2) is non-increasing or (g_t^2) is non-decreasing

Our framework encompasses virtually all (known to us) examples of zero-sum Dynkin games (in continuous time) with partial/asymmetric information.

Program

- Reformulate as a game between singular controllers
- Show existence of value when one player uses absolutely continuous controls
- Section 2 Sectio

Reformulation

Lemma

Let $\tau \in \mathcal{T}^{R}(\mathcal{F}^{1}_{t})$, $\sigma \in \mathcal{T}^{R}(\mathcal{F}^{2}_{t})$ with generating processes ξ_{t}, ζ_{t} and independent randomisation devices.

$$\mathbb{E}\left[f_{\tau}\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}}\right] = \mathbb{E}\left[\int_{[0,T)} f_{t}(1-\zeta_{t-})d\xi_{t}\right]$$
$$\mathbb{E}\left[g_{\sigma}\mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}}\right] = \mathbb{E}\left[\int_{[0,T)} g_{t}(1-\xi_{t})d\zeta_{t}\right]$$

Reformulation

Lemma

Let $\tau \in \mathcal{T}^{R}(\mathcal{F}_{t}^{1})$, $\sigma \in \mathcal{T}^{R}(\mathcal{F}_{t}^{2})$ with generating processes ξ_{t}, ζ_{t} and independent randomisation devices.

$$\mathbb{E}\left[f_{\tau}\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}}\right] = \mathbb{E}\left[\int_{[0,T)} f_{t}(1-\zeta_{t-})d\xi_{t}\right]$$
$$\mathbb{E}\left[g_{\sigma}\mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}}\right] = \mathbb{E}\left[\int_{[0,T)} g_{t}(1-\xi_{t})d\zeta_{t}\right]$$

 $N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$

∜

$$N(\xi,\zeta) = \mathbb{E}\left[\int_{[0,T)} f_t(1-\zeta_{t-})d\xi_t + \int_{[0,T)} g_t(1-\xi_t)d\zeta_t + h\Delta\xi_T\Delta\zeta_T\right]$$

15 / 23

UNIVERSITY OF LEEDS

Jan Palczewski On the value of a non-Markovian Dynkin games with partial and asymmetric information

Sion's min-max theorem

Theorem

Let X be a convex subset of a linear topological space and Y a compact convex subset of a linear topological space. Let N be a real-valued function on $X \times Y$ such that

- N(x, ·) is upper semi continuous and quasi-concave on Y for each x ∈ X,
- 𝔅 𝔥(·, 𝒴) is lower semi continuous and quasi-convex on 𝑋 for each 𝗴 ∈ 𝑌,

Then

$$\inf_{x\in X} \sup_{y\in Y} N(x,y) = \sup_{y\in Y} \inf_{x\in X} N(x,y).$$

M. Sion (1958) On general minmax theorems, Pacific J. Math.

H. Komiya (1988) Elementary proof for Sion's minmax theorem, Kodai Math. J.

Sion's min-max theorem

Theorem

Let X be a convex subset of a linear topological space and Y a compact convex subset of a linear topological space. Let N be a real-valued function on $X \times Y$ such that

- N(x, ·) is upper semi continuous and quasi-concave on Y for each x ∈ X,
- 𝔅 𝔥(·, 𝒴) is lower semi continuous and quasi-convex on 𝑋 for each 𝗴 ∈ 𝑌,

Then

$$\inf_{x\in X} \sup_{y\in Y} N(x,y) = \sup_{y\in Y} \inf_{x\in X} N(x,y).$$

M. Sion (1958) On general minmax theorems, Pacific J. Math.

H. Komiya (1988) Elementary proof for Sion's minmax theorem, Kodai Math. J.

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

Jan Palczewski On the value of a non-Markovian Dynkin games with partial and asymmetric information

Value with continuous controls

$$\begin{aligned} \mathcal{A}(\mathcal{G}_t) &:= \{ \rho \ : \ \rho \text{ is } (\mathcal{G}_t) \text{-adapted with } t \mapsto \rho_t(\omega) \text{ càdlàg,} \\ & \text{non-decreasing, } \rho_{0-}(\omega) = 0 \text{ and } \rho_{\mathcal{T}}(\omega) = 1 \text{ for all } \omega \in \Omega \}. \end{aligned}$$

 $\mathcal{A}_{ac}(\mathcal{G}_t) := \{ \rho \in \mathcal{A}(\mathcal{G}_t) : t \mapsto \rho_t(\omega) \text{ is absolutely continuous on } [0, T) \}.$

Theorem

Assume (g_t^2) is non-decreasing. Then $\inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_t^1)} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_t^2)} N(\xi, \zeta) = \sup_{\zeta \in \mathcal{A}(\mathcal{F}_t^2)} \inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_t^1)} N(\xi, \zeta).$

Proof

Embed sets $\mathcal{A}_{ac}(\mathcal{F}_t^1)$ and $\mathcal{A}(\mathcal{F}_t^2)$ in $\mathcal{L}^2([0, T] \times \Omega, \mathcal{B}([0, T]) \times \mathcal{F}, \lambda \times \mathbb{P})$

with the weak topology.

Weak compactness of $\mathcal{A}(\mathcal{F}_t^2)$:

- ullet Banach-Alaoglu \Longrightarrow unit ball is weakly compact
- closedness in L^2
- convexity + strong closedness \implies weak closedness

Convexity of $N(\xi, \cdot)$: trivial, see $N(\xi, \zeta) = \mathbb{E}\left[\int_{[0,T)} f_t(1-\zeta_{t-})d\xi_t + \int_{[0,T)} g_t(1-\xi_t)d\zeta_t + h\Delta\xi_T\Delta\zeta_T\right]$

Fix $\xi \in \mathcal{A}_{ac}(\mathcal{F}^1_t)$. We need to prove the upper semicontinuity of

 $\zeta \mapsto N(\xi, \zeta).$

Consider a sequence $(\zeta^n)_{n\geq 1} \subset \mathcal{A}(\mathcal{F}_t^2)$ converging to $\zeta \in \mathcal{A}(\mathcal{F}_t^2)$ strongly in L^2 . We have to show that

 $\limsup_{n\to\infty} N(\xi,\zeta^n) \leq N(\xi,\zeta).$

Then, as level sets are convex, this implies their weak closedness, so upper semicontinuity in the weak topology.

Assume, by contradiction, that $\limsup_{n\to\infty} N(\xi,\zeta^n) > N(\xi,\zeta)$. There is a subsequence (n_k) over which we have $(\mathbb{P} \times \lambda)$ -a.e. convergence of ζ^{n_k} to ζ and $\lim_{k\to\infty} N(\xi,\zeta^{n_k}) > N(\xi,\zeta)$. Denote this subsequence as (ζ^n) .

Since ξ is absolutely continuous on [0, T), by dominated convergence

$$\lim_{n\to\infty}\mathbb{E}\bigg[\int_{[0,T)}f_t(1-\zeta_{t-}^n)d\xi_t\bigg]=\mathbb{E}\bigg[\int_{[0,T)}f_t(1-\zeta_{t-})d\xi_t\bigg].$$

So we have convergence for the first term of

$$N(\xi,\zeta^n) = \mathbb{E}\left[\int_{[0,T)} f_t(1-\zeta_{t-}^n) d\xi_t + \int_{[0,T)} g_t(1-\xi_t) d\zeta_t^n + h\Delta\xi_T\Delta\zeta_T^n\right].$$

$$\begin{split} & \mathbb{E}\bigg[\int_{[0,T)} g_t(1-\xi_t) d\zeta_t^n + h\Delta\xi_T\Delta\zeta_T^n\bigg] \\ &= \mathbb{E}\bigg[\int_{[0,T)} g_t(1-\xi_{t-}) d\zeta_t^n + h\Delta\xi_T\Delta\zeta_T^n\bigg] \\ &= \mathbb{E}\bigg[\int_{[0,T]} g_t(1-\xi_{t-}) d\zeta_t^n + (h-g_T)\Delta\xi_T\Delta\zeta_T^n\bigg], \end{split}$$

Jan Palczewski On the value of a non-Markovian Dynkin games with partial and asymmetric information

$$\begin{split} & \mathbb{E}\bigg[\int_{[0,T)}g_t(1-\xi_t)d\zeta_t^n+h\Delta\xi_T\Delta\zeta_T^n\bigg]\\ &=\mathbb{E}\bigg[\int_{[0,T)}g_t(1-\xi_{t-})d\zeta_t^n+h\Delta\xi_T\Delta\zeta_T^n\bigg]\\ &=\mathbb{E}\bigg[\int_{[0,T]}g_t(1-\xi_{t-})d\zeta_t^n+(h-g_T)\Delta\xi_T\Delta\zeta_T^n\bigg], \end{split}$$

We prove a lot of results of this kind

$$\lim_{n\to\infty}\mathbb{E}\bigg[\int_{[0,T]}g_t(1-\xi_{t-})d\zeta_t^n\bigg]=\mathbb{E}\bigg[\int_{[0,T]}g_t(1-\xi_{t-})d\zeta_t\bigg],$$

 and

$$\limsup_{n\to\infty} \mathbb{E}\big[(h-g_T)\Delta\xi_T\Delta\zeta_T^n\big] \leq \mathbb{E}\big[(h-g_T)\Delta\xi_T\Delta\zeta_T\big].$$

In conclusion

$$\limsup_{n\to\infty} N(\xi,\zeta^n) \leq N(\xi,\zeta),$$

a contradiction.

Jan Palczewski On the value of a non-Markovian Dynkin games with partial and asymmetric information

Theorem Assume (g_t^2) is non-decreasing. Then for any $\xi \in \mathcal{A}(\mathcal{F}_t^1)$ there is a sequence $(\xi^n) \subset \mathcal{A}_{ac}(\mathcal{F}_t^1)$ such that $\limsup_{n \to \infty} N(\xi^n, \zeta) \leq N(\xi, \zeta).$

Proof that the value exists:

$$\inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta) \geq \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta)$$

Theorem Assume (g_t^2) is non-decreasing. Then for any $\xi \in \mathcal{A}(\mathcal{F}_t^1)$ there is a sequence $(\xi^n) \subset \mathcal{A}_{ac}(\mathcal{F}_t^1)$ such that $\limsup_{n \to \infty} N(\xi^n, \zeta) \leq N(\xi, \zeta).$

Proof that the value exists:

$$\inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta) \geq \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta)$$
$$\geq \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} N(\xi, \zeta)$$

Theorem Assume (g_t^2) is non-decreasing. Then for any $\xi \in \mathcal{A}(\mathcal{F}_t^1)$ there is a sequence $(\xi^n) \subset \mathcal{A}_{ac}(\mathcal{F}_t^1)$ such that $\limsup_{n \to \infty} N(\xi^n, \zeta) \leq N(\xi, \zeta).$

Proof that the value exists:

$$\inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta) \geq \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta)$$
$$\geq \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} N(\xi, \zeta)$$
$$\geq \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} N(\xi, \zeta),$$

Theorem

50

Assume (g_t^2) is non-decreasing. Then for any $\xi \in \mathcal{A}(\mathcal{F}_t^1)$ there is a sequence $(\xi^n) \subset \mathcal{A}_{ac}(\mathcal{F}_t^1)$ such that

 $\limsup_{n\to\infty} N(\xi^n,\zeta) \leq N(\xi,\zeta).$

Proof that the value exists:

$$\inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta) \geq \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta)$$
$$\geq \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} N(\xi, \zeta)$$
$$\geq \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} N(\xi, \zeta),$$
$$\inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{1})} N(\xi, \zeta).$$

Theorem Assume (g_t^2) is non-decreasing. Then for any $\xi \in \mathcal{A}(\mathcal{F}_t^1)$ there is a sequence $(\xi^n) \subset \mathcal{A}_{ac}(\mathcal{F}_t^1)$ such that $\limsup_{n \to \infty} N(\xi^n, \zeta) \leq N(\xi, \zeta).$

Proof that the value exists:

$$\inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta) \geq \inf_{\xi \in \mathcal{A}(\mathcal{F}_{t}^{1})} \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} N(\xi, \zeta)$$
$$\geq \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} N(\xi, \zeta)$$
$$\geq \sup_{\zeta \in \mathcal{A}(\mathcal{F}_{t}^{2})} \inf_{\xi \in \mathcal{A}_{ac}(\mathcal{F}_{t}^{1})} N(\xi, \zeta),$$

SO

$$\inf_{\tau\in\mathcal{T}^{R}(\mathcal{F}^{1}_{t})}\sup_{\sigma\in\mathcal{T}^{R}(\mathcal{F}^{2}_{t})}N(\tau,\sigma)=\sup_{\sigma\in\mathcal{T}^{R}(\mathcal{F}^{2}_{t})}\inf_{\tau\in\mathcal{T}^{R}(\mathcal{F}^{1}_{t})}N(\tau,\sigma).$$

Jan Palczewski On the value of a non-Markovian Dynkin games with partial and asymmetric information

Summary

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

- Value of a stopping game with partial/asymmetric information in randomised strategies.
- Value may not exist in pure (non-randomised) stopping times.
- Necessity of assumptions shown with counterexamples.
- Framework encompasses most of such games from the literature.
- The proof goes through a reformulation as a game between singular controllers and application of Sion's theorem.

T. De Angelis, N. Merkulov, J. Palczewski (2020) On the value of non-Markovian Dynkin games with partial and asymmetric information, https://arxiv.org/abs/2007.10643

Summary

$$N(\tau,\sigma) = \mathbb{E}\Big[\mathbf{1}_{\{\tau \leq \sigma\} \cap \{\tau < T\}} f_{\tau} + \mathbf{1}_{\{\sigma < \tau\} \cap \{\sigma < T\}} g_{\sigma} + \mathbf{1}_{\sigma = \tau = T} h\Big]$$

- Value of a stopping game with partial/asymmetric information in randomised strategies.
- Value may not exist in pure (non-randomised) stopping times.
- Necessity of assumptions shown with counterexamples.
- Framework encompasses most of such games from the literature.
- The proof goes through a reformulation as a game between singular controllers and application of Sion's theorem.

T. De Angelis, N. Merkulov, J. Palczewski (2020) On the value of non-Markovian Dynkin games with partial and asymmetric information, https://arxiv.org/abs/2007.10643

Thank you

