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This lecture is based on the project "Spectrum of the hierarchical Schrödinger
type operator acting on a Cantor like set" joint with A. A. Grigor�yan (Biele-
feld University) and S. A. Molchanov (UNC at Charlotte and HSE, Moscow).

1 Introduction

The concept of the hierarchical Laplacian is going back to N. Bogolubov and
his school. This concept has been used by F. J. Dyson in his construction of
the phase transition in 1D ferromagnetic model with long range interaction.

� F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising
ferromagnet, Comm. Math. Phys., 12: 91-107, 1969.

� S. A. Molchanov, Hierarchical random matrices and operators, Appli-
cation to Anderson model, Proc. of 6th Lucacs Symposium (1996),
179-194.

The notion of the hierarchical Laplacian acting on general ultrametric
space X was developed to the high level of generality in the papers:

� A. D. Bendikov, A. A. Grigoryan, Ch. Pittet, and W. Woess, Isotropic
Markov semigroups on ultrametric spaces, Russian Math. Surveys.
69:4, 589-680 (2014).
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� A. D. Bendikov, Heat kernels for isotropic like Markov generators on
ultrametric spaces: a Survey, p-Adic Numbers, Ultrametric Analysis
and Applications, 2018, Vol. 10, No. 1, pp. 1-11

In the case X = Qp, the �eld of p-adic numbers, we would like to mention
closely related works of S. Albeverio, W. Karwowski, V. S. Vladimirov, I. V.
Volovich, E. I. Zelenov, and A. N. Kochubei.

Let us consider (as a simplest example) the Dyson dyadic model. In
this model the hierarchical Laplacian L is realized as a self-adjoint integral
operator acting in L2(0;1).

The hierarchical structure It is de�ned by the family of partitians
f�r : r 2 Zg of the set X = [0;1). Each partitian �r is made of dyadic
intervals I = [(i � 1)2r; i2r). We call r the rank of the partitian �r (resp.
the rank of the dyadic interval I).
Any point x belongs to exactly one interval Ir(x) of rank r, and the whole

set X is union of the increasing family of dyadic intervals Ir(x) as r %1.
The hierarchical distance d(x; y) is de�ned as the Lebesgues measure jIj

of the minimal dyadic interval I which contains both x and y.
One can easily see that for all x; y; z in X;

d(x; y) � maxfd(x; z); d(z; y)g;

that is, d(x; y) is an ultrametric on X:

� The Euclidean metric jx � yj and the introduced ultrametric d(x; y)
de�ne non-equivalent topologies. Indeed, by the very de�nition

d(x; y) � jx� yj; 8x; y 2 X;

but on the other hand

d(1� "; 1) = 2; 8" 2 (0; 1]:

� The couple (X; d) is a complete locally compact non-compact and sep-
arable metric space. In this metric space the set B of all open balls
coincides with the set of all dyadic intervals.

� Each open ball B in (X; d) is a closed compact set, each point a 2 B can
be regarded as its center, any two balls either do not intersect or one
is a subset of another etc. Thus (X; d) is a proper totally disconnected
metric space. In particular, (X; d) is homeomorphic to the Cantor set
with punctured point.
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� The Borel �-algebra generated by the ultrametric balls coincides with
the classical Borel �-algebra generated by the Euclidean metric.

The hierarchical Laplacian Let D be the set of all compactly sup-
ported locally constant functions. Let { 2]0; 1[ be a �xed parameter.
The hierarchical Laplacian L is introduced as sum of (minus) Markov

generators Lr of pure jump processes 1

(Lf)(x) =

+1X
r=�1

(1� {){r

0B@f(x)� 1

jIr(x)j

Z
Ir(x)

fdl

1CA
| {z }

(Lrf)(x)

; 8f 2 D:

As each elementary Laplacian Lr can be written in the form

Lrf(x) =

1Z
0

(f(x)� f(y)) Jr(x; y)dy;

Jr(x; y)dy = (1� �)�r�1| {z }
�r(x)

� 1Ir(x)(y)=jIr(x)jdy| {z }
Ur(x;dy)

the operator L can be represented as a hypersingular integral operator

(Lf)(x) =

Z 1

0

(f(x)� f(y))J(x; y)dy;

J(x; y) =
��1 � 1
1� �=2

� 1

d(x; y)1+�
, � =

2

log2 1={
:

The spectrum of L To each dyadic interval I = [(i � 1)2r; i2r) we
associate the Haar function

XI(x) =

8<:
2�r=2 if x 2 [(i� 1)2r; (i� 1=2)2r)
�2�r=2 if x 2 [(i� 1=2)2r; i2r)
0 if x =2 I

:

1A Markov process is called a pure jump process if, starting from any point x; it has
all sample paths constant except for isolated jumps, and right-continuous.
The basic data which de�nes the process are (i) a function 0 < �(x) < 1, and (ii) a

Markov kernel U(x; dy) satisfying U(x; fxg) = 0. Intuitively a particle starting from x
remains there for an exponentialy distributed time with parameter �(x) at which time it
"jumps" to a new position x0 according to distribution U(x; �) etc.
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The Haar function XI is an eigenfunction of the operator L subject to the
eigenvalue {r;

LXI = {rXI :
It is easy to see that each eigenvalue {r has in�nite multiplicity.
The set fXI : I 2 Bg is a complete orthonormal basis in L2(0;1). In

particular, L is essentially self-adjoint operator having a pure point spectrum

Spec(L) = f{r : r 2 Zg [ f0g:

The heat kernel of L The operator L generates a symmetric Markov
semigroup (e�tL)t>0. The semigroup (e�tL)t>0 admits a continuous heat ker-
nel p(t; x; y) (the fundamental solution of the equation (@t�L)u = v) which
can be estimated as follows

p(t; x; y) � t

[t1=� + d(x; y)]1+�
; � =

2

log2 1={
: 2

The function p(t; x; x) does not depend on x. Setting p(t) := p(t; x; x) we get
via spectral resolution formula

p(t) = t�1=�A( log2 t);

where A(�) is a continuous non-constant �-periodic function. In particular,
in contrary to the classical case (symmetric stable densities), the function
t! p(t) does not vary regularly.

The Taibleson-Vladimirov multiplier It is remarkable that the hi-
erarchical Laplacian L introduced above can be identi�ed with the Taibleson-
Vladimirov multiplier D�; � > 0; acting in L2(Q2); where Q2 is the �eld of
2-adic numbers, dD�f(�) = k�k�2 bf(�):

2The kernel p(t; x; y) is a continuous (and even locally Lipschitz continuous) function
in the introduced d-topology but it is discontinuous function in the Euclidean topology.
This fact follows from the representation

p(t; x; y) = t

Z 1=d�(x;y)

0

e�t�N(�)d�;

where d�(x; y) is the ultrametric which de�nes topology equivalent to d-topology and which
is intrinsically related to L; and N(�) is the so-called spectral distribution function related
to the Laplacian L, see [2]
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In particular, �D� is a symmetric �-stable Lévy generator acting on the
Abelian group Q2 whose heat kernel p�(t; x; y) can be estimated as

p�(t; x; y) �
t

[t1=� + kx� yk2]1+�
:

2 The Schrödinger type operator

Let V be a locally bounded function and V : u! V � u a multiplicator. The
operator H = L+ V with domain D is a densly de�ned symmetric operator
acting in L2(0;1).

Theorem 2.1 The following properties hold true:
1. The operator H is essentially self-adjoint.
2. If V (x) ! +1 as x ! 1, then the self-adjoint operator H has a

compact resolvent. (Thus, its spectrum is discrete).
3. If V (x)! 0 as x!1, then the essential spectrum of H coincides with

the spectrum of L. (Thus, the spectrum of H is pure point and the negative
part of the spectrum consists of isolated eigenvalues of �nite multiplicity).

Remark 2.2 In the case of Schrödinger operator H = �� + V in RD the
statement about essential self-adjointness of H does not hold in such a great
generality. Indeed, in the case of Schrödinger operator

H = � 00 + V �  ;  2 C1c (0;1);

with V (x) = �x
, 
 > 2, there is continuum of self-adjoint extensions of H:
Furthermore, due to S. Kotani the spectrum of the operator H may con-

tain non-trivial absolutely continuous and singular continuous parts.3

3 Splitting lemma

In some cases spectral properties of the operator H = L+ V can be reduced
to the spectral properties of certain operator H = L+V de�ned on a discrete
ultrametric space X , say X = f0; 1; 2; :::g.

3Whether this result holds true in the setting of the hierarchical Laplacian (e.g.
Taibleson-Vladimirov multiplier) is an interesting open at present writing question.
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The association L$ L Consider the family of dyadic partitians f�rg of
the set X :

�0 = f0; 1; 2; :::; n; :::g - single points
�1 = f(0; 1); (2; 3); (4; 5; ); (6; 7); :::g
�2 = f(0; 1; 2; 3); (4; 5; 6; 7); :::g
:::::::::::::::::::::::::::::::

and de�ne in the evident way the hierarchical structure (the ultrametric, the
set of ultrametric balls etc)

De�nition 3.1 Set Ir = f(i � 1)2r; :::; i2r � 1g and let Ir(x) be the unique
ultrametric ball Ir which contains x. The hierarchical Laplacian L associated
with X we de�ne pointwise as follows

(Lf)(x) =
1X
r=1

(1� {){r
0@f(x)� 1

2r

X
y2Ir(x)

f(y)

1A :

The operator L is a bounded symmetric operator having eigenvalues {r;
r = 1; 2; :::: The corresponding eigenfunctions are discrete versions of the
Haar functions XI as de�ned in the continuous case setting.

The association V $ V Consider the potential V =
P1

i=0 �i1[i;i+1) and
de�ne its discrete version V =

P1
i=0 �i�i: Clearly the operator V : f ! V � f

can be written in the form

Vf =
1X
i=0

�i(f; �i)�i:

The association H $ H Along with the operator Hf = Lf + V f let us
consider its discrete counterpart the operator

Hf := Lf + Vf:

To describe the association H $ H we de�ne two subspaces of L2(0;1) :

� L2� = spanfXIr : r � 0g; and

� L2+ = spanf1Ir : r � 0g:

Lemma 3.2 (Splitting Lemma) In the notation from above
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1. L2(0;1) = L2� � L2+:

2. The spaces L2� and L
2
+ reduce the operator H.

3. If I � [i; i+ 1) has rank r then

HXI = ({r + �i)XI :

4. The operator H restricted to L2+ can be identi�ed with the operator H.

4 Rank one perturbations

Let us assume that the homogeneous ultrametric measure space (X; d;m)
is countably in�nite. In this case X can be identi�ed with a countable
Abelian group G (e.g. weak sum of cyclic groups) equipped with the se-
quence fGngn2N of its small subgroups. Each ball in G is a set of the form
g +Gn for some g and n.
Let L be a homogeneous hierarchical Laplacian and

Hf(x) = Lf(x)� �(f; �a)�a(x);

a rank one perturbation of the operator L.
Let us recall the Simon-Wol¤ theorem about pure point spectrum of rank

one perturbation of operators having simple spectrum.

De�nition 4.1 One says that a self-adjoint operator A acting on a Hilbert
space H has a simple spectrum if there exists a vector ' (a cyclic vector)
such that f(A� �)�1' j Im� >0g is a total set for H.

The Simon-Wol¤ criterion Let A be a self-adjoint operator with simple
spectrum on a Hilbert space H, and let ' be a cyclic vector. By the spectral
theorem, H is unitary equivalent to L2(R; �) in such a way that A is the
multiplication by x with cyclic vector ' � 1. Let H� = A � �('; �)' be a
rank one perturbation of the operator A. Set

F (x) :=

Z
(x� y)�2d�(y) = lim

�!0



(A� (x+ i�)I)�1'


2 :

Theorem 4.2 Fix an interval (a; b). The following properties are equivalent:
(i) H� has only pure point spectrum in (a; b) � � a:e:.
(ii) F (x) <1 x� a:e in (a; b).
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In general, H0 := f(A� �I)�1' jIm� >0g is the closed subspace, and its
orthogonal complement (H0)

? is an invariant space for H and H = A on
(H0)

?. Thus, the extension from the cyclic to general case is clear.
The function ' = �a is not a cyclic vector for L because the operator L

has many compactly supported outside of a eigenfunctions.
To show that the spectrum of the operator H� = L � ��a is pure point

for all � we use the Krein type identity

RV (�; x; y) = R(�; x; y) +
�R(�; x; a)R(�; a; y)
1� �R(�; a; a)

where R(�; x; y) = (L� �I)�1�y(x) and RV (�; x; y) = (H� � �I)�1�y(x) are
the resolvent kernels.

Theorem 4.3 Spec(H�) is pure point for all �, it consists of at most one
negative eigenvalue and countably many positive eigenvalues.
If � > 0, then H� has precisely one negative eigenvalue

��� < 0 < ::: < �k+1 < ��k < �k < ::: < �2 < ��1 < �1:

if and only if one of the following two conditions holds

� the Markov semigroup (e�tL)t>0 is recurrent, i.e. R(0; a; a) =1,

� the Markov semigroup (e�tL)t>0 is transient, i.e. R(0; a; a) <1, and

R(0; a; a) > 1=�:

If � < 0, then all eigenvalues of H� are positive

0 < ::: < �k+1 < ��k < �k < ::: < �2 < ��1 < �1 < ��+:

The eigenvalues �k are eigenvalues of the operator L. All �k have in�nite
multiplicity and compactly supported eigenfunctions, the eigenfunctions of the
operator L whose supports do not contain a.
The eigenvalue ��k (resp. �

�
�, �

�
+) is the unique solution of the equation

R(�; a; a) = 1=�

in the interval ]�k+1; �k[ (resp. ]�1; 0[, ]�1;+1[). Each ��k (resp. ���, ��+)
has multiplicity one and non-compactly supported eigenfunction

 k(x) = R(��k ; x; a) (resp: �(x) = R(���; x; a);  +(x) = R(��+; x; a)):
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5 Sparse potentials

We assume that the ultrametric measure space (X; d;m) is countably in�nite.
Analysis of the �nite dimensional perturbations V =

Pn
i=1 �i�ai indicates

that in the case of increasing distances between locations faig of the bumps
Vi = ��i�ai their contributions to the spectrum is close to the union of
the contributions of the individual bumps Vi (each bump contributes one
eigenvalue in each gap ({m+1;{m) of the spectrum of the operator L). The
development of this idea leads to consideration of the class of sparse potentials

V =
1X
i=1

�i�ai

where distances between locations fai : i = 1; 2; :::g form an increasing to
in�nity sequence. In the classical spectral theory this idea goes back to D.
B. Pearson, S. Molchanov, and to A. Kiselev, J. Last, S. and B. Simon.

Notation. Let us set

� I� is the set of limit points of the sequence f�ig:

� 1=I� := f1=�� : �� 2 I�g:

� R�1(1=I�) := f� : R(�; a; a) 2 1=I�g:

Theorem 5.1 Assume that � < �i < � for some �; � > 0 and that

lim
n!1

sup
i�n

X
j�n: j 6=i

1

d(ai; aj)
= 0; (5.1)

then
Specess(H) = Spec(L) [R�1(1=I�). (5.2)

6 Spectral localization

Theorem 5.1 does not contain any information about Specac(H) and Specsc(H),
absolutely continuous and singular continuous parts of Spec(H). Our next
theorem shows that under more restrictive assumption Specac(H) = ? and
Specsc(H) = ?, that is, Spec(H) is pure point. Moreover, the eigenfunc-
tions of H decay at in�nity exponentially in certain ultrametric - this is the
so-called spectral localization property.
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Consider a Schrödinger type operator with random potential

H! = L+ V !; ! 2 (
;F ; P ):

Here L, the deterministic part of H!, is the hierarchical Laplacian and

V ! =
X
a2I

�(a; !)1B(a)

is a random potential de�ned by a family of open balls fB(a) : a 2 Ig and
a family f�(a; !) : a 2 Ig of i.i.d. random variables. As the set of all open
balls is countably in�nite the set I of locations is at most countable.
Henceforth we assume that all B(a), a 2 I, belong to the same horocycle

(have the same diameter). Splitting Lemma reduces then the study of the
set Specess(H!) to the case where the ultrametric measure space (X; d;m) is
countably in�nite and the potential V ! is of the form

V ! =
X
a2I

�(a; !)�a:

When I = X the operator

H! = L+
X
a2X

�(a; !)�a

has a pure point spectrum for P�a.s. ! provided the distribution func-
tion F�(�) satis�es certain regularity conditions. This statement (the spec-
tral localization theorem) appeares �rst in the paper of Molchanov (F�(�) is
the Cauchy distribution) and later in a more general form in two papers of
Kritchevski. The proof essentially uses self-similarity of H!:
Denote by faig the set of locations, set �i(!) := �(ai; !), and assume

that the distribution function F�(x) is absolutely continuous and has a
bounded density supported by a �nite interval I. Assume further that
V ! =

P
i �i(!)�ai is a sparse potential, that is,

lim
n!1

sup
i�n

X
j�n: j 6=i

1

d(ai; aj)
= 0:

The Spectral localization theorem below complements Theorem 5.1 about
structure of the set Spec(H!). The proof of this theorem is based on the ab-
stract form of Simon-Wol¤ theorem for pure point spectrum, the technique of
fractional moments, the decoupling lemma of Molchanov and Borel-Cantelly
type arguments.
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Theorem 6.1 Spec(H!) is pure point a.s. ! (i.e. Specac(H) and Specsc(H)
are empty sets a.s. !) provided

lim
n!1

sup
i�n

X
j�n: j 6=i

1

d(ai; aj)r
= 0 (6.1)

for some small enough r (say, 0 < r < 1=3). Furthermore, we have

Specess(H
!) = Spec(L) [ I1 [ I2 [ : : :

where Ik are intervals f� 2 (�k+1; �k) : R(�; a; a) 2 1=Ig:
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Thank you for your attention!
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