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Introducion

This presentation is based on a published work

(Borzykh, 2018) Borzykh D. On a property of joint terminal distributions of
locally integrable increasing processes and their compensators // Theory of
Stochastic Processes. 2018. Vol. 23. No. 39 (2). P. 7-20).

I would like to thank my supervisor Prof. A. A. Gushchin for setting the
problem and useful advices.
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In this presentation we will give a sketch of the proof of the following
statement.

A joint distribution of a locally integrable increasing process X ◦ and its
compensator A◦ at a terminal moment of time can be realized as a joint
terminal distribution of another locally integrable increasing process X ? and
its compensator A?, A? being continuous.
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Our work is essentially based on A. A. Gushchin's article:

(Gushchin, 2018) A. A. Gushchin, The Joint Law of Terminal Values of a
Nonnegative Submartingale and Its Compensator, Theory of Probability
and Its Applications 62 (2018), no. 2, 216�235.
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In (Gushchin, 2018) a class W of probability measures on the space(
R2

+, B(R2
+)
)
is introduced.

It includes all measures µ satisfying the following conditions:

1)
∫
R2

+
(x + y)µ(dx , dy) <∞,

2)
∫
R2

+
x µ(dx , dy) =

∫
R2

+
y µ(dx , dy),

3) ∀λ ≥ 0 :
∫
{y≤λ} x µ(dx , dy) ≤

∫
R2

+
(y ∧ λ)µ(dx , dy) .

It is shown in (Gushchin, 2018) that the joint distribution of terminal
values of an integrable increasing process and its compensator belongs to
the class W.

Conversely, given µ ∈W there is constructed an increasing integrable
process such that the joint distribution of terminal values of the process
and its compensator is µ and, moreover, the compensator is continuous.
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Thus, if X ◦ = (X ◦t )t∈[0;∞) is an integrable increasing process with a
compensator A◦ = (A◦t )t∈[0;∞), one can de�ne on a certain stochastic
basis another integrable increasing process X ? = (X ?

t )t∈[0;∞) with a
compensator A? = (A?t )t∈[0;∞), such that

Law (X ?
∞, A

?
∞) = Law (X ◦∞, A

◦
∞) . (1)

Moreover, the compensator A? is continuous.

The main goal of the article is to extend the last statement to the locally
integrable case. Namely, we state the following theorem.
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Theorem (Main Theorem: Borzykh, 2018, Theorem 1.1)

For any locally integrable increasing process X ◦ = (X ◦t )t∈[0;∞) with a

compensator A◦ = (A◦t )t∈[0;∞) on some stochastic basis there exists

another locally integrable increasing process X ? = (X ?
t )t∈[0;∞) with a

compensator A? = (A?t )t∈[0;∞), such that relation (1) holds, as well as A?

is continuous.
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Preparations

For more clear exposition we need to introduce you to the main
constructions from (Gushchin, 2018).

Theorem (Gushchin, 2018, Proposition 3.6)

Assume that a probability measure ν = ν(dy , dx) on
(
R2

+, B(R2
+)
)

satis�es the inequalities∫
R2

+

(x − y)+ ν(dy , dx) ≥
∫
R2

+

(y − x)+ ν(dy , dx) (2)

and

∀λ ≥ 0 :

∫
{y≤λ}

x ν(dy , dx) ≤
∫
R2

+

(y ∧ λ) ν(dy , dx). (3)
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Theorem (Gushchin, 2018, Proposition 3.6)

Let us de�ne one special probability space

Ωb := [0; ∞]× [0; ∞]× [0; 1],

Fb = B(Ω),

Pb := ν̄ ⊗ Λ, where ν̄(B) := ν(B ∩ R2
+) and Λ is the Lebesgue

measure on [0; 1],

and two random variables ξ(ω) := x , η(ω) := y , ω = (y , x , u) ∈ Ω.
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Theorem (Gushchin, 2018, Proposition 3.6)

Then Law(η, ξ) = ν and there exists a random variable ζ such that

0 ≤ ζ ≤ ξ ∧ η, and

∀λ ≥ 0 :

∫
{η−ζ≤λ}

(ξ − η + λ) dPb = λ. (4)
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Lemma (Borzykh, 2018, Lemma 2.1)

Consider an arbitrary measurable space (Ωa, Fa) and a Markov kernel Q
acting from (Ωa, Fa) to (R2

+, B(R2
+)), and satisfying Q(ωa; · ) ∈W for all

ωa ∈ Ωa. We put

(Ω, F) := (Ωa × Ωb, Fa ⊗ Fb). (5)

Further, on the set

Ω =
{

(ωa, yb, xb, ub︸ ︷︷ ︸
=ωb

) : ωa ∈ Ωa, ωb = (yb, xb, ub) ∈ Ωb
}
,

we de�ne functions

ξ(ωa, yb, xb, ub︸ ︷︷ ︸
=ωb

) = xb and η(ωa, yb, xb, ub︸ ︷︷ ︸
=ωb

) = yb,

which are F-measurable as marginal projections.
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Lemma (Borzykh, 2018, Lemma 2.1)

Let us de�ne a Markov kernel Pa,b from Ωa to (Ωb, Fb) by

Pa,b
(
ωa; B1 × B2 × B3

)
:= Q

(
ωa; (B2 × B1) ∩ R2

+

)
· Λ(B3), (6)

where ωa ∈ Ωa, B1 × B2 × B3 ∈ Fb, and Λ is the standard Lebesgue

measure.

Then ξ and η satisfy the following property:

Pa,b
(
ωa;

{
ωb :

[
ξ(ωa, ωb)

η(ωa, ωb)

]
∈ C

})
= Q(ωa; C ), C ∈ B(R2

+). (7)
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Lemma (Borzykh, 2018, Lemma 2.1)

In addition, we can �nd an F-measurable function ζ : Ω→ [0; ∞],
ζ = ζ(ωa, ωb), ωa ∈ Ωa, ωb ∈ Ωb, which meets, for any ωa ∈ Ωa, the

following two requirements:

∀ωb ∈ Ωb : 0 ≤ ζ(ωa, ωb) ≤ ξ(ωa, ωb) ∧ η(ωa, ωb), (8)

and, for all λ ≥ 0,∫
{ωb : η(ωa, ωb)−ζ(ωa, ωb)≤λ}

(
ξ(ωa, ωb)− η(ωa, ωb) + λ

)
Pa,b

(
ωa; dωb

)
= λ.

(9)
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Proof.

For any �xed point ωa ∈ Ωa we de�ne Fb-measurable function ζ(ωa, · ) as
in the proof of Proposition 3.6 (Gushchin, 2018), taking measure

ν(By × Bx) = Q(ωa; Bx × By ), Bx × By ∈ B(R2
+),

and probability space(
Ωb, Fb, Pb

)
=
(
Ωb, Fb, Pa,b

(
ωa; ·

))
.

Referring again to Proposition 3.6 (Gushchin, 2018), we see that ζ satis�es
conditions (8) and (9), as well as functions ξ and η satisfy (7).

Di�cult part is to prove that function ζ is measurable not only as a
function of variable ωb for �xed ωa, but it is also measurable as a function
of two variables with respect to the σ-�eld F = Fa ⊗ Fb. We will omit the
discussion this question here. For details see (Borzykh, 2018;
Lemma 2.1).
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Theorem (Gushchin, 2018, Proposition 3.4)

Let V and W be random variables with values in R+ and R+, respectively,

on some probability space (Ω, F, P). We also assume that

{W =∞} ⊆ {V = 0} a.s. and

∀λ ≥ 0 : E
[
V1{W≤λ}

]
= E[W ∧ λ]. (10)

For t ≥ 0 we de�ne

Gt :=
{
C ∈ F : C ∩ {W > t} = ∅ or C ∩ {W > t} = {W > t}

}
.

We set

Xt := V1{W≤t}, At := W ∧ t, t ≥ 0.

Then X = (Xt)t≥0 is an (Gt)-adapted locally integrable increasing process,

A = (At)t≥0 is its (Gt)-compensator, and (X∞, A∞) = (V , W ) a.s.
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Theorem (Gushchin, 2018, Theorem 2.1)

(i) Let X be a nonnegative submartingale of class (D), X0 = 0, with the

Doob�Meyer decomposition X = M + A into a sum of a uniformly

integrable martingale M and a predictable integrable increasing process A,
and let T be a stopping time. Then Law(XT , AT ) ∈W.

(ii) Let µ ∈W. Then on some stochastic basis there exists an increasing

process X with compensator A such that Law(X∞, A∞) = µ.

Dmitriy Borzykh HSE Locally integrable increasing processes October 23, 2020 16 / 29



Let us discuss the proof of statement (ii) of this theorem.

Let µ ∈W.

Put ν(By × Bx) := µ(Bx × By ), Bx × By ∈ B(R2
+).

This measure ν satis�es the requirements of Proposition 3.6 (Gushchin,
2018).

In force of Proposition 3.6 (Gushchin, 2018) there are probability space(
Ωb, Fb, Pb

)
and random variables ξ, η, ζ such that Law(η, ξ) = ν,

0 ≤ ζ ≤ ξ ∧ η and

∀λ ≥ 0 :

∫
{η−ζ≤λ}

(ξ − η + λ) dPb = λ.

From de�nition of ν and condition Law(η, ξ) = ν it follows, that
Law(ξ, η) = µ.
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Now, put V := ξ − ζ and W := η − ζ.

It is easy to check that V and W meet the requirements of Proposition 3.4
(Gushchin, 2018).

Thus, we can introduce a �ltration

Gb
t :=

{
C ∈ Fb : C ∩ {W > t} = ∅ or C ∩ {W > t} = {W > t}

}
t ≥ 0, on probability space

(
Ωb, Fb, Pb

)
, and the processes

V1{W≤t}, and W ∧ t, t ≥ 0,

will be an (Gb
t )-adapted locally integrable increasing process, and its

(Gb
t )-compensator correspondingly.
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Let us set

Fb
t :=

 Gb
t

1−t
, if t < 1,

Fb, if t ≥ 1,

Xt :=

 V1{W≤ t
1−t }

, if t < 1,

V + ((t ∧ 2)− 1)ζ, if t ≥ 1,

At :=


t

1−t ∧W , if t < 1,

W + ((t ∧ 2)− 1)ζ, if t ≥ 1.

It can be shown that

the process X is an integrable increasing process,

the process M := X − A is an (Fb
t )-martingale.

As the process A is continuous and (Fb
t )-adapted, the process A is

predictable. Thus, A is a compensator of X .
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Lemma (Borzykh, 2018, Lemma 2.2)

Suppose all the conditions of Lemma 2.1 (Borzykh, 2018) are satis�ed.

Then one can de�ne a �ltration (Ft)t∈[0; 1] on the measurable space

(Ω, F) = (Ωa × Ωb, Fa ⊗ Fb), and a pair of increasing processes

X = (Xt)t∈[0; 1] and A = (At)t∈[0; 1], X0 = 0, A0 = 0, such that

(i) the processes X and A are adapted, as well as A is continuous, and

Pa,b
(
ωa;

{
ωb :

[
X1(ωa, ωb)

A1(ωa, ωb)

]
∈ C

})
= Q(ωa; C ), C ∈ B(R2

+), (11)

(ii) the process Mt := Xt −At , t ∈ [0; 1], satis�es the following condition:

for all 0 ≤ s ≤ t ≤ 1, ωa ∈ Ωa and B ∈ Fs ,∫
Ωb

(
Mt(ω

a, ωb)−Ms(ωa, ωb)
)
1B(ωa, ωb)Pa,b(ωa; dωb) = 0.

(12)
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Lemma (Borzykh, 2018, Lemma 3.1)

Let a locally integrable increasing process X ◦ = (X ◦t )t∈[0;∞) such that

E[X ◦n ] <∞, for any n ∈ N, be given on a stochastic basis (Ω◦, F◦,
P◦, (F◦t )t∈[0;∞)); A◦ = (A◦t )t∈[0;∞) being its compensator. Let also

another integrable increasing process X [n] = (X
[n]
t )t∈[0; n] on a di�erent

stochastic basis (Ω[n], F[n], P[n], (F
[n]
t )t∈[0; n]), n ∈ N, with a compensator

A[n] = (A
[n]
t )t∈[0; n] be given. Moreover, Law

[
X

[n]
n

A
[n]
n

]
= Law

[
X◦
n

A◦
n

]
.
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Lemma (Borzykh, 2018, Lemma 3.1)

Then one can de�ne a pair of processes X [n+1] = (X
[n+1]
t )t∈[0; n+1] and

A[n+1] = (A
[n+1]
t )t∈[0; n+1] on a certain extension

(Ω[n+1], F[n+1], P[n+1], (F
[n+1]
t )t∈[0; n+1]) of a stochastic basis

(Ω[n], F[n], P[n], (F
[n]
t )t∈[0; n]), satisfying the following conditions:

(i) X [n+1] is an integrable increasing process, and process A[n+1] is its

compensator,

(ii) the processes (X
[n]
t )t∈[0; n] and (X

[n+1]
t )t∈[0; n] coincide,

(iii) the processes (A
[n]
t )t∈[0; n] and (A

[n+1]
t )t∈[0; n] coincide,

(iv) Law
[
X

[n+1]
n

A
[n+1]
n

]
= Law

[
X◦
n

A◦
n

]
and Law

[
X

[n+1]
n+1

A
[n+1]
n+1

]
= Law

[
X◦
n+1

A◦
n+1

]
,

(v) process (A
[n+1]
t )t∈[n; n+1] is continuous.
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Proof of Main Theorem

Let a locally integrable increasing process X ◦ = (X ◦t )t∈[0;∞) and a
localizing sequence of �nite stopping times (Tn)∞n=1 be given. It can be
shown that without loss of generality one can assume that Tn = n, n ∈ N
(for details see (Borzykh, 2018)).
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We start with the following recursive procedure.

Step 1. Applying Theorem 2.1 (i) (Gushchin, 2018) to the integrable
increasing process (X ◦t )t∈[0; 1], as well as its compensator (A◦t )t∈[0; 1] and a
stopping time T = 1, we get Law (X ◦

1
, A◦

1
) ∈W.

Then by Theorem 2.1 (ii) (Gushchin, 2018), there exists a stochastic basis

B[1] :=
(
Ω[1], F[1], P[1], (F

[1]
t )t∈[0; 1]

)
, and an integrable process

(X
[1]
t )t∈[0; 1] on it with a continuous compensator (A

[1]
t )t∈[0; 1], such that

Law

(
X

[1]
1
, A

[1]
1

)
= Law (X ◦

1
, A◦

1
).
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All the steps starting from the second are performed similarly.

Step n + 1, n ≥ 1. Remark that the pair of processes (X ◦t )t∈[0;∞) and

(A◦t )t∈[0;∞) and the pair of processes (X
[n]
t )t∈[0; n] and (A

[n]
t )t∈[0; n] �t the

requirements of Lemma 3.1 (Borzykh, 2018).

So, applying this lemma, we build a stochastic basis

B[n+1] :=
(
Ω[n+1], F[n+1], P[n+1], (F

[n+1]
t )t∈[0; n+1]

)
,

and an integrable increasing process (X
[n+1]
t )t∈[0; n+1] with a continuous

compensator (A
[n+1]
t )t∈[0; n+1], satisfying the condition

Law

(
X

[n+1]
n+1 , A

[n+1]
n+1

)
= Law

(
X ◦n+1, A

◦
n+1

)
.
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Now, we are ready to de�ne the required stochastic basis

B? :=
(
Ω?, F?, P?, (F?t )t∈[0;∞)

)
and a locally integrable increasing process X ? = (X ?

t )t∈[0;∞) on it with a
continuous compensator A? = (A?t )t∈[0;∞). Put:

Ω? := Ω[1] × (Ω)∞, F? := F[1] ⊗
∞⊗
i=2

F,

F?t :=



F
[1]
t ⊗ {∅, Ω}∞, t ∈ [0; 1],

F
[1]
1
⊗ Ft−1 ⊗ {∅, Ω}∞, t ∈ (1; 2],

F
[1]
1
⊗
(⊗n−1

i=2 F
1

)
⊗ Ft−n+1 ⊗ {∅, Ω}∞, t ∈ (n − 1; n], n ≥ 3.
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Next, in view of the Ionescu-Tulcea theorem (see e.g. (Shiryaev,
Probability, 2016, vol. 1)) on the measurable space (Ω?, F?) there exists a
unique probability measure P?, such that

∀n ∈ N ∀B [n] ∈ F[n] : P?
(
B [n] × (Ω)∞

)
= P[n]

(
B [n]

)
.

Further, let ω? =
(
ω[1], ω2, . . . , ωn, . . .

)
∈ Ω?. Set

X ?
t (ω?) :=

{
X

[1]
t

(
ω[1]
)
, t ∈ [0; 1],

X
[n]
t

(
ω[1], ω2, . . . , ωn

)
, t ∈ (n − 1; n], n ≥ 2,

A?t (ω?) :=

{
A

[1]
t

(
ω[1]
)
, t ∈ [0; 1],

A
[n]
t

(
ω[1], ω2, . . . , ωn

)
, t ∈ (n − 1; n], n ≥ 2,

M?
t (ω?) := X ?

t (ω?)− A?t (ω?) , t ≥ 0.
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It can be shown that M? = (M?
t )t∈[0;∞) is a martingale on(

Ω?, F?, P?, (F?t )t∈[0;∞)

)
(for details see (Borzykh, 2018)).

The process A? = (A?t )t∈[0;∞) is a predictable (by continuity) increasing
process.

Finally, formula (1) is obtained from the relations

lim
n→∞

(X ?
n , A

?
n) = (X ?

∞, A
?
∞) , lim

n→∞
(X ◦n , A

◦
n) = (X ◦∞, A

◦
∞) ,

Law (X ?
n , A

?
n) = Law (X ◦n , A

◦
n) , n ∈ N,

and the fact that almost sure convergence implies weak convergence. �
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Thank you for your attention!

Dmitriy Borzykh HSE Locally integrable increasing processes October 23, 2020 29 / 29



%\documentclass[11pt,a4paper,utf8]{article}
\documentclass[unicode]{beamer}

\usetheme{Warsaw}
\useoutertheme{infolines}

\usepackage{embedfile}
\embedfile[desc={Main tex file}]{\jobname.tex}

\usepackage{graphicx}

%\usepackage[unicode]{hyperref}


%\usepackage[cp1251]{inputenc}
\usepackage{amsmath}
\usepackage{dcolumn}
\usepackage{mathrsfs}
\usepackage{mathrsfs}
\usepackage[mathcal]{euscript}
\usepackage{bbm}
\usepackage{amsbsy}
\usepackage{dsfont}

\usepackage {pdfsync}

\newcommand{\EE}{{\sf E}}
\newcommand{\PP}{{\sf P}}
\newcommand{\DD}{{\sf D}}
\newcommand{\QQ}{{\sf Q}}

\newcommand{\cF}{{\mathscr{F}}}

\newcommand*{\idf}{{\sf J}}
\newcommand*{\iqf}{{\sf K}}




%\numberwithin{equation}{section}

\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1,T2A]{fontenc}
\title[Locally integrable increasing processes]{Locally integrable increasing processes with continuous compensators}
\author[Dmitriy Borzykh]{Dmitriy Borzykh}
\institute[HSE]{NRU HSE}
\date{October 23, 2020}

\defbeamertemplate*{footline}{my infolines theme}
{
   \leavevmode%
   \hbox{%
   \begin{beamercolorbox}[wd=.273333\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
     \usebeamerfont{author in head/foot}\insertshortauthor~~\insertshortinstitute
   \end{beamercolorbox}%
   \begin{beamercolorbox}[wd=.453333\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
     \usebeamerfont{title in head/foot}\insertshorttitle
   \end{beamercolorbox}%
   \begin{beamercolorbox}[wd=.273333\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
     \usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}
     \insertframenumber{} / \inserttotalframenumber\hspace*{2ex}
   \end{beamercolorbox}}%
   \vskip0pt%
}


\newcommand{\Law}{\mathrm{Law}}

\begin{document}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
	\frametitle{Introducion}
This presentation is based on a published work

\medskip

\textcolor{blue}{(Borzykh, 2018)} Borzykh D. On a property of joint terminal distributions of locally integrable increasing processes and their compensators // Theory of Stochastic Processes. 2018. Vol. 23. No. 39 (2). P. 7-20).

\medskip

I would like to thank my supervisor Prof. A. A. Gushchin for setting the problem and useful advices.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
In this presentation we will give a sketch of the proof of the following statement.

\medskip

A joint distribution of a locally integrable increasing process $X^{\circ}$ and its compensator $A^{\circ}$ at a terminal moment of time can be realized as a joint terminal distribution of another locally integrable increasing process $X^{\star}$ and its compensator $A^{\star}$, $A^{\star}$ being continuous.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
Our work is essentially based on A. A. Gushchin's article:

\medskip

\textcolor{blue}{(Gushchin, 2018)} A. A. Gushchin, The Joint Law of Terminal Values of a Nonnegative Submartingale and Its Compensator, Theory of Probability and Its Applications 62 (2018), no. 2, 216–235.

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
In (Gushchin, 2018) a class $\mathbb{W}$ of probability measures on the space $\bigl(\mathbb{R}_{+}^2, \, \mathcal{B}(\mathbb{R}_{+}^2)\bigr)$ is introduced.

It includes all measures $\mu$ satisfying the following conditions:
\begin{itemize}
  \item[1)] $\int_{\mathbb{R}_{+}^2} (x + y) \, \mu(dx, \, dy) < \infty$,
  \item[2)] $\int_{\mathbb{R}_{+}^2} x \, \mu(dx, \, dy) = \int_{\mathbb{R}_{+}^2} y \, \mu(dx, \, dy)$,
  \item[3)] $\forall \lambda \geq 0 \colon \; \int_{\{y \leq \lambda\}} x \, \mu(dx, \, dy) \leq \int_{\mathbb{R}_{+}^2} (y \wedge \lambda) \, \mu(dx, \, dy)$ \text{.}
\end{itemize}

\medskip

It is shown in (Gushchin, 2018) that the joint distribution of terminal values of an integrable increasing process and its compensator belongs to the class $\mathbb{W}$.

\medskip

Conversely, given $\mu \in \mathbb{W}$ there is constructed an increasing integrable process such that the joint distribution of terminal values of the process and its compensator is $\mu$ and, moreover, the compensator is continuous.

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
Thus, if $X^{\circ} = (X^{\circ}_t)_{t \in [0;\,\infty)}$ is an integrable increasing process with a compensator $A^{\circ} = (A^{\circ}_t)_{t \in [0;\,\infty)}$, one can define on a certain stochastic basis another integrable increasing process
$X^{\star} = (X^{\star}_t)_{t \in [0;\,\infty)}$ with a compensator $A^{\star} = (A^{\star}_t)_{t \in [0;\,\infty)}$, such that
\begin{equation}\label{sjn82jz}
  \Law \left(X^{\star}_{\infty}, \, A^{\star}_{\infty} \right) = \Law\left(X^{\circ}_{\infty}, \, A^{\circ}_{\infty} \right) \text{.}
\end{equation}
Moreover, the compensator $A^{\star}$ is continuous.

\medskip

The main goal of the article is to extend the last statement to the locally integrable case. Namely, we state the following theorem.

\end{frame}
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\begin{frame}

\begin{theorem}[Main Theorem: Borzykh, 2018, Theorem 1.1]\label{ksjab72hz}
For any locally integrable increasing process $X^{\circ} = (X^{\circ}_t)_{t \in [0;\,\infty)}$ with a compensator $A^{\circ} = (A^{\circ}_t)_{t \in [0;\,\infty)}$ on some stochastic basis there exists another locally integrable increasing process $X^{\star} = (X^{\star}_t)_{t \in [0;\,\infty)}$ with a compensator $A^{\star} = (A^{\star}_t)_{t \in [0;\,\infty)}$, such that relation (\ref{sjn82jz}) holds, as well as $A^{\star}$ is continuous.
\end{theorem}

\end{frame}
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\begin{frame}
\frametitle{Preparations}

For more clear exposition we need to introduce you to the main constructions from (Gushchin, 2018).

\begin{Theorem}[Gushchin, 2018, Proposition 3.6]
Assume that a probability measure $\nu = \nu(dy, \, dx)$ on $\bigl(\mathbb{R}_{+}^2, \, \mathcal{B}(\mathbb{R}_{+}^2)\bigr)$ satisfies the inequalities
\begin{equation}\label{kams21ds}
  \int_{\mathbb{R}_{+}^2} (x - y)^{+} \, \nu(dy, \, dx) \geq \int_{\mathbb{R}_{+}^2} (y - x)^{+} \, \nu(dy, \, dx)
\end{equation}
and
\begin{equation}\label{iksj91x}
  \forall \lambda \geq 0 \colon \;\; \int_{\{y \leq \lambda\}} x \, \nu(dy, \, dx) \leq \int_{\mathbb{R}_{+}^2} (y  \wedge \lambda) \, \nu(dy, \, dx) \text{.}
\end{equation}
\end{Theorem}

\end{frame}
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\begin{frame}

\begin{Theorem}[Gushchin, 2018, Proposition 3.6]
Let us define one special probability space
\begin{itemize}
  \item $\Omega^{\mathfrak{b}} := [0; \, \infty] \times [0; \, \infty] \times [0; \, 1]$,
  \item $\mathcal{F}^{\mathfrak{b}} = \mathcal{B}(\Omega)$,
  \item $\mathbb{P}^{\mathfrak{b}} := \bar{\nu} \otimes \Lambda$, where $\bar{\nu}(B) := \nu(B \cap \mathbb{R}_{+}^2)$ and $\Lambda$ is the Lebesgue measure on $[0; \, 1]$,
\end{itemize}
and two random variables $\xi(\omega) := x$, $\eta(\omega) := y$, $\omega = (y, \, x, \, u) \in \Omega$.
\end{Theorem}

\end{frame}
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\begin{frame}

\begin{Theorem}[Gushchin, 2018, Proposition 3.6]

Then $\operatorname{Law}(\eta, \xi) = \nu$ and there exists a random variable $\zeta$ such that $0 \leq \zeta \leq \xi \wedge \eta$, and
\begin{equation}\label{ujk91j3}
  \forall \lambda \geq 0 \colon \;\; \int_{\{\eta - \zeta \leq \lambda\}} (\xi - \eta + \lambda) \, d\mathbb{P}^{\mathfrak{b}} = \lambda \text{.}
\end{equation}
\end{Theorem}

\end{frame}
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\begin{frame}
\begin{Lemma}[Borzykh, 2018, Lemma 2.1]\label{uu93jdxx90}
Consider an arbitrary measurable space $(\Omega^{\mathfrak{a}}, \, \mathcal{F}^{\mathfrak{a}})$ and a Markov kernel $\operatorname{Q}$
acting from $(\Omega^{\mathfrak{a}}, \, \mathcal{F}^{\mathfrak{a}})$ to $(\mathbb{R}_{+}^2, \, \mathcal{B}(\mathbb{R}_{+}^2))$, and satisfying $\operatorname{Q}(\omega^{\mathfrak{a}}; \, \cdot \,) \in \mathbb{W}$ for all $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$. We put

\begin{equation}\label{ppodkiu91hs}
  (\Omega, \, \mathcal{F}) := (\Omega^{\mathfrak{a}} \times \Omega^{\mathfrak{b}}, \, \mathcal{F}^{\mathfrak{a}} \otimes \mathcal{F}^{\mathfrak{b}}) \text{.}
\end{equation}

Further, on the set
\[
    \Omega = \Bigl\{(\omega^{\mathfrak{a}}, \, \underbrace{y^{\mathfrak{b}}, \, x^{\mathfrak{b}}, \, u^{\mathfrak{b}}}_{= \omega^{\mathfrak{b}}}) \colon \; \omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}, \;\; \omega^{\mathfrak{b}} = (y^{\mathfrak{b}}, \, x^{\mathfrak{b}}, \, u^{\mathfrak{b}}) \in \Omega^{\mathfrak{b}} \Bigr\} \text{,}
\]
we define functions
\[
    \xi(\omega^{\mathfrak{a}}, \,  \underbrace{y^{\mathfrak{b}}, \, x^{\mathfrak{b}}, \, u^{\mathfrak{b}}}_{= \omega^{\mathfrak{b}}}) = x^{\mathfrak{b}} \text{\;\;\;and\;\;\;} \eta(\omega^{\mathfrak{a}}, \,  \underbrace{y^{\mathfrak{b}}, \, x^{\mathfrak{b}}, \, u^{\mathfrak{b}}}_{= \omega^{\mathfrak{b}}}) = y^{\mathfrak{b}} \text{,}
\]
which are $\mathcal{F}$-measurable as marginal projections.

\end{Lemma}
\end{frame}
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\begin{Lemma}[Borzykh, 2018, Lemma 2.1]

Let us define a Markov kernel $\mathbb{P}^{\mathfrak{a}, \mathfrak{b}}$ from $\Omega^{\mathfrak{a}}$ to $(\Omega^{\mathfrak{b}}, \, \mathcal{F}^{\mathfrak{b}})$ by
\begin{equation}\label{uu92jx34}
  \mathbb{P}^{\mathfrak{a}, \mathfrak{b}}\bigl(\omega^{\mathfrak{a}}; \, B_1 \times B_2 \times B_3\bigr) := \operatorname{Q}\bigl(\omega^{\mathfrak{a}}; \, (B_2 \times B_1) \cap \mathbb{R}_{+}^2\bigr) \cdot \Lambda(B_3) \text{,}
\end{equation}
where $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$, $B_1 \times B_2 \times B_3 \in \mathcal{F}^{\mathfrak{b}}$, and $\Lambda$ is the standard Lebesgue measure.

\medskip

Then $\xi$ and $\eta$ satisfy the following property:
\begin{equation}\label{gg091js82}
    \mathbb{P}^{\mathfrak{a}, \mathfrak{b}}\left(\omega^{\mathfrak{a}};\, \left\{\omega^{\mathfrak{b}} \colon \left[\begin{smallmatrix} \xi(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \\ \eta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \end{smallmatrix}\right]  \in C\right\}\right) = \operatorname{Q}(\omega^{\mathfrak{a}}; \, C) \text{,\;\; $C \in \mathcal{B}(\mathbb{R}_{+}^2)$.}
\end{equation}

\end{Lemma}
\end{frame}
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\begin{frame}
\begin{Lemma}[Borzykh, 2018, Lemma 2.1]
In addition, we can find an $\mathcal{F}$-measurable function $\zeta \colon \Omega \to [0; \, \infty]$, $\zeta = \zeta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}})$, ${\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}} }$, $\omega^{\mathfrak{b}} \in \Omega^{\mathfrak{b}}$,
which meets, for any $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$, the following two requirements:
\begin{equation}\label{k9hdmu92d2}
  \forall \, \omega^{\mathfrak{b}} \in \Omega^{\mathfrak{b}} \colon \; 0 \leq \zeta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \leq \xi(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \wedge \eta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \text{,}
\end{equation}
and, for all $\lambda \geq 0$,
\begin{equation}\label{e82hjs0092}
  \int_{\{\omega^{\mathfrak{b}} \colon \eta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) - \zeta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \leq \lambda\}} \bigl(\xi(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) - \eta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) + \lambda \bigr) \, \mathbb{P}^{\mathfrak{a}, \mathfrak{b}}\bigl(\omega^{\mathfrak{a}}; \, d \omega^{\mathfrak{b}}\bigr) = \lambda \text{.}
\end{equation}

\end{Lemma}
\end{frame}
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\begin{frame}

\begin{proof}
For any fixed point $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$ we define $\mathcal{F}^{\mathfrak{b}}$-measurable function $\zeta(\omega^{\mathfrak{a}}, \cdot \,)$ as in the proof of Proposition~3.6 (Gushchin, 2018),
taking measure
\[
    \nu(B_y \times B_x) = \operatorname{Q}(\omega^{\mathfrak{a}}; \, B_x \times B_y) \text{, \quad} B_x \times B_y \in \mathcal{B}(\mathbb{R}_{+}^2) \text{,}
\]
and probability space
\[
    \bigl(\Omega^{\mathfrak{b}}, \, \mathcal{F}^{\mathfrak{b}}, \, \mathbb{P}^{\mathfrak{b}} \bigr) = \bigl(\Omega^{\mathfrak{b}}, \, \mathcal{F}^{\mathfrak{b}}, \, \mathbb{P}^{\mathfrak{a}, \mathfrak{b}}\bigl(\omega^{\mathfrak{a}}; \, \cdot \,\bigr)\bigr) \text{.}
\]

Referring again to Proposition~3.6 (Gushchin, 2018), we see that $\zeta$ satisfies conditions (\ref{k9hdmu92d2}) and (\ref{e82hjs0092}), as well as functions $\xi$ and $\eta$ satisfy (\ref{gg091js82}).

\medskip

Difficult part is to prove that function $\zeta$ is measurable not only as a function of variable $\omega^{\mathfrak{b}}$ for fixed $\omega^{\mathfrak{a}}$, but it is also measurable as a function of two variables with respect to the $\sigma$-field $\mathcal{F} = \mathcal{F}^{\mathfrak{a}} \otimes \mathcal{F}^{\mathfrak{b}}$. We will omit the discussion this question here. For details see (Borzykh, 2018; Lemma~2.1).
\end{proof}

\end{frame}
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\begin{frame}

\begin{Theorem}[Gushchin, 2018, Proposition 3.4]
Let $V$ and $W$ be random variables with values in $\mathbb{R}_{+}$ and $\overline{\mathbb{R}}_{+}$, respectively, on some probability space $(\Omega, \, \mathcal{F}, \, \mathbb{P})$.
We also assume that $\{W = \infty\} \subseteq \{V = 0\}$ a.s. and
\begin{equation}\label{bbam1skj123}
  \forall \lambda \geq 0 \colon \;\; \mathbb{E}\bigl[V \mathds{1}_{\{W \leq \lambda\}}\bigr] = \mathbb{E}[W \wedge \lambda] \text{.}
\end{equation}
For $t \geq 0$ we define
\[
    \mathcal{G}_t := \Bigl\{C \in \mathcal{F} \colon \; C \cap \{W > t\} = \emptyset \text{\; or \;} C \cap \{W > t\} = \{W > t\} \Bigr\} \text{.}
\]
We set
\[
    X_t := V \mathds{1}_{\{W \leq t\}} \text{, \quad} A_t := W \wedge t \text{, \quad} t \geq 0 \text{.}
\]
Then $X = (X_t)_{t \geq 0}$ is an $(\mathcal{G}_t)$-adapted locally integrable increasing process, $A = (A_t)_{t \geq 0}$
is its $(\mathcal{G}_t)$-compensator, and $(X_{\infty}, \, A_{\infty}) = (V, \, W)$ a.s.
\end{Theorem}

\end{frame}
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\begin{frame}

\begin{Theorem}[Gushchin, 2018, Theorem 2.1]
(i) Let $X$ be a nonnegative submartingale of class (D), $X_0 = 0$, with the Doob--Meyer decomposition $X = M + A$ into a sum of a
uniformly integrable martingale $M$ and a predictable integrable increasing process $A$, and let $T$ be a stopping time.
Then $\operatorname{Law}(X_T, \, A_T) \in \mathbb{W}$.

\medskip

(ii) Let $\mu \in \mathbb{W}$. Then on some stochastic basis there exists an increasing process $X$ with compensator $A$
such that $\operatorname{Law}(X_{\infty}, \, A_{\infty}) = \mu$.
\end{Theorem}

\end{frame}
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\begin{frame}

Let us discuss \textbf{the proof of statement (ii)} of this theorem.

\medskip

Let $\mu \in \mathbb{W}$.

\medskip

Put $\nu(B_y \times B_x) := \mu(B_x \times B_y)$, $B_x \times B_y \in \mathcal{B}(\mathbb{R}_{+}^2)$.

\medskip

This measure $\nu$ satisfies the requirements of Proposition~3.6 (Gushchin, 2018).

\medskip

In force of Proposition~3.6 (Gushchin, 2018) there are probability space $\bigl(\Omega^{\mathfrak{b}}, \, \mathcal{F}^{\mathfrak{b}}, \, \mathbb{P}^{\mathfrak{b}} \bigr)$ and random variables $\xi$, $\eta$, $\zeta$ such that $\Law (\eta, \, \xi) = \nu$, $0 \leq \zeta \leq \xi \wedge \eta$ and
\[
  \forall \lambda \geq 0 \colon \;\; \int_{\{\eta - \zeta \leq \lambda\}} (\xi - \eta + \lambda) \, d\mathbb{P}^{\mathfrak{b}} = \lambda \text{.}
\]

From definition of $\nu$ and condition $\Law (\eta, \, \xi) = \nu$ it follows, that $\Law (\xi, \, \eta) = \mu$.

\end{frame}
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\begin{frame}

Now, put $V := \xi - \zeta$ and $W := \eta - \zeta$.

\medskip

It is easy to check that $V$ and $W$ meet the requirements of Proposition~3.4 (Gushchin, 2018).

\medskip

Thus, we can introduce a filtration
\[
    \mathcal{G}^{\mathfrak{b}}_t := \Bigl\{C \in \mathcal{F}^{\mathfrak{b}} \colon \; C \cap \{W > t\} = \emptyset \text{\; or \;} C \cap \{W > t\} = \{W > t\} \Bigr\} \text{}
\]
$t \geq 0$, on probability space $\bigl(\Omega^{\mathfrak{b}}, \, \mathcal{F}^{\mathfrak{b}}, \, \mathbb{P}^{\mathfrak{b}} \bigr)$, and the processes
\[
    V \mathds{1}_{\{W \leq t\}} \text{, \quad and \quad} W \wedge t \text{, \quad} t \geq 0 \text{,}
\]
will be an $(\mathcal{G}^{\mathfrak{b}}_t)$-adapted locally integrable increasing process, and its $(\mathcal{G}^{\mathfrak{b}}_t)$-compensator correspondingly.

\end{frame}
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\begin{frame}

Let us set
\[
    \mathcal{F}^{\mathfrak{b}}_t := \left\{
                                      \begin{array}{ll}
                                        \Bigl.     \mathcal{G}^{\mathfrak{b}}_{\tfrac{t}{1-t}}, & \text{if $ t < 1$,} \\
                                        \Bigl.     \mathcal{F}^{\mathfrak{b}}, & \text{if $ t \geq 1$,}
                                      \end{array}
                                    \right.
\]
\[
    X_t := \left\{
                                      \begin{array}{ll}
                                        \Bigl.  V \mathds{1}_{\{W \leq \tfrac{t}{1-t} \}}, & \text{if $ t < 1$,} \\
                                        \Bigl.  V + ((t \wedge 2) - 1) \zeta, & \text{if $ t \geq 1$,}
                                      \end{array}
                                    \right.
\]
\[
    A_t := \left\{
                                      \begin{array}{ll}
                                        \Bigl.  \tfrac{t}{1-t} \wedge W, & \text{if $ t < 1$,} \\
                                        \Bigl.  W + ((t \wedge 2) - 1) \zeta, & \text{if $ t \geq 1$.}
                                      \end{array}
                                    \right.
\]

It can be shown that
\begin{itemize}
  \item the process $X$ is an integrable increasing process,
  \item the process $M := X - A$ is an $(\mathcal{F}^{\mathfrak{b}}_t)$-martingale.
\end{itemize}

\medskip

As the process $A$ is continuous and $(\mathcal{F}^{\mathfrak{b}}_t)$-adapted, the process $A$ is predictable. Thus, $A$ is a compensator of $X$.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}

\begin{Lemma}[Borzykh, 2018, Lemma 2.2]\label{dfjkasm82j}
Suppose all the conditions of Lemma~2.1 (Borzykh, 2018) are satisfied. Then one can define a filtration $(\mathcal{F}_t)_{t \in [0;\,1]}$ on the measurable space $(\Omega, \, \mathcal{F}) = (\Omega^{\mathfrak{a}} \times \Omega^{\mathfrak{b}}, \, \mathcal{F}^{\mathfrak{a}} \otimes \mathcal{F}^{\mathfrak{b}})$, and a pair of increasing processes $X = (X_t)_{t \in [0;\,1]}$ and $A = (A_t)_{t \in [0;\,1]}$, $X_0 = 0$, $A_0 = 0$, such that
\begin{itemize}
  \item[(i)] the processes $X$ and $A$ are adapted, as well as $A$ is continuous, and
\begin{equation}\label{l88h1v4}
    \mathbb{P}^{\mathfrak{a}, \mathfrak{b}}\left(\omega^{\mathfrak{a}};\, \left\{\omega^{\mathfrak{b}} \colon \left[\begin{smallmatrix}X_{1}(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \\ A_{1}(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \end{smallmatrix}\right]  \in C\right\}\right) = \operatorname{Q}(\omega^{\mathfrak{a}}; \, C) \text{,\; $C \in \mathcal{B}(\mathbb{R}_{+}^2)$,}
\end{equation}
  \item[(ii)] the process $M_t := X_t - A_t$, $t \in [0; \, 1]$, satisfies the following condition: for all $0 \leq s \leq t \leq 1$, $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$ and $B \in \mathcal{F}_s$,
\begin{equation}\label{gg7gh1gbs}
    \int_{\Omega^{\mathfrak{b}}} \left(M_t(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) - M_s(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}})\right) \mathds{1}_B(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \, \mathbb{P}^{\mathfrak{a}, \mathfrak{b}}(\omega^{\mathfrak{a}}; \, d\omega^{\mathfrak{b}}) = 0 \text{.}
\end{equation}
\end{itemize}
\end{Lemma}
\end{frame}
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\begin{Lemma}[Borzykh, 2018, Lemma 3.1]\label{ksjnxx71}
Let a locally integrable increasing process $X^{\circ} = (X^{\circ}_t)_{t \in [0;\,\infty)}$ such that $\mathbb{E}[X^{\circ}_n] < \infty$, for any $n \in \mathbb{N}$, be given on a stochastic basis $(\Omega^{\circ}, \, \mathcal{F}^{\circ}$, $\mathbb{P}^{\circ}, \,(\mathcal{F}^{\circ}_t)_{t \in [0;\,\infty)})$; $A^{\circ} = (A^{\circ}_t)_{t \in [0;\,\infty)}$ being its compensator.
Let also another integrable increasing process $X^{[n]} = (X^{[n]}_t)_{t \in [0;\,n]}$ on a different stochastic basis $(\Omega^{[n]}, \, \mathcal{F}^{[n]}, \, \mathbb{P}^{[n]}, \, (\mathcal{F}^{[n]}_t)_{t \in [0;\,n]})$, $n \in \mathbb{N}$, with a compensator $A^{[n]} = (A^{[n]}_t)_{t \in [0;\,n]}$ be given. Moreover, $\operatorname{Law}\left[\begin{smallmatrix}X^{[n]}_{n} \\ A^{[n]}_{n} \end{smallmatrix}\right] = \operatorname{Law}\left[\begin{smallmatrix}X^{\circ}_{n} \\ A^{\circ}_{n} \end{smallmatrix}\right]$.
\end{Lemma}


\end{frame}
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\begin{frame}

\begin{Lemma}[Borzykh, 2018, Lemma 3.1]
Then one can define a pair of processes $X^{[n+1]} = (X^{[n+1]}_t)_{t \in [0;\,n+1]}$ and $A^{[n+1]} = (A^{[n+1]}_t)_{t \in [0;\,n+1]}$ on a certain extension $(\Omega^{[n+1]}, \, \mathcal{F}^{[n+1]}, \, \mathbb{P}^{[n+1]}, \, (\mathcal{F}^{[n+1]}_t)_{t \in [0;\,n+1]})$ of a stochastic basis $(\Omega^{[n]}, \, \mathcal{F}^{[n]}, \, \mathbb{P}^{[n]}, \, (\mathcal{F}^{[n]}_t)_{t \in [0;\,n]})$, satisfying the following conditions:
\begin{itemize}
  \item[(i)] $X^{[n+1]}$ is an integrable increasing process, and process $A^{[n+1]}$ is its compensator,
  \item[(ii)] the processes $(X^{[n]}_t)_{t \in [0;\,n]}$ and $(X^{[n+1]}_t)_{t \in [0;\,n]}$ coincide,
  \item[(iii)] the processes $(A^{[n]}_t)_{t \in [0;\,n]}$ and $(A^{[n+1]}_t)_{t \in [0;\,n]}$ coincide,
  \item[(iv)] $\operatorname{Law}\left[\begin{smallmatrix}X^{[n+1]}_{n} \\ A^{[n+1]}_{n} \end{smallmatrix}\right] = \operatorname{Law}\left[\begin{smallmatrix}X^{\circ}_{n} \\ A^{\circ}_{n} \end{smallmatrix}\right]$ and $\operatorname{Law}\left[\begin{smallmatrix}X^{[n+1]}_{n+1} \\ A^{[n+1]}_{n+1} \end{smallmatrix}\right] = \operatorname{Law}\left[\begin{smallmatrix}X^{\circ}_{n+1} \\ A^{\circ}_{n+1} \end{smallmatrix}\right]$,
  \item[(v)] process $(A^{[n+1]}_t)_{t \in [n;\,n+1]}$ is continuous.
\end{itemize}
\end{Lemma}

\end{frame}
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\frametitle{Proof of Main Theorem}

Let a locally integrable increasing process $X^{\circ} = (X^{\circ}_t)_{t \in [0;\, \infty)}$ and a localizing sequence of finite stopping times $(T_n)_{n=1}^{\infty}$ be given. It can be shown that without loss of generality one can assume that $T_n = n$, $n \in \mathbb{N}$ (for details see (Borzykh, 2018)).

\end{frame}
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We start with the following recursive procedure.

\medskip

Step 1. Applying Theorem 2.1 (i) (Gushchin, 2018) to the integrable increasing process $(X^{\circ}_t)_{t \in [0; \, 1]}$, as well as its compensator $(A^{\circ}_t)_{t \in [0; \, 1]}$ and a stopping time $T = 1$, we get $\Law\left( X^{\circ}_{1}, \, A^{\circ}_{1} \right) \in \mathbb{W}$.

\medskip


Then by Theorem~2.1~(ii) (Gushchin, 2018), there exists a stochastic basis $\mathbb{B}^{[1]} := \bigl(\Omega^{[1]}, \, \mathcal{F}^{[1]}, \, \mathbb{P}^{[1]}, \, (\mathcal{F}^{[1]}_t)_{t \in [0;\,1]}\bigr)$, and an integrable process $(X^{[1]}_t)_{t \in [0; \, 1]}$ on it with a continuous compensator $(A^{[1]}_t)_{t \in [0; \, 1]}$, such that $\Law\left( X^{[1]}_{1}, \, A^{[1]}_{1} \right) = \Law\left( X^{\circ}_{1}, \, A^{\circ}_{1} \right)$.

\end{frame}
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\begin{frame}

All the steps starting from the second are performed similarly.

\medskip

Step $n+1$, $n \geq 1$. Remark that the pair of processes $(X^{\circ}_t)_{t \in [0; \, \infty)}$ and $(A^{\circ}_t)_{t \in [0; \, \infty)}$ and the pair of processes $(X^{[n]}_t)_{t \in [0; \, n]}$ and $(A^{[n]}_t)_{t \in [0; \, n]}$ fit the requirements of Lemma 3.1 (Borzykh, 2018). 

\medskip

So, applying this lemma, we build a stochastic basis
\[
  \mathbb{B}^{[n+1]} := \bigl(\Omega^{[n+1]}, \, \mathcal{F}^{[n+1]}, \, \mathbb{P}^{[n+1]}, \, (\mathcal{F}^{[n+1]}_t)_{t \in [0;\,n+1]}\bigr) \text{,}
\]
and an integrable increasing process $(X^{[n+1]}_t)_{t \in [0; \, n+1]}$ with a continuous compensator $(A^{[n+1]}_t)_{t \in [0; \, n+1]}$, satisfying the condition
\[
    \Law\left( X^{[n+1]}_{n+1}, \, A^{[n+1]}_{n+1} \right) = \Law\left( X^{\circ}_{n+1}, \, A^{\circ}_{n+1} \right) \text{.}
\]

\end{frame}
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\begin{frame}


Now, we are ready to define the required stochastic basis
\[
    \mathbb{B}^{\star} := \left(\Omega^{\star}, \, \mathcal{F}^{\star}, \, \mathbb{P}^{\star}, \, (\mathcal{F}^{\star}_t)_{t \in [0; \, \infty)}\right)
\]
and a locally integrable increasing process $X^{\star} = (X^{\star}_t)_{t \in [0; \, \infty)}$ on it with a continuous compensator $A^{\star} = (A^{\star}_t)_{t \in [0; \, \infty)}$. Put:
\[
    \Omega^{\star} := \Omega^{[1]} \times (\Omega)^{\infty} \text{,\quad\;} \mathcal{F}^{\star} := \mathcal{F}^{[1]} \otimes \bigotimes_{i=2}^{\infty}\mathcal{F} \text{,}
\]
\[
    \mathcal{F}^{\star}_t := \left\{
                          \begin{array}{ll}
                            \bigg.      \mathcal{F}^{[1]}_t \otimes \{\emptyset, \, \Omega\}^{\infty}, & t \in [0; \, 1], \\
                            \bigg.      \mathcal{F}^{[1]}_1 \otimes \mathcal{F}^{}_{t-1}  \otimes  \{\emptyset, \, \Omega\}^{\infty}, & t \in (1; \, 2], \\
                            \bigg.      \mathcal{F}^{[1]}_1 \otimes \left(\bigotimes_{i=2}^{n-1}\mathcal{F}^{}_1\right) \otimes \mathcal{F}^{}_{t - n + 1} \otimes  \{\emptyset, \, \Omega\}^{\infty} , & t \in (n-1; \, n],\;\; n \geq 3.
                          \end{array}
                        \right.
\]


\end{frame}
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\begin{frame}

Next, in view of the Ionescu-Tulcea theorem (see e.g. (Shiryaev, Probability, 2016, vol. 1)) on the measurable space $\left(\Omega^{\star} , \, \mathcal{F}^{\star}\right)$ there exists a unique probability measure $\mathbb{P}^{\star}$, such that
\[
    \forall n \in \mathbb{N} \;\;\; \forall B^{[n]} \in \mathcal{F}^{[n]} \, \colon \;\;\; \mathbb{P}^{\star}\bigl(B^{[n]} \times (\Omega)^{\infty}\bigr) = \mathbb{P}^{[n]}\bigl(B^{[n]}\bigr) \text{.}
\]

Further, let $\omega^{\star} = \left(\omega^{[1]}, \, \omega_2, \, \ldots, \, \omega_n, \, \ldots\right) \in \Omega^{\star}$. Set
\[
    X^{\star}_t\left(\omega^{\star}\right) := \left\{
                 \begin{array}{ll}
                   X^{[1]}_t\left(\omega^{[1]}\right),                 & t \in [0;\,1], \\
                   X^{[n]}_t\left(\omega^{[1]}, \, \omega_2, \, \ldots, \, \omega_n\right), & t \in (n-1;\,n],\;\; n \geq 2,
                 \end{array}
               \right.
\]
\[
    A^{\star}_t\left(\omega^{\star}\right) := \left\{
                 \begin{array}{ll}
                   A^{[1]}_t\left(\omega^{[1]}\right),                 & t \in [0;\,1], \\
                   A^{[n]}_t\left(\omega^{[1]}, \, \omega_2, \, \ldots, \, \omega_n\right), & t \in (n-1;\,n],\;\; n \geq 2,
                 \end{array}
               \right.
\]
\[
    M^{\star}_t\left(\omega^{\star}\right) := X^{\star}_t\left(\omega^{\star}\right) - A^{\star}_t\left(\omega^{\star}\right) , \quad t \geq 0.
\]
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It can be shown that $M^{\star} = (M^{\star}_t)_{t \in [0; \, \infty)}$ is a martingale on $\left(\Omega^{\star}, \, \mathcal{F}^{\star}, \, \mathbb{P}^{\star}, \, (\mathcal{F}^{\star}_t)_{t \in [0; \, \infty)}\right)$ (for details see (Borzykh, 2018)).

\medskip

The process $A^{\star} = (A^{\star}_t)_{t \in [0; \, \infty)}$ is a predictable (by continuity) increasing process.

\medskip

Finally, formula~(\ref{sjn82jz}) is obtained from the relations
\[
    \lim_{n \rightarrow \infty}\left( X^{\star}_{n}, \, A^{\star}_{n} \right) =  \left( X^{\star}_{\infty}, \, A^{\star}_{\infty} \right) \text{, \quad} \lim_{n \rightarrow \infty}\left( X^{\circ}_{n}, \,  A^{\circ}_{n} \right) =  \left( X^{\circ}_{\infty}, \, A^{\circ}_{\infty} \right) \text{,}
\]
\[
    \Law\left( X^{\star}_{n}, \, A^{\star}_{n} \right) = \Law\left( X^{\circ}_{n}, \,  A^{\circ}_{n} \right), \;\; n \in \mathbb{N},
\]
and the fact that almost sure convergence implies weak convergence. $\Box$
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\begin{center}
{\Large Thank you for your attention!}
\end{center}
\end{frame}
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