Locally integrable increasing processes with continuous compensators

Dmitriy Borzykh

NRU HSE

October 23, 2020

Dmitriy Borzykh HSE

Locally integrable increasing processes

October 23, 2020 1 / 29

This presentation is based on a published work

(Borzykh, 2018) Borzykh D. On a property of joint terminal distributions of locally integrable increasing processes and their compensators // Theory of Stochastic Processes. 2018. Vol. 23. No. 39 (2). P. 7-20).

I would like to thank my supervisor Prof. A. A. Gushchin for setting the problem and useful advices.

In this presentation we will give a sketch of the proof of the following statement.

A joint distribution of a locally integrable increasing process X° and its compensator A° at a terminal moment of time can be realized as a joint terminal distribution of another locally integrable increasing process X^{*} and its compensator A^{*} , A^{*} being continuous.

Our work is essentially based on A. A. Gushchin's article:

(Gushchin, 2018) A. A. Gushchin, The Joint Law of Terminal Values of a Nonnegative Submartingale and Its Compensator, Theory of Probability and Its Applications 62 (2018), no. 2, 216–235.

In (Gushchin, 2018) a class \mathbb{W} of probability measures on the space $(\mathbb{R}^2_+, \mathcal{B}(\mathbb{R}^2_+))$ is introduced.

It includes all measures μ satisfying the following conditions:

1)
$$\int_{\mathbb{R}^{2}_{+}} (x+y) \mu(dx, dy) < \infty,$$

2)
$$\int_{\mathbb{R}^{2}_{+}} x \mu(dx, dy) = \int_{\mathbb{R}^{2}_{+}} y \mu(dx, dy),$$

3)
$$\forall \lambda \ge 0: \quad \int_{\{y \le \lambda\}} x \mu(dx, dy) \le \int_{\mathbb{R}^{2}_{+}} (y \land \lambda) \mu(dx, dy).$$

It is shown in (Gushchin, 2018) that the joint distribution of terminal values of an integrable increasing process and its compensator belongs to the class \mathbb{W} .

Conversely, given $\mu \in \mathbb{W}$ there is constructed an increasing integrable process such that the joint distribution of terminal values of the process and its compensator is μ and, moreover, the compensator is continuous.

Thus, if $X^{\circ} = (X_t^{\circ})_{t \in [0;\infty)}$ is an integrable increasing process with a compensator $A^{\circ} = (A_t^{\circ})_{t \in [0;\infty)}$, one can define on a certain stochastic basis another integrable increasing process $X^{\star} = (X_t^{\star})_{t \in [0;\infty)}$ with a compensator $A^{\star} = (A_t^{\star})_{t \in [0;\infty)}$, such that

$$\operatorname{Law}\left(X_{\infty}^{\star}, A_{\infty}^{\star}\right) = \operatorname{Law}\left(X_{\infty}^{\circ}, A_{\infty}^{\circ}\right). \tag{1}$$

Moreover, the compensator A^* is continuous.

The main goal of the article is to extend the last statement to the locally integrable case. Namely, we state the following theorem.

Theorem (Main Theorem: Borzykh, 2018, Theorem 1.1)

For any locally integrable increasing process $X^{\circ} = (X_t^{\circ})_{t \in [0;\infty)}$ with a compensator $A^{\circ} = (A_t^{\circ})_{t \in [0;\infty)}$ on some stochastic basis there exists another locally integrable increasing process $X^* = (X_t^*)_{t \in [0;\infty)}$ with a compensator $A^* = (A_t^*)_{t \in [0;\infty)}$, such that relation (1) holds, as well as A^* is continuous.

For more clear exposition we need to introduce you to the main constructions from (Gushchin, 2018).

Theorem (Gushchin, 2018, Proposition 3.6)

Assume that a probability measure $\nu = \nu(dy, dx)$ on $(\mathbb{R}^2_+, \mathcal{B}(\mathbb{R}^2_+))$ satisfies the inequalities

$$\int_{\mathbb{R}^2_+} (x-y)^+ \, \nu(dy, \, dx) \geq \int_{\mathbb{R}^2_+} (y-x)^+ \, \nu(dy, \, dx) \tag{2}$$

and

$$\forall \lambda \geq 0: \quad \int_{\{y \leq \lambda\}} x \, \nu(dy, \, dx) \leq \int_{\mathbb{R}^2_+} (y \wedge \lambda) \, \nu(dy, \, dx). \tag{3}$$

э

Theorem (Gushchin, 2018, Proposition 3.6)

Let us define one special probability space

•
$$\Omega^{\mathfrak{b}} := [0; \infty] \times [0; \infty] \times [0; 1],$$

•
$$\mathfrak{F}^{\mathfrak{b}} = \mathfrak{B}(\Omega)$$

 P^b := ν̄ ⊗ Λ, where ν̄(B) := ν(B ∩ ℝ²₊) and Λ is the Lebesgue measure on [0; 1],

and two random variables $\xi(\omega) := x$, $\eta(\omega) := y$, $\omega = (y, x, u) \in \Omega$.

Theorem (Gushchin, 2018, Proposition 3.6)

Then Law $(\eta, \xi) = \nu$ and there exists a random variable ζ such that $0 \le \zeta \le \xi \land \eta$, and

$$orall \lambda \geq 0: \quad \int_{\{\eta-\zeta \leq \lambda\}} (\xi-\eta+\lambda) \, d\mathbb{P}^{\mathfrak{b}} = \lambda.$$
 (4)

э

3 × 4 3 ×

Lemma (Borzykh, 2018, Lemma 2.1)

Consider an arbitrary measurable space $(\Omega^{\mathfrak{a}}, \mathfrak{F}^{\mathfrak{a}})$ and a Markov kernel Q acting from $(\Omega^{\mathfrak{a}}, \mathfrak{F}^{\mathfrak{a}})$ to $(\mathbb{R}^{2}_{+}, \mathfrak{B}(\mathbb{R}^{2}_{+}))$, and satisfying $Q(\omega^{\mathfrak{a}}; \cdot) \in \mathbb{W}$ for all $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$. We put

$$(\Omega, \mathcal{F}) := (\Omega^{\mathfrak{a}} \times \Omega^{\mathfrak{b}}, \mathcal{F}^{\mathfrak{a}} \otimes \mathcal{F}^{\mathfrak{b}}).$$
(5)

Further, on the set

$$\Omega = \left\{ (\omega^{\mathfrak{a}}, \underbrace{y^{\mathfrak{b}}, x^{\mathfrak{b}}, u^{\mathfrak{b}}}_{=\omega^{\mathfrak{b}}}) \colon \omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}, \ \omega^{\mathfrak{b}} = (y^{\mathfrak{b}}, x^{\mathfrak{b}}, u^{\mathfrak{b}}) \in \Omega^{\mathfrak{b}} \right\},$$

we define functions

$$\xi(\omega^{\mathfrak{a}},\underbrace{y^{\mathfrak{b}},x^{\mathfrak{b}},u^{\mathfrak{b}}}_{=\omega^{\mathfrak{b}}}) = x^{\mathfrak{b}} \quad \text{and} \quad \eta(\omega^{\mathfrak{a}},\underbrace{y^{\mathfrak{b}},x^{\mathfrak{b}},u^{\mathfrak{b}}}_{=\omega^{\mathfrak{b}}}) = y^{\mathfrak{b}},$$

which are *F*-measurable as marginal projections.

Dmitriy Borzykh HSE

Lemma (Borzykh, 2018, Lemma 2.1)

Let us define a Markov kernel $\mathbb{P}^{\mathfrak{a},\mathfrak{b}}$ from $\Omega^{\mathfrak{a}}$ to $(\Omega^{\mathfrak{b}},\mathfrak{F}^{\mathfrak{b}})$ by

$$\mathbb{P}^{\mathfrak{a},\mathfrak{b}}ig(\omega^{\mathfrak{a}};\ B_1 imes B_2 imes B_3ig):= \mathsf{Q}ig(\omega^{\mathfrak{a}};\ (B_2 imes B_1)\cap\mathbb{R}^2_+ig)\cdot\mathsf{A}(B_3),$$
 (6)

where $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$, $B_1 \times B_2 \times B_3 \in \mathfrak{F}^{\mathfrak{b}}$, and Λ is the standard Lebesgue measure.

Then ξ and η satisfy the following property:

$$\mathbb{P}^{\mathfrak{a},\mathfrak{b}}\left(\omega^{\mathfrak{a}};\left\{\omega^{\mathfrak{b}}:\left[\begin{array}{cc}\xi(\omega^{\mathfrak{a}},\omega^{\mathfrak{b}})\\\eta(\omega^{\mathfrak{a}},\omega^{\mathfrak{b}})\end{array}\right]\in C\right\}\right)=\mathsf{Q}(\omega^{\mathfrak{a}};C),\quad C\in\mathcal{B}(\mathbb{R}^{2}_{+}).$$
(7)

Lemma (Borzykh, 2018, Lemma 2.1)

In addition, we can find an \mathcal{F} -measurable function $\zeta \colon \Omega \to [0, \infty]$, $\zeta = \zeta(\omega^{\mathfrak{a}}, \omega^{\mathfrak{b}}), \, \omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}} \in \Omega^{\mathfrak{b}}$, which meets, for any $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$, the following two requirements:

$$\forall \, \omega^{\mathfrak{b}} \in \Omega^{\mathfrak{b}} \colon \, \mathfrak{0} \leq \zeta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \leq \xi(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \wedge \eta(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}), \tag{8}$$

and, for all $\lambda \geq 0$,

n

$$\int_{\{\omega^{\mathfrak{b}}: \eta(\omega^{\mathfrak{a}}, \omega^{\mathfrak{b}}) - \zeta(\omega^{\mathfrak{a}}, \omega^{\mathfrak{b}}) \leq \lambda\}} \left(\xi(\omega^{\mathfrak{a}}, \omega^{\mathfrak{b}}) - \eta(\omega^{\mathfrak{a}}, \omega^{\mathfrak{b}}) + \lambda \right) \mathbb{P}^{\mathfrak{a}, \mathfrak{b}} \left(\omega^{\mathfrak{a}}; d\omega^{\mathfrak{b}} \right) = \lambda.$$
(9)

3

Proof.

For any fixed point $\omega^{\mathfrak{a}} \in \Omega^{\mathfrak{a}}$ we define $\mathcal{F}^{\mathfrak{b}}$ -measurable function $\zeta(\omega^{\mathfrak{a}}, \cdot)$ as in the proof of Proposition 3.6 (Gushchin, 2018), taking measure

$$u(B_y imes B_x) = \mathsf{Q}(\omega^{\mathfrak{a}}; B_x imes B_y), \quad B_x imes B_y \in \mathfrak{B}(\mathbb{R}^2_+),$$

and probability space

$$\left(\Omega^{\mathfrak{b}},\,\mathcal{F}^{\mathfrak{b}},\,\mathbb{P}^{\mathfrak{b}}
ight)=\left(\Omega^{\mathfrak{b}},\,\mathcal{F}^{\mathfrak{b}},\,\mathbb{P}^{\mathfrak{a},\mathfrak{b}}\bigl(\omega^{\mathfrak{a}};\,\cdot\,\bigr)
ight).$$

Referring again to Proposition 3.6 (Gushchin, 2018), we see that ζ satisfies conditions (8) and (9), as well as functions ξ and η satisfy (7).

Difficult part is to prove that function ζ is measurable not only as a function of variable $\omega^{\mathfrak{b}}$ for fixed $\omega^{\mathfrak{a}}$, but it is also measurable as a function of two variables with respect to the σ -field $\mathcal{F} = \mathcal{F}^{\mathfrak{a}} \otimes \mathcal{F}^{\mathfrak{b}}$. We will omit the discussion this question here. For details see (Borzykh, 2018; Lemma 2.1).

Theorem (Gushchin, 2018, Proposition 3.4)

Let V and W be random variables with values in \mathbb{R}_+ and \mathbb{R}_+ , respectively, on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We also assume that $\{W = \infty\} \subseteq \{V = 0\}$ a.s. and

$$\forall \lambda \ge 0: \quad \mathbb{E}\big[V\mathbb{1}_{\{W \le \lambda\}}\big] = \mathbb{E}[W \land \lambda]. \tag{10}$$

For $t \ge 0$ we define

$$\mathfrak{G}_t := \Big\{ C \in \mathfrak{F} \colon C \cap \{W > t\} = \emptyset \text{ or } C \cap \{W > t\} = \{W > t\} \Big\}.$$

We set

$$X_t := V \mathbb{1}_{\{W \leq t\}}, \quad A_t := W \wedge t, \quad t \geq 0.$$

Then $X = (X_t)_{t \ge 0}$ is an (\mathcal{G}_t) -adapted locally integrable increasing process, $A = (A_t)_{t \ge 0}$ is its (\mathcal{G}_t) -compensator, and $(X_{\infty}, A_{\infty}) = (V, W)$ a.s.

э.

Theorem (Gushchin, 2018, Theorem 2.1)

(i) Let X be a nonnegative submartingale of class (D), $X_0 = 0$, with the Doob-Meyer decomposition X = M + A into a sum of a uniformly integrable martingale M and a predictable integrable increasing process A, and let T be a stopping time. Then Law $(X_T, A_T) \in \mathbb{W}$.

(ii) Let $\mu \in \mathbb{W}$. Then on some stochastic basis there exists an increasing process X with compensator A such that Law $(X_{\infty}, A_{\infty}) = \mu$.

Let us discuss the proof of statement (ii) of this theorem.

Let $\mu \in \mathbb{W}$.

Put
$$u(B_y imes B_x) := \mu(B_x imes B_y), \ B_x imes B_y \in \mathfrak{B}(\mathbb{R}^2_+).$$

This measure ν satisfies the requirements of Proposition 3.6 (Gushchin, 2018).

In force of Proposition 3.6 (Gushchin, 2018) there are probability space $(\Omega^{\mathfrak{b}}, \mathcal{F}^{\mathfrak{b}}, \mathbb{P}^{\mathfrak{b}})$ and random variables ξ , η , ζ such that $\operatorname{Law}(\eta, \xi) = \nu$, $0 \leq \zeta \leq \xi \wedge \eta$ and

$$orall \lambda \geq 0: \quad \int_{\{\eta-\zeta \leq \lambda\}} (\xi-\eta+\lambda) \, d\mathbb{P}^{\mathfrak{b}} = \lambda.$$

From definition of ν and condition $Law(\eta, \xi) = \nu$ it follows, that $Law(\xi, \eta) = \mu$.

Now, put $V := \xi - \zeta$ and $W := \eta - \zeta$.

It is easy to check that V and W meet the requirements of Proposition 3.4 (Gushchin, 2018).

Thus, we can introduce a filtration

$$\mathfrak{G}^{\mathfrak{b}}_{t} := \left\{ C \in \mathfrak{F}^{\mathfrak{b}} \colon \ C \cap \{W > t\} = \emptyset \ \text{ or } \ C \cap \{W > t\} = \{W > t\} \right\}$$

 $t\geq$ 0, on probability space $\left(\Omega^{\mathfrak{b}},\,\mathfrak{F}^{\mathfrak{b}},\,\mathbb{P}^{\mathfrak{b}}
ight)$, and the processes

$$V \mathbb 1_{\{W \leq t\}}$$
, and $W \wedge t$, $t \geq 0$,

will be an $(\mathcal{G}_t^{\mathfrak{h}})$ -adapted locally integrable increasing process, and its $(\mathcal{G}_t^{\mathfrak{h}})$ -compensator correspondingly.

Let us set

$$\begin{aligned} \mathcal{F}_t^{\mathfrak{b}} &:= \begin{cases} \mathcal{G}_{\frac{t}{1-t}}^{\mathfrak{b}}, & \text{if } t < 1, \\ \mathcal{F}^{\mathfrak{b}}, & \text{if } t \geq 1, \end{cases} \\ X_t &:= \begin{cases} V\mathbbm{1}_{\{W \leq \frac{t}{1-t}\}}, & \text{if } t < 1, \\ V + ((t \wedge 2) - 1)\zeta, & \text{if } t \geq 1, \end{cases} \\ A_t &:= \begin{cases} \frac{t}{1-t} \wedge W, & \text{if } t < 1, \\ W + ((t \wedge 2) - 1)\zeta, & \text{if } t \geq 1. \end{cases} \end{aligned}$$

It can be shown that

- the process X is an integrable increasing process,
- the process M := X A is an $(\mathcal{F}_t^{\mathfrak{b}})$ -martingale.

As the process A is continuous and $(\mathcal{F}_t^{\mathfrak{h}})$ -adapted, the process A is predictable. Thus, A is a compensator of X.

Dmitriy Borzykh HSE

Lemma (Borzykh, 2018, Lemma 2.2)

Suppose all the conditions of Lemma 2.1 (Borzykh, 2018) are satisfied. Then one can define a filtration $(\mathcal{F}_t)_{t\in[0;1]}$ on the measurable space $(\Omega, \mathcal{F}) = (\Omega^{\mathfrak{a}} \times \Omega^{\mathfrak{b}}, \mathcal{F}^{\mathfrak{a}} \otimes \mathcal{F}^{\mathfrak{b}})$, and a pair of increasing processes $X = (X_t)_{t\in[0;1]}$ and $A = (A_t)_{t\in[0;1]}$, $X_0 = 0$, $A_0 = 0$, such that (i) the processes X and A are adapted, as well as A is continuous, and

$$\mathbb{P}^{\mathfrak{a},\mathfrak{b}}\left(\omega^{\mathfrak{a}};\left\{\omega^{\mathfrak{b}}:\left[\begin{array}{c}X_{1}(\omega^{\mathfrak{a}},\omega^{\mathfrak{b}})\\A_{1}(\omega^{\mathfrak{a}},\omega^{\mathfrak{b}})\end{array}\right]\in C\right\}\right)=\mathbb{Q}(\omega^{\mathfrak{a}};C), \ C\in\mathcal{B}(\mathbb{R}^{2}_{+}), \ (11)$$

(ii) the process $M_t := X_t - A_t$, $t \in [0; 1]$, satisfies the following condition: for all $0 \le s \le t \le 1$, $\omega^a \in \Omega^a$ and $B \in \mathcal{F}_s$,

$$\int_{\Omega^{\mathfrak{b}}} \left(M_t(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) - M_s(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \right) \mathbb{1}_B(\omega^{\mathfrak{a}}, \, \omega^{\mathfrak{b}}) \mathbb{P}^{\mathfrak{a}, \mathfrak{b}}(\omega^{\mathfrak{a}}; \, d\omega^{\mathfrak{b}}) = 0.$$
(12)

Lemma (Borzykh, 2018, Lemma 3.1)

Let a locally integrable increasing process $X^{\circ} = (X_t^{\circ})_{t \in [0, \infty)}$ such that $\mathbb{E}[X_n^{\circ}] < \infty$, for any $n \in \mathbb{N}$, be given on a stochastic basis $(\Omega^{\circ}, \mathcal{F}^{\circ}, \mathbb{P}^{\circ}, (\mathcal{F}_t^{\circ})_{t \in [0, \infty)}); A^{\circ} = (A_t^{\circ})_{t \in [0, \infty)}$ being its compensator. Let also another integrable increasing process $X^{[n]} = (X_t^{[n]})_{t \in [0; n]}$ on a different stochastic basis $(\Omega^{[n]}, \mathcal{F}^{[n]}, \mathbb{P}^{[n]}, (\mathcal{F}_t^{[n]})_{t \in [0; n]}), n \in \mathbb{N}$, with a compensator $A^{[n]} = (A_t^{[n]})_{t \in [0; n]}$ be given. Moreover, $\operatorname{Law} \begin{bmatrix} X_n^{[n]} \\ A_n^{[n]} \end{bmatrix} = \operatorname{Law} \begin{bmatrix} X_n^{\circ} \\ A_n^{\circ} \end{bmatrix}.$

Lemma (Borzykh, 2018, Lemma 3.1)

Then one can define a pair of processes $X^{[n+1]} = (X_t^{[n+1]})_{t \in [0: n+1]}$ and $A^{[n+1]} = (A_t^{[n+1]})_{t \in [0; n+1]}$ on a certain extension $(\Omega^{[n+1]}, \mathcal{F}^{[n+1]}, \mathbb{P}^{[n+1]}, (\mathcal{F}^{[n+1]}_t)_{t \in [0; n+1]})$ of a stochastic basis $(\Omega^{[n]}, \mathcal{F}^{[n]}, \mathbb{P}^{[n]}, (\mathcal{F}^{[n]}_t)_{t \in [0; n]})$, satisfying the following conditions: (i) $X^{[n+1]}$ is an integrable increasing process, and process $A^{[n+1]}$ is its compensator, (ii) the processes $(X_t^{[n]})_{t \in [0; n]}$ and $(X_t^{[n+1]})_{t \in [0; n]}$ coincide, (iii) the processes $(A_t^{[n]})_{t \in [0; n]}$ and $(A_t^{[n+1]})_{t \in [0; n]}$ coincide, (iv) $\operatorname{Law}\begin{bmatrix} X_n^{[n+1]}\\ A_n^{[n+1]} \end{bmatrix} = \operatorname{Law}\begin{bmatrix} X_n^{\circ}\\ A_n^{\circ} \end{bmatrix}$ and $\operatorname{Law}\begin{bmatrix} X_{n+1}^{[n+1]}\\ A_{n+1}^{[n+1]} \end{bmatrix} = \operatorname{Law}\begin{bmatrix} X_{n+1}^{\circ}\\ A_{n+1}^{\circ} \end{bmatrix}$, (v) process $(A_t^{[n+1]})_{t \in [n; n+1]}$ is continuous.

Dmitriy Borzykh HSE

Let a locally integrable increasing process $X^{\circ} = (X_t^{\circ})_{t \in [0;\infty)}$ and a localizing sequence of finite stopping times $(T_n)_{n=1}^{\infty}$ be given. It can be shown that without loss of generality one can assume that $T_n = n, n \in \mathbb{N}$ (for details see (Borzykh, 2018)).

We start with the following recursive procedure.

Step 1. Applying Theorem 2.1 (i) (Gushchin, 2018) to the integrable increasing process $(X_t^{\circ})_{t \in [0; 1]}$, as well as its compensator $(A_t^{\circ})_{t \in [0; 1]}$ and a stopping time $\mathcal{T} = 1$, we get Law $(X_1^{\circ}, A_1^{\circ}) \in \mathbb{W}$.

Then by Theorem 2.1 (ii) (Gushchin, 2018), there exists a stochastic basis $\mathbb{B}^{[1]} := (\Omega^{[1]}, \mathcal{F}^{[1]}, \mathbb{P}^{[1]}, (\mathcal{F}^{[1]}_t)_{t \in [0; 1]})$, and an integrable process $(X_t^{[1]})_{t \in [0; 1]}$ on it with a continuous compensator $(A_t^{[1]})_{t \in [0; 1]}$, such that $\operatorname{Law} \left(X_1^{[1]}, A_1^{[1]} \right) = \operatorname{Law} (X_1^{\circ}, A_1^{\circ}).$

All the steps starting from the second are performed similarly.

Step n + 1, $n \ge 1$. Remark that the pair of processes $(X_t^{\circ})_{t \in [0;\infty)}$ and $(A_t^{\circ})_{t \in [0;\infty)}$ and the pair of processes $(X_t^{[n]})_{t \in [0;n]}$ and $(A_t^{[n]})_{t \in [0;n]}$ fit the requirements of Lemma 3.1 (Borzykh, 2018).

So, applying this lemma, we build a stochastic basis

$$\mathbb{B}^{[n+1]} := (\Omega^{[n+1]}, \mathcal{F}^{[n+1]}, \mathbb{P}^{[n+1]}, (\mathcal{F}^{[n+1]}_t)_{t \in [0; n+1]}),$$

and an integrable increasing process $(X_t^{[n+1]})_{t \in [0; n+1]}$ with a continuous compensator $(A_t^{[n+1]})_{t \in [0; n+1]}$, satisfying the condition

Law
$$\left(X_{n+1}^{[n+1]}, A_{n+1}^{[n+1]}\right) = Law \left(X_{n+1}^{\circ}, A_{n+1}^{\circ}\right)$$

Now, we are ready to define the required stochastic basis

$$\mathbb{B}^{\star} := ig(\Omega^{\star}, \, \mathfrak{F}^{\star}, \, \mathbb{P}^{\star}, \, (\mathfrak{F}^{\star}_t)_{t \in [0\,;\,\infty)} ig)$$

and a locally integrable increasing process $X^* = (X_t^*)_{t \in [0;\infty)}$ on it with a continuous compensator $A^* = (A_t^*)_{t \in [0;\infty)}$. Put:

$$\Omega^{\star} := \Omega^{[1]} \times (\Omega)^{\infty}, \quad \mathcal{F}^{\star} := \mathcal{F}^{[1]} \otimes \bigotimes_{i=2}^{\infty} \mathcal{F},$$

$$\mathcal{F}_{t}^{\star} := \begin{cases} \mathcal{F}_{t}^{[1]} \otimes \{\emptyset, \Omega\}^{\infty}, & t \in [0; 1], \\\\ \mathcal{F}_{1}^{[1]} \otimes \mathcal{F}_{t-1} \otimes \{\emptyset, \Omega\}^{\infty}, & t \in (1; 2], \\\\ \mathcal{F}_{1}^{[1]} \otimes \left(\bigotimes_{i=2}^{n-1} \mathcal{F}_{1}\right) \otimes \mathcal{F}_{t-n+1} \otimes \{\emptyset, \Omega\}^{\infty}, & t \in (n-1; n], n \geq 3. \end{cases}$$

Next, in view of the lonescu-Tulcea theorem (see e.g. (Shiryaev, Probability, 2016, vol. 1)) on the measurable space $(\Omega^*, \mathcal{F}^*)$ there exists a unique probability measure \mathbb{P}^* , such that

$$\forall n \in \mathbb{N} \quad \forall B^{[n]} \in \mathcal{F}^{[n]}: \quad \mathbb{P}^{\star}\big(B^{[n]} \times (\Omega)^{\infty}\big) = \mathbb{P}^{[n]}\big(B^{[n]}\big).$$

Further, let $\omega^\star = \left(\omega^{[1]},\,\omega_2,\,\ldots,\,\omega_n,\,\ldots
ight)\in \Omega^\star.$ Set

$$X_t^{\star}(\omega^{\star}) := \begin{cases} X_t^{[1]}(\omega^{[1]}), & t \in [0; 1], \\ X_t^{[n]}(\omega^{[1]}, \omega_2, \ldots, \omega_n), & t \in (n-1; n], n \ge 2, \end{cases}$$

$$egin{aligned} \mathcal{A}_t^\star\left(\omega^\star
ight) &:= \left\{ egin{aligned} & \mathcal{A}_t^{[1]}\left(\omega^{[1]}
ight), & t\in [0;\,1], \ & \mathcal{A}_t^{[n]}\left(\omega^{[1]},\,\omega_2,\,\ldots,\,\omega_n
ight), & t\in (n-1;\,n], & n\geq 2, \ & \mathcal{M}_t^\star\left(\omega^\star
ight) &:= X_t^\star\left(\omega^\star
ight) - \mathcal{A}_t^\star\left(\omega^\star
ight), & t\geq 0. \end{aligned}
ight. \end{aligned}$$

It can be shown that $M^* = (M_t^*)_{t \in [0;\infty)}$ is a martingale on $(\Omega^*, \mathcal{F}^*, \mathbb{P}^*, (\mathcal{F}_t^*)_{t \in [0;\infty)})$ (for details see (Borzykh, 2018)). The process $A^* = (A_t^*)_{t \in [0;\infty)}$ is a predictable (by continuity) increasing process.

Finally, formula (1) is obtained from the relations

$$\lim_{n \to \infty} (X_n^{\star}, A_n^{\star}) = (X_{\infty}^{\star}, A_{\infty}^{\star}), \quad \lim_{n \to \infty} (X_n^{\circ}, A_n^{\circ}) = (X_{\infty}^{\circ}, A_{\infty}^{\circ}),$$
$$\operatorname{Law} (X_n^{\star}, A_n^{\star}) = \operatorname{Law} (X_n^{\circ}, A_n^{\circ}), \quad n \in \mathbb{N},$$

and the fact that almost sure convergence implies weak convergence. \Box

Thank you for your attention!