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Lévy Process

A stochastic process {Xt : t ≥ 0} is a Lévy process if X0 = 0
and

I (Independent Increments) For any n ≥ 1 and
0 ≤ t0 < t1 < ... < tn, the random variables Xt0 ,
Xt1 −Xt0 ,...,Xtn −Xtn−1 are independent.

I (Stationary Increments) The distribution of Xs+t −Xs does
not depend on s.

I Stochastic Continuity
I Càdlàg Paths
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Infinitely Divisible Distributions

The characteristic function of an infinitely divisible distribution µ
can be written in the form

µ̂(z) = E
[
eizX

]
= exp

{
−z

2

2
A+ ibz

+

∫
R

(
eixz − 1− izxh(x)

)
L(dx)

}
, z ∈ R

where A ≥ 0, b ∈ R, L is a Lévy measure satisfying

L({0}) = 0 and
∫
R

(x2 ∧ 1)L(dx) <∞.

For fixed h, the parameters A,L, b uniquely determine the
distribution and we write

µ = ID(A,L, b)h.
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ID Distributions and Lévy Process

Associated with every infinitely divisible distribution
µ = ID(A,L, b)h is a Lévy process {Xt : t ≥ 0}, where X1 ∼ µ.

The characteristic function of Xt is (µ̂(z))t.

We denote the distribution of Xt by µt
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Tails of Infinitely Divisible Distributions

The Lévy measure governs the jumps of the process,
specifically

L(B) = E [# {t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ B}] , B ∈ B(R).

Tails of the distribution µ are intimately related to the tails of the
Lévy measure L.

In particular for β > 0, if X ∼ µ = ID(A,L, b)h then

E|X|β <∞ if and only if
∫
|x|>1

|x|βL(dx) <∞.

Michael Grabchak Simulation of Tempered Lévy Processes



Tails of Infinitely Divisible Distributions

The Lévy measure governs the jumps of the process,
specifically

L(B) = E [# {t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ B}] , B ∈ B(R).

Tails of the distribution µ are intimately related to the tails of the
Lévy measure L.

In particular for β > 0, if X ∼ µ = ID(A,L, b)h then

E|X|β <∞ if and only if
∫
|x|>1

|x|βL(dx) <∞.

Michael Grabchak Simulation of Tempered Lévy Processes



Tails of Infinitely Divisible Distributions

The Lévy measure governs the jumps of the process,
specifically

L(B) = E [# {t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ B}] , B ∈ B(R).

Tails of the distribution µ are intimately related to the tails of the
Lévy measure L.

In particular for β > 0, if X ∼ µ = ID(A,L, b)h then

E|X|β <∞ if and only if
∫
|x|>1

|x|βL(dx) <∞.

Michael Grabchak Simulation of Tempered Lévy Processes



α-Stable Distributions

For α ∈ (0, 2), α-Stable Distributions are a class of infinitely
divisible distributions with Lévy measure

Mα(dx) = c−x
−1−α1x<0dx+ c+x

−1−α1x>0dx.

These models are used for many applications and often provide
a good fit to data.

However, they have an infinite variance, which is not realistic for
many applications.

In practice there are often real-world frictions preventing such
heavy tails.
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Classical Tempered Stable Distributions

One way to deal with this is to consider distributions that look
“stable-like” in the center, but have lighter tails.

For α ∈ (0, 2), classical tempered α-Stable Distributions are a
class of infinitely divisible distributions with Lévy measure

M(dx) = c−e
−b−xx−1−α1x<0dx+ c+e

−b+xx−1−α1x>0dx.

Tweedie (1984), Hougaard (1986), Koponen (1995), Boyarchenko
and Levendorskii (2000), Carr, Geman, Madan, and Yor (2002)
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General Tempered Stable Distributions

Rosiński (2007) and Rosiński and Sinclair (2010) suggested
the more general form

M(dx) = c−g(x)x−1−α1x<0dx+ c+g(x)x−1−α1x>0dx.

These are called general tempered stable distributions and
g : R 7→ [0, 1] is called the tempering function.

We extend this idea to more general infinitely divisible
distributions
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Tempered Lévy Measures

Let L be a Lévy measure and let g be a Borel function such that

A1. 0 ≤ g(x) ≤ 1 for all x ∈ R, and
A2. ∫

R
(|xh(x)| ∨ 1) (1− g(x))L(dx) <∞.

Now set
L̃(dx) = g(x)L(dx).

We call L̃ the tempered Lévy measure and we call g the
tempering function.
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Tempered Infinitely Divisible Distributions

Let µ = ID(A,L, b)h and let

µ̃ = ID(A, L̃, b̃)h,

where
b̃ = b−

∫
R
xh(x) (1− g(x))L(dx).

We call µ̃ the tempering of µ.
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Tempered Lévy Processes

Let X = {Xt : t ≥ 0} be a Lévy process with
X1 ∼ µ = ID(A,L, b)h.

Let X̃ = {X̃t : t ≥ 0} be a Lévy process with
X̃1 ∼ µ̃ = ID(A, L̃, b̃)h.

Note that

L(dx) = g(x)L(dx) + (1− g(x))L(dx) = L̃(dx) + ρ(dx)

where
ρ(dx) = (1− g(x))L(dx).

We must understand the process governed by ρ.
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Removed Jumps

Let
ρ(dx) = (1− g(x))L(dx).

and
η := ρ(R) <∞.

Define the probability measure

ρ1(B) =
ρ(B)

η
, B ∈ B(R).

Let Z1, Z2, . . .
iid∼ ρ1 and let {Nt : t ≥ 0} be an independent

Poisson process with intensity η. Now set

Vt =

Nt∑
i=1

Zi, t ≥ 0.
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Process of Removed Jumps

The characteristic function of the compound Poisson process

Vt =

Nt∑
i=1

Zi, t ≥ 0.

is

E
[
ei〈Vtz〉

]
= exp

{
t

∫
R

(
eixz − 1

)
ρ(dx)

}
, z ∈ R.

Let T = inf{t : Nt > 0} and note that T ∼ exp(η), i.e.

P (T > t) = e−tη, t > 0.
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Main Theorem

Theorem
Let µ = ID(A,L, b)h, µ̃ = ID(A, L̃, b̃)h, V = {Vt : t ≥ 0}, and T
be as described above. Let X̃ = {X̃t : t ≥ 0} be a Lévy
process, independent of V , with X̃1 ∼ µ̃ and set

Xt = X̃t + Vt, t ≥ 0.

1. The process X = {Xt : t ≥ 0} is a Lévy process with X1 ∼ µ.
2. If 0 ≤ t < T , then Xt = X̃t.
3. For any B ∈ B(R) and t ≥ 0 we have

P (X̃t ∈ B) ≤ etηP (Xt ∈ B).

For relativistic stable distributions, a variant of this was given in
Ryznar (2002).
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Proof (sketch)

We have
Xt = X̃t + Vt, t ≥ 0.

1. Since the sum of independent Lévy processes is a Lévy
process, we just need to check that the characteristic function
of µt is the product of the characteristic function of X̃t and Vt.

2. Since T = inf{t : Nt > 0}, Vt = 0 for t < T . Hence, if
0 ≤ t < T , then Xt = X̃t.
3. Since X̃ and T are independent, by Part 2, we have

P (X̃t ∈ B)e−tη = P (X̃t ∈ B)P (T > t) = P (X̃t ∈ B, T > t)

= P (Xt ∈ B, T > t) ≤ P (Xt ∈ B).

Hence
P (X̃t ∈ B) ≤ etηP (Xt ∈ B).

Michael Grabchak Simulation of Tempered Lévy Processes



Proof (sketch)

We have
Xt = X̃t + Vt, t ≥ 0.

1. Since the sum of independent Lévy processes is a Lévy
process, we just need to check that the characteristic function
of µt is the product of the characteristic function of X̃t and Vt.
2. Since T = inf{t : Nt > 0}, Vt = 0 for t < T . Hence, if
0 ≤ t < T , then Xt = X̃t.

3. Since X̃ and T are independent, by Part 2, we have

P (X̃t ∈ B)e−tη = P (X̃t ∈ B)P (T > t) = P (X̃t ∈ B, T > t)

= P (Xt ∈ B, T > t) ≤ P (Xt ∈ B).

Hence
P (X̃t ∈ B) ≤ etηP (Xt ∈ B).

Michael Grabchak Simulation of Tempered Lévy Processes



Proof (sketch)

We have
Xt = X̃t + Vt, t ≥ 0.

1. Since the sum of independent Lévy processes is a Lévy
process, we just need to check that the characteristic function
of µt is the product of the characteristic function of X̃t and Vt.
2. Since T = inf{t : Nt > 0}, Vt = 0 for t < T . Hence, if
0 ≤ t < T , then Xt = X̃t.
3. Since X̃ and T are independent, by Part 2, we have

P (X̃t ∈ B)e−tη = P (X̃t ∈ B)P (T > t) = P (X̃t ∈ B, T > t)

= P (Xt ∈ B, T > t) ≤ P (Xt ∈ B).

Hence
P (X̃t ∈ B) ≤ etηP (Xt ∈ B).

Michael Grabchak Simulation of Tempered Lévy Processes



Rejection Sampling

If we know how to simulate from µt, then this gives us a way to
use rejection sampling to simulate from µ̃t.

Assume that Xt and X̃t have pdfs ft and f̃t, respectively.

This holds e.g. if L(dx) = `(x)dx and
∫
R g(x)`(x)dx =∞.

Theorem 1 implies that, for Lebesgue almost every x,

f̃t(x) ≤ etηft(x),

Thus, we can set up a rejection sampling algorithm to sample
from f̃t as follows.
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Algorithm

Algorithm 1.
Step 1. Independently simulate U ∼ U(0, 1) and Y ∼ ft.
Step 2. If U ≤ e−ηtf̃t(Y )/ft(Y ) accept, otherwise reject and go
back to Step 1.

The probability of acceptance on a given iteration is pt = e−ηt.

The expected number of iterations before the first acceptance is
It = eηt.

When t→ 0 then pt → 1 and It → 1.

Thus the algorithm works well for small t.
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Algorithm

Algorithm 1.
Step 1. Independently simulate U ∼ U(0, 1) and Y ∼ ft.
Step 2. If U ≤ e−ηtf̃t(Y )/ft(Y ) accept, otherwise reject and go
back to Step 1.

The probability of acceptance on a given iteration is pt = e−ηt.

The expected number of iterations before the first acceptance is
It = eηt.

However, when t→∞ then pt → 0 and It →∞.

Thus the algorithm fails for large t.
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Medium Size t

When t is “medium” size, we can do the following:

For some n ∈ N, use Algorithm 1 to sample

Y1, Y2, . . . , Yn
iid∼ f̃t/n.

Then
X̃t = Y1 + Y2 + · · ·+ Yn ∼ f̃t.

In this case, we only expect to need nIt/n = neηt/n iterations.

The optimal choice of n is near ηt.
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Medium Size t (Example)

Say we want to simulate one observation when t = 10 and
η = 1.

To do this directly, we expect to need I10 = e10 ≈ 22026
iterations.

To simulate 10 observations when t = 1 and η = 1 we only
expect to need 10I1 = 10 ∗ e1 ≈ 27 iterations.
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Simulations

Fix α ∈ (0, 1). Let µ = ID(0,Mα, 0)0 be a symmetric α-stable
distribution with

Mα(dx) = c|x|−1−αdx.

Fix ` > 0, consider the tempering function

g(x) = α
α+ `+ 1

2Γ(1− α)

∫ ∞
0

e−|x|u(1 + 1/u)−2−α−`u−2−αdu.

and let µ̃ = ID(0, M̃α, 0)0.

µ̃ is a tempered stable distribution for which, up to now, there
has been no exact simulation technique beyond the inversion
method.
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Simulations

For our simulations, we take α = .75, ` = 1, and c = 0.059.

This choice of c ensures that η = 1.

We simulated 3000 observations from µ.

We expect to obtain 3000 ∗ e−1 = 1103.6 observation.

We obtained 1110 observations.
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KDE for Simulated Data
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Lévy Process

We convert the 1110 observations {Y1, Y2, . . . , Y1110} into a
simulated Lévy process by taking

Xt =

t∑
i=1

Yi, t = 1, 2, . . . , 1110.
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Simulated Lévy Processes
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Comparison with Inversion Method

Algorithm 1 Inversion Method
t run time iterations obs run time obs ratio
1 24.71 3000 1121 285.21 1000 0.09
2 47.40 6000 1105 255.88 1000 0.19
5 118.56 15000 1104 224.23 1000 0.53

10 237.75 30000 1084 193.32 1000 1.23
20 443.29 56000 1024 191.01 1000 2.32

Here Algorithm 1 is performed without the modification.
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Comparison with Inversion Method

Algorithm 1 Inversion Method
α ` run time obs run time obs ratio

.50 0.5 66.841 sec 1057 785.870 sec 1000 0.085

.50 1.0 30.531 sec 1116 338.867 sec 1000 0.090

.50 5.0 47.035 sec 1090 509.506 sec 1000 0.092

.75 0.5 53.346 sec 1124 668.588 sec 1000 0.080

.75 1.0 23.844 sec 1082 282.788 sec 1000 0.084

.75 5.0 37.353 sec 1093 448.820 sec 1000 0.083

.95 0.5 51.121 sec 1101 601.804 sec 1000 0.084

.95 1.0 23.444 sec 1096 278.804 sec 1000 0.084

.95 5.0 38.190 sec 1100 470.784 sec 1000 0.081

Table: Here t = 1 and η = 1. For Algorithm 1, the obs column gives
the number of random variables obtained based on a sample for 3000
from the stable distribution.
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Part II: Simulation of Tempered Stable
OU-Processes
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TSOU-Processes

We can use the results of the previous section to simulate other
related processes.

In this part we discuss simulation of Tempered Stable
Processes of Ornstein-Uhlenbeck-type or TSOU-processes

Such processes are mean reverting, which makes them useful
for a variety of application.

In math finance that are often used to model:
I Stochastic volatility
I Stochastic interest rate
I Conversion rates
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Generalized TS Distributions

Recall that a general tempered stable distribution has a Lévy
measure of the form

M(dx) = c−g(x)x−1−α1x<0dx+ c+g(x)x−1−α1x>0dx.

where α ∈ (0, 2) and g is a tempering function. We denote the
corresponding distribution TSα(g, c−, c+).

Recall that
A1. 0 ≤ g(x) ≤ 1 for all x ∈ R, and
A2. ∫

R
(|xh(x)| ∨ 1) (1− g(x))L(dx) <∞.

In addition, we assume that
A3. g(x) is monotonely increasing on (−∞, 0) and monotonely

decreasing on (0,∞).
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Generalized TS Distributions are Selfdecomposable

The additional condition ensure that the distribution is
selfdecomposable.

This implies that
I The distribution has a unimodal pdf
I The distribution is the stationary distribution of some

OU-process
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OU-Processes

Let Z = {Zt : t ≥ 0} be a Lévy process with Z1 = ID(A,M, b),
let λ > 0, and define a process Yt by the stochastic diff eq

dYt = −λYtdt+ dZt

The solution is a Markov processes of the form

Yt = e−λtY0 +

∫ t

0
e−λ(t−s)dZs.

We call this an OU-process and we call Z the BDLP.

For A = 0 and an appropriate choice of M , the stationary
distribution of this process is tempered stable

We call it a TSOU-Process
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Transition Laws of TSOU-Processes

Theorem
Let {Yt : t ≥ 0} be a TSOU-process with parameter λ > 0 and
limiting distribution TSα(g, c−, c+). Under mild conditions on g,
for t > 0 if we are given Ys = y, then

Ys+t
d
= e−λty + dα,λ,t +X0 +

N∑
j=1

Xj .

where N,X0, X1, X2, X3, . . . are indep. random variables with:

1. X0 ∼ TSα(g, c′−, c
′
+)

2. N has a Poisson distribution with mean Ke−αλt.
3. X1, X2, X3, . . . are iid random variables with pdf

h(u) =
1

K

(
g(u)− g(ueλt)

)
u−1−α
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Modified Log-Laplace Distribution

A modified log-Laplace distribution has pdf

g(x;α, p, δ) =
αδp

αδp + p− α
δ−(p−α)(p− α)xp−α−11[0<x≤δ]

+
p− α

αδp + p− α
αδαx−1−α1[x>δ].

We denote this by MLL(α, p, δ).

If U1, U2
iid∼ U(0, 1), then

Y = U
1/(p−α)
1 δ1[U2<q] + U

−1/α
1 δ1[U2≥q] ∼ MLL(α, p, δ).
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Class F

Without loss of generality, we assume that g(u) = 0 for u < 0
and the general case is a mixture of such cases.

We assume that in a neighborhood of 0, g satisfied a
Lipschitz-type condition. Specifically that for some M, ε, p > 0, if
u, v ∈ (0, ε)

|g(u)− g(v)| ≤M |up − vp| .

In this case, we say that g belongs to Class F and write
g ∈ CFα(ε,M, p).

The TS distribution studied in Rosiński (2007) or G. (2012,
2016) belong to Class F.
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Simulation From h

We want to simulate from

h(u) =
1

K

(
g(u)− g(ueλt)

)
u−1−α

If g ∈ CFα(ε,M, p) and f is the pdf of MLL(α, p, δ0), then

h(u) ≤ V f(u), u > 0,
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Simulation From h

Algorithm 2.
1. Independently simulate U ∼ U(0, 1) and Y ∼ MLL(α, p, δ0).
2. If U ≤ ϕ(Y ) return Y , otherwise go back to step 1.

Where

ϕ(u) =
g(u)− g(ueλt)(

up1[0<u≤δ0] + 1[u>δ0]
)

max {1,M (epλt − 1)}
.

Under addition assumptions, we can take the proposed
distribution to be a generalized gamma distribution, which
improves performance.
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Simulations

We perform a series of simulations.

We again focus on the case where

g(x) = α
α+ `+ 1

2Γ(1− α)

∫ ∞
0

e−|x|u(1 + 1/u)−2−α−`u−2−αdu.
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Simulation Results
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Figure: KDE (solid line) with the true pdf (dashed line) overlaid.
These are presented at two scales.
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Simulated TSOU-processes
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Figure: We simulated 3000 TSOU-processes (with the same
parameters) up to time T = 100. We then consider the last
observation for each process and plot the KDE these observations
(solid line) overlaid with the true pdf of the stationary distribution.
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Extensions

In the papers we consider a more general situation:

1. All results of both parts are extended to the multivariate case
2. Cases with less strict conditions on g are considered
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Plot of µ and µ̃
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Figure: The solid line is the pdf of the stable distribution µ and the
dashed line is the pdf of the tempered stable distribution µ̃.
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t = 10

Next we want to simulate from µ̃10.

To get one such observations, it is easier to simulate 10
observations from µ̃ and aggregate.

We simulated 30000 observations from µ

This gave 11130 observations from µ̃.

We convert these into 1113 observations from µ̃10.
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Plots for t = 10
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Figure: On the left, the solid line is the pdf of µ10 and the dashed line
is the pdf of µ̃10. On the right, the solid line is the KDE of the
simulated values from µ̃10, and the dashed line is the smoothed pdf of
µ̃10.
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Comparison with Inversion Method

Algorithm Inversion Method
α ` run time obs run time obs ratio

.50 0.5 66.841 1057 785.870 1000 0.085

.50 1.0 30.531 1116 338.867 1000 0.090

.50 5.0 47.035 1090 509.506 1000 0.092

.75 0.5 53.346 1124 668.588 1000 0.080

.75 1.0 23.844 1082 282.788 1000 0.084

.75 5.0 37.353 1093 448.820 1000 0.083

.95 0.5 51.121 1101 601.804 1000 0.084

.95 1.0 23.444 1096 278.804 1000 0.084

.95 5.0 38.190 1100 470.784 1000 0.081
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