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]
Non-linear McKean-Vlasov SDEs

o We want to investigate the weak and strong well-posedness of a class of non-linear SDEs :
t t
Xi =+ [ be X IXEDds + [ oo XE XAWe, [ = p e P(R)
0 0

where, in this talk, [/] denotes the law of 6.
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]
Non-linear McKean-Vlasov SDEs

o We want to investigate the weak and strong well-posedness of a class of non-linear SDEs :
t t
XE =+ [ ble X6 XEDds + [ oo XE XAWe, [ = p e P(R)
0 0

where, in this talk, [¢] denotes the law of 6.
o Some examples of non-linear interaction :

o McKean (1960) : b(x, i) == [pa b(X,¥) p(dy), o(X, 1) = Jgao(X,y) p(dy).

o Scalar interaction : b(x, p) := b (X, [pe (X — Y)u(dy)), o(x,p) =0 (X, [pa &(x — y)u(dy)).

o Polynomials : b(x, 1) := [114 Jp Bi(x. Y)u(dy),  o(x, ) = TN+ Jp (X, y)u(dy).
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]
Non-linear McKean-Vlasov SDEs

o We want to investigate the weak and strong well-posedness of a class of non-linear SDEs :
t t
Xi =+ [ ble X6 XEDds + [ oo XE XAWe, [ = p e PR)
0 0

where, in this talk, [/] denotes the law of 6.
o and obtain some quantitative rates of propagation of chaos :

X =¢ +/ b(s, X!, — Zax, ds+/ (s x;,NZ(sX, )Jawi, i=1,... N,
Jj=1
(&, Wq<jeniiid, W|th same law as (&, W).
o Asymptotic synchronization : each particle (X/)o<¢< 1 converges in law to the same

mean-field limit equation (X;)o<i<7.
o Asymptotic independence : for any fixed k

®k
Law( (Xtﬂ,... ’th)ogth> — Law((Xf)oS,g) ,asN 1 oo.
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Non-linear McKean-Vlasov SDEs

o We want to investigate the weak and strong well-posedness of a class of non-linear SDEs :
t t
Xi =+ [ ble X6 XEDds + [ oo XE XAWe, [ = p e P(R)
0 0

where, in this talk, [/] denotes the law of 6.
o and obtain some quantitative rates of propagation of chaos :

N
1 o
Xi=¢+ /bng,NE :6X£)ds+/a(s ,N§:5X, aWl i=1.. N,
(&', W)4<j<ni.i.d. with same law as (&, W).

o Asymptotic synchronization : each particle (X})o<¢< 1 converges in law to the same
mean-field limit equation (X;)o<i<T-
o Asymptotic independence : for any fixed k

®k
Law( (X,?,--- ’th)oggT) — Law((Xf)ogtg) ,asN 1 oo.

o Numerous Applications :
@ Probabilistic representation of non-linear PDEs : Burgers (see e.g. Bossy & Talay (96),
Jourdain (97), ...) , Keller-Segel (see e.g. Jabir, Talay, Tomasevic (18-20)), ...

@ Economics and Finance : Mean Field Game theory (Carmona & Delarue), systemic risk, ...
@ Biology : chemotaxi, neurons, ...
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-
Classical Cauchy-Lipschitz theory for McKean-Vlasov SDE

o Need a suitable distance on the space of probability measures P(R?).

o Usually make use of the Wasserstein metric on P,(R?)

P,(R?) : probability measures with finite p-moment

1/p
v & Po(R9). Waluv) = (inf [ x yPdr(ey) )
i (Rd)z
where 7 has first and second marginals equals to 1 and v respectively.

o It is important to notice that for any X, X’ € LP(PP), it holds

Wo([X], [X) < E[IX — X'|P]VP.
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-
Classical Cauchy-Lipschitz theory for McKean-Vlasov SDE

o Cauchy-Lipschitz theory : see e.g. Sznitmann (1991), ...

o Well-posedness : b, o are Lipschitz-continuous on RY x P,(R?).

o Unique strong solution for any initial condition ¢ € LP(P).
o Proof works as in the standard case of It6’'s SDE after noticing
E[|(b, o)(t, X;, [Xi]) — (b, 0)(t, X{, [X{])|’] < CE[|X; — Xi|"].

o Propagation of chaos :
o Relies on the (standard) coupling argument introduced by Sznitmann (91). Take input (¢', W');<;j<y and
construct

t
X =&+ /bsX’ X)) ds+/0 o(s, XL, [XI]) dW!

and notice that o
Law((X)o<t<7) = Law((Xi)o<i<T).

o Typical results :

/Ufol {]E[ sup |X{ — X/|P] + sup E{(Wp(%édxb[xt]))p]} B

0<t<T 0<t<T

and under some additional integrability condition on the initial measure p, for any p > 1 there exists some
sequence (eny)n>1 S-t. ey | 0 and

S 1L p
[ sup 1X) — X1P] + sup & (Wal S, 1)) | < en
i=1

0<t<T 0<t<T
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-
Beyond the Cauchy-Lipschitz theory

o Is it possible to address weak/strong well-posedness when b, o are less regular than
Lipschitz ?
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-
Beyond the Cauchy-Lipschitz theory

o Is it possible to address weak/strong well-posedness when b, o are less regular than
Lipschitz ?
o Existence follows from a compactness argument under some continuity assumptions on
R, x RY x P(RY) > (t, x, m) — (b,c)(t, x, m) as in the case of standard It6’s SDEs.
~» Skorohod (65), Stroock and Varadhan (69).

o Main issue is Uniqueness analogy with :
~ Zvonkin’s approach for pathwise uniqueness to standard 1t6’s SDE.
~ Stroock & Varadhan works for weak uniqueness.
~~ But it is expected to be harder : state space is now R? x P»(RY) 3 (X, [Xi]).
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Lipschitz ?
o Existence follows from a compactness argument under some continuity assumptions on
R, x R x P(RY) > (t, x, m) — (b,c)(t, x, m) as in the case of standard It6’s SDEs.
~» Skorohod (65), Stroock and Varadhan (69).

o Main issue is Uniqueness analogy with :
~+ Zvonkin’s approach for pathwise uniqueness to standard 1t6’s SDE.
~» Stroock & Varadhan works for weak uniqueness.
~ But it is expected to be harder : state space is now R? x P2(RY) 3 (X;, [X{]).

o Some counter-examples :
o Sheutzow : X; = £ + fJE[b(XS)] ds, 3b bounded, locally Lipschitz ~ uniqueness fail.

o Delarue : x; = xo + fot b(xs) ds uniqueness fail then X; = xo + fot b(xs)ds + W; ~ E[X{] = x;.
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-
Beyond the Cauchy-Lipschitz theory

o Is it possible to address well-posedness when b, ¢ are less regular than Lipschitz ?

o Existence follows from a compactness argument under some continuity assumptions on
R, x RY x P(RY) > (t, x, m) — (b,c)(t, x, m) as in the case of standard It6’s SDEs.
~ Skorohod (65), Stroock and Varadhan (69).

o Main issue is Uniqueness analogy with :
~» Zvonkin’s approach for pathwise uniqueness to standard 1t6’s SDE.
~» Stroock & Varadhan works for weak uniqueness.
~ But it is expected to be harder : state space is now R? x P»(RY) > (X;, [X{]).

o Some counter-examples :
o Sheutzow (87) : Xy =&+ fo E[b(Xs)] ds, 3b bounded, locally Lipschitz ~» uniqueness fail.

o Delarue : x; = xo + fo b(xs) ds uniqueness fail then X; = xo + fo (xs)ds + Wi ~ E[X{] = x;.
o Typical examples where uniqueness holds

~» Shiga and Tanaka (85), Jourdain (97), Mishura and Veretenikov (2018), Lacker (2018),
Rockner and Zhang (2018)

t
Xi— ¢+ /O / b(Xs, ¥)11s(dy) ds + 0By
Rd

o b bounded measurable ~ P(RY) > p — b(x, 1) = [n0 b(X,y)u(dy) € R? Lipschitz w.r.t. T.V.
metric

o o positive def. is essential ~ noise helps to restore uniqueness.
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-
Beyond the Cauchy-Lipschitz theory

o Is it possible to address well-posedness when b, o, h are less regular than Lipschitz ?

o Existence follows from a compactness argument under some continuity assumptions on
R, x RY x P(RY) > (t, x, m) — (b,c)(t, x, m) as in the case of standard It6’s SDEs.
~ Skorohod (65), Stroock and Varadhan (69).

o Main issue is Uniqueness analogy with :
~ Zvonkin’s approach for pathwise uniqueness to standard It6’s SDE.
~» Stroock & Varadhan works for weak uniqueness.
~~ But it is expected to be harder : state space is now R? x Po(RY) > (X, [Xi]).

o Typical examples where uniqueness holds
t
Xt == € + / /d b(Xs, y)ﬂs(dy) dS + UBt
0 JR

o b bounded measurable ~ P(RY) 3 pu — b(x, p) = [ra b(X, y)u(dy) € RY Lipschitz w.r.t. T.V.
metric
o o positive def. is essential ~» noise helps to restore uniqueness.

o As in the case of standard Ité’s SDE, uniqueness relies on the non-degeneracy of the noise.
o Uniqueness should be connected to a Kolmogorov PDE on the space of probability
measures.
o Investigate smoothing properties of McKean-Vlasov SDEs, especially in the measure
direction.
o Expected to be harder : Finite dimensional noise to smooth infinite dimensional variable
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-
Differentiability of functions of measure

For U : P>(RY) — R. Work with two notions of derivatives
~ Lions’ lectures at Collége de France, Cardaliaguet lecture notes, Carmona & Delarue books.

(1) Flat or linear functional derivative : 3 a continuous map sU/ém : Po(RY) x RY — R s.t.

vm i € pp(9), tim A= ITEELZ B [ 2 my () (o — )

~~ Defined up to an additive constant. Choose the normalization [,.,[6U/dm](mo)(y)dmo(y) = O.
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-
Differentiability of functions of measure

For U : P2(RY) — R. Work with two notions of derivatives

(1) Flat or linear functional derivative : 3 a continuous map §U/ém : Po(RY) x RY — R s.t.

vm, m' € Pa(RY), U(m') — U(m) = / /Rd 5m(/\m + (1 =X)m)(y)d(m — m)(y) d\
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-
Differentiability of functions of measure

For U : P>(RY) — R. Work with two notions of derivatives

(1) Flat or linear functional derivative : 3 a continuous map §U/ém : Po(RY) x R? — R s.t.
vm, m € Po(RY), U(m / / (A + (1 = \)m)(y) d(m — m)(y) dX
R4

(2) Lions, L or intrisinc derivative : Work with Lifted version U/ : L»(Q2, A, P) — R, U(X) = U([X])
o U is differentiable iif ¢/ is Fréchet differentiable.

o Differential of U
o Fréchet derivative of U

DU(X) = ,UG)(X),  8,U(n) B > x = 0,U(u)(x) € R, = [X].

o Derivative of U at i ~ 9,U(11) € L3(R, j1; RY).
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-
Differentiability of functions of measure

For U : P»(RY) — R. Work with two notions of derivatives

(1) Flat or linear functional derivative : 3 a continuous map sU/ém : Po(RY) x RY — R s.t.
vm, m' € Pa(RY), U(m') — U(m) = / / (Am + (1 =Xm)(y)d(m — m)(y) dX
R4

(2) Lions, L or intrisinc derivative : Work with Lifted version i/ : L»(Q2, A, P) — R, U(X) = U([X])
o U is differentiable iif ¢/ is Fréchet differentiable.

o Differential of U
o Fréchet derivative of U

DU(X) = 0,U(1)(X), 0,U(1) : R > x = 9,U(11)(x) €RY, 1= I[X].

o Derivative of U at i ~ 9,U(11) € L3(R, 11; RY).

Link between flat and L-derivatives :

O, U(1)(y) =

oU
Y16m

00| w)

In particular, Lions-derivative requires additional smoothness assumption on sU/ém.
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-
Differentiability of functions of measure

For U : P>(RY) — R. Work with two notions of derivatives

(1) Flat or linear functional derivative : 3 a continuous map dU/dm : Po(RY) x RY — R s.t.

vm, m' € Pa(RY), U(m') — U(m) = / /Rd 5m (Am' + (1 = \)m)(y) d(m’ — m)(y) dX

(2) Lions, L or intrisinc derivative : Work with Lifted version ¢/ : Lo(Q2, A, P) — R, U(X) = U([X])
o U is differentiable iif i/ is Fréchet differentiable.

o Differential of U
o Fréchet derivative of U

DU(X) = 0,U(11)(X), 8,U(1): R > x d,U(u)(x) €R?, = [X]
o Derivative of U at p ~ 9,U(11) € L3(R, 11; RY).
Link between flat and L-derivatives :

oU

U0 - 0,3+

)] )

In particular, Lions-derivative requires additional smoothness assumption on §U/ém.
o Examples :

= Jao () p(dx) ~ U((1 = e)p +ep’) — U(p) = € [pa h(y) d(p/ — 1) (y),

((;TU,,(M)(}/) = h(y), 8,U(u)(y) = dh(y).

o U(n) = Jigay h(x, y)u(dx)p(dy)

oy

S0 = [ Ay 2uda) + | hzy)u(dz) 0,UG)) = [ oihly.2)u(dz) + | dehiz.y(dz)
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-
Weak existence and uniqueness of McKean-Vlasov SDE

o Assumptions on the coefficients :

o bis bounded and continuous, P(RY) > m + b(t, x, m) is Lipschitz w.r.t. the total variation
metric. (unif. in ¢, x)
o a(t,x, m) = (co*)(t, x, m) is uniformly elliptic.
o Forany (i,j) e {1,---,d},
o (t,x,m)—+— a;;(t,x, m)is bounded and n-Holder in x (unif. in (f, m)),
o P(RY) > mw— a;;(t, x, m) admits a bounded flat derivative,
o (x,y)— [dai;/om](t,x, m)(y) is n-Holder (unif. in (¢, m)).

Theorem : Well-posedness of the non-linear martingale problem (Chaudru de Raynal, F.)

Under the above set of assumptions, the non-linear martingale problem associated to the
McKean-Vlasov SDE is well-posed for any initial distribution ; € P(RY).

In particular, weak existence and uniqueness hold for the McKean-Vlasov SDE.

Strong well-posedness under the additional assumption that x — o(t, x, m) is (uniformly)
Lipschitz-continuity.
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Weak existence and uniqueness of McKean-Vlasov SDE

o Assumptions on the coefficients :
o bis bounded and continuous, P(R?) > m ~ b(t, x, m) is Lipschitz w.r.t. the total variation
metric. (unif. in ¢, x)

o a(t,x,m) = (oo*)(t, x, m) is uniformly elliptic.

o Forany (i,j) € {1,---,d}?,
o (t,x,m)—+— a;;(t,x, m)is bounded and n-Holder in x (unif. in (£, m)),
o P(RY) > mw a;;(t, x, m) admits a bounded flat derivative,
o (x,y)— [déai;/om](t,x, m)(y) is n-Holder (unif. in (¢, m)).

Theorem : Well-posedness of the non-linear martingale problem (Chaudru de Raynal, F.)

Under the above set of assumptions, the non-linear martingale problem associated to the
McKean-Vlasov SDE is well-posed for any initial distribution p € P(RY).

In particular, weak existence and uniqueness hold for the McKean-Vlasov SDE.

Strong well-posedness under the additional assumption that x — o(t, x, m) is (uniformly)
Lipschitz-continuity.

o ldea:
@ Banach fixed point theorem on the space

Ast, = {PeC([s. TLPRY): P(s) = u}. u€ P(RY)

which is a complete metric space equipped with d(P, Q) = sup,.;-r drv(P(t), Q(t)).
@ Defineamap 7 : As 7, — As1,, where for t € [s, T], 7(P)(t) = [XF] with

t
X! —5+/ b(r. XP.P(r) dr + [ a(r. XF.P(r)) W
S

@ Prove that .7 is a contraction if T is small enough
~ make use of parametrix expansion (Friedman 64) to control dry/(.7(P')(t), 7 (P?)(t)).
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Weak existence and uniqueness of McKean-Vlasov SDE

o Assumptions on the coefficients :

o bis bounded and continuous, P(RY) > m s b(t, x, m) is Lipschitz w.r.t. the total variation
metric. (unif. in t, x)
o a(t,x,m) = (co*)(t, x, m) is uniformly elliptic.
o Forany (i,j) e {1,---,d},
o (t,x,m)—+— a;;(t,x, m)is bounded and n-Holder in x (unif. in (f, m)),

o P(RY) > mw a;;(t, x, m) admits a bounded flat derivative,
o (x,y)— [dai;/om](t,x, m)(y) is n-Hélder (unif. in (¢, m)).

Theorem : Well-posedness of the non-linear martingale problem (Chaudru de Raynal, F.)

Under the above set of assumptions, the non-linear martingale problem associated to the
McKean-Vlasov SDE is well-posed for any initial distribution ;. € P(RY).

In particular, weak existence and uniqueness hold for the McKean-Vlasov SDE.

Strong well-posedness under the additional assumption that x — o(t, x, m) is (uniformly)
Lipschitz-continuity.

b bounded measurable, (x, z) — o(t, x, z) bounded, n-Hélder and a(t, x, m) uniformly elliptic,
b(t, x, 1) = [go b(t. X, y)p(dy), o(t, X, 1) = [pa o(t, X, y)p(dy)

Xi=¢+ /Otb(s, Xs, [Xs])ds + /Ota(s, Xs, [Xs])dW.
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Weak existence and uniqueness of McKean-Vlasov SDE

o Assumptions on the coefficients :

o bis bounded and continuous, P(RY) > m s b(t, x, m) is Lipschitz w.r.t. the total variation
metric. (unif. in t, x)
o a(t,x,m) = (co*)(t, x, m) is uniformly elliptic.
o Forany (i,j) € {1,--- ,d}?,
o (t,x,m)—+— a;;(t,x, m)is bounded and n-Hdlder in x (unif. in (f, m)),

o P(RY) > mw a;;(t, x, m) admits a bounded flat derivative,
o (x,y)— [daij/om](t,x, m)(y) is n-Hélder (unif. in (¢, m)).

Theorem : Well-posedness of the non-linear martingale problem (Chaudru de Raynal, F.)

Under the above set of assumptions, the non-linear martingale problem associated to the
McKean-Vlasov SDE is well-posed for any initial distribution ;. € P(RY).

In particular, weak existence and uniqueness hold for the McKean-Vlasov SDE.

Strong well-posedness under the additional assumption that x — o(t, x, m) is (uniformly)
Lipschitz-continuity.

b bounded measurable, (x, z) — o(t, x, z) bounded, n-Hélder and a(t, x, m) uniformly elliptic,

b(t, X, 1) = Jaa B(t, X, y)u(dy), o(t, X, 1) = [pa (8, X, y)pu(dy)

Xi=¢&+ /Otb(s, Xs, [Xs])ds + /Ota(s, Xs, [Xs])dW.

b bounded continuous, ¢; bounded measurable, x — a(t, x, z) n-Holder, z — a(t, x, z) continuously
differentiable, ; n-Holder continuous and a(t, x, 1) uniformly elliptic

Xi=¢+ /Otb<s, Xo, E[t1(X5)], - - ,E[wN(XS)])der /Ota<s, Xo, E[p1(Xs)], - - ,E[@N(Xs)]>dW5.
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-
Smoothness of the semigroup and of the transition density
o Back to the McKean-Vlasov SDE :
t t
Xit=¢+ / b(r, X7, [X7])dr + / o(r, X2, X)W, (€] = u e Pa(RY)

S

Introduce the decoupling field or characteristic defined by :

t t
XS — x4 / b(r, XP*H, [X2])ar + / o(r, X7 X7 ])aW,.
S

S

By standard arguments, Xf’5 admits a density z — p(y, s, t, z) and so does X" with
zw— p(u, st x, z)s.t.

p(n.s..2) = [ Pl 5.t x.2)u(0k)

For a map ¢ : P»(RY) — R, ansatz for a semigroup on P(R?)

Ps10(1) = (X))

o Important Questions :
@ Smoothing properties : regularity of [0, t) x P2(RY) > (s, 1) — Ps6(1) even if ¢ is irregular ?
@ What is the regularity of the map [0, t) x P2(RY) > (s, 1) — p(p, 8, t,2)?
@ PDE satisfied by (s, 1) — P (1) or (s, 1) — p(u, s, t, z), notion of fundamental solution on
Po(RY) ?
@ More generally, address the Cauchy problem with non-smooth data (¢, 1)

i
U(S. X, 1) = E | (X3, [X5) + / (r, XE% [X5) o .
S
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-
Need chain rule on P»(IR9). Informal discussion

o Choose a smooth map ¢, set 3 = A+ (1-— A)[Xﬁ‘g’f] and make use of Markov property
X = DT

%«@smm) = lim 1(¢([X“1) — o(1X)

iy €(¢([XS D = o(IXE)
= lim _(% (1) — Ps10([XE)
~im! / [ [@ ik )] (¥) d(p — XE)(y) oA
_ _'!iB‘ E]ELS [@3@( )] (X5 ff)—éi[%mb( )] (ﬁ)]
= o5, | it €+ Jraceats. o [ 00| ©))|
= -F -b(s, €, 11).0, Ps.1d(1) () + %trace <a(s, £, )0y [@%,taﬁ(u)] (5))]
= — L P 1b(1)

with

ZU(s.0) = [ {b(s,y.1).0,U(s, n)(y) + 2trace(a(s, y. 1)y [0,Ul(s, m)(y) | u(cly).
Rd 2

o Require to investigate smoothness of u — s o(u) for ¢ possibly irregular.
o Regularization effect : ¢ Lipschitz in dry ~» p — s ¢(1) Lipschitz in Wy metric!
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Smoothness of the transition density

o Assumptions : need to strengthen regularity assumptions of well-posedness
o Xt b/(t,X, m) IS n—Ht')Ider, I € {1,-~ ,d}
o Two bounded and n-Hblder continuous flat derivatives for b;, a;;, (i,j) € {1,--- ,d}e.

Theorem : Fundamental sol. of Backward Kolmogorov PDE on P,(RY) (Chaudru de Raynal, F.)

Under the above set of assumptions, the map (s, i) — p(u, S, t, 2) € C'2([0, 1) x P2(RY)) and is
the unique fundamental sol. of

(0s + Zs)p(,8,t,2) =0 on [0, ) x Pa(RY), Ié?? p(p, S, t,2) = 6,(.) * .

lts derivatives satisfy some Gaussian upper-estimates, z — g(c, z) being the density funct. of a
r.v. with law N (0, cly) :

9501, 5,1,2)] < = - [ gtelt— 8.z x) (e

el 5.6 0 £ i [ 0ot 8).2 =X 00) + = gt 5).2 )

C
9,0,P(11, 8,1, 2)(y)]| < W / (ot —8), 2= x) p(0) + ——g(o(t — 9),. 2~ y).

Idea :
o Construct a smooth sequence

{10,8) x Po(R?) > (s, 1) = p'™ (1, s,t,2),m>1} convergingto p(u,s,t,z).

o Uniform regularity + equi-continuity properties on p(™(y, s, t, z) ~» parametrix method + circular arguments

o Extract a converging subsequence by compactness argument (Arzela-Ascoli).
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Related Backward Kolmogorov PDE on the Wasserstein space

o Backward PDE associated to the Markov process (X2, [X}4])

On [0, T) x RY x Pg(Rd), (0r + L+ L)U(t, x, n) = f(t, x, 1),
On (x,p) € RY x Po(RY), U(T,x, 1) = h(x, )

for the non-local operator acting on U € C'22(R, x RY x P,(RY))
L:U(t, x, 1) = b(t, x, n)oxU(t, x, 1) + %a(t,x, )O2U(t, X, 1)

D%U(taxa :U’) = ,U,(dZ) b(t7 Z, /“L)a/iu(tﬂ X7:U’)(Z) + la(ta Z, /vb)az[guu(txa ,U,)](Z)
2

L: + % ~ should be understood as the infinitesimal operator associated to (X", [X{])ro.
admits a unique classical solution and we have the Feynman-Kac probabilistic representation formula :

)
U(tx.p) = B[O XD + [ s X (XD o]

.
=/ o (2, X7 D) p(us t, T, x, 2) d2+/ f(s, z, [XE*]) p(p. 1,5, X, 2) dz dis
RY t RY
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-
Related Backward Kolmogorov PDE on the Wasserstein space

o Backward PDE associated to the Markov process (X2** [X%]) :

On [0, T) x RY x Po(RY), (8 + Lt + L) U(t, X, 1) = f(t, X, ),
On (x,p) € RY x Po(RY), U(T,x, 1) = h(x, )

for the non-local operator acting on U € C'22(R, x RY x P,(RY))
LUt x, 1) = b(t, x, )05 U(E X, 1) + %a(t, x, 1) RU(E, . 1)

20t x) = [ o) {blt,2.0.0,U0t x.0)(2) + gatt. 2,000,008, 10]2) |

L: + % ~ should be understood as the infinitesimal operator associated to (X, [X*])i>o.
admits a unique classical solution and we have the Feynman-Kac probabilistic representation formula :

)
Ut x,p) = B[O XD + [ s X (XD o]

'
- [ e Dpit Tx 2 dze+ [ [ Hsz XD put s.x.2) dz s

under the following additional hypothesis :
o The two maps [0, T] x R? x P(RY) > (t, z, m) — f(t,z, m), ¢(z, m) are continuous,
o The two maps m — f(t, x, m), p(x, m) admit a flat derivative with suitable exponential growth at infinity.

o The two functions z — f(t,z, m) and (z, 2’) — [6f/dm](t, z, m)(Z’) are locally n-Hdlder.
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-
Related Backward Kolmogorov PDE on the Wasserstein space

o Backward PDE associated to the Markov process (X2, [X}4])

On [0, T) x RY x Pa(RY), (9 + Lt + L)U(t, x, 1) = £(t, X, 1),
On (x, 1) € R? x Po(RY), U(T,x, u) = h(x, u)
for the non-local operator acting on U € C'22(R, x RY x P,(RY))
LU(t, x, 1) = b(t, x, )0 U(t, x, 1) + %a(t, X, 1)O2U(t, x, )
2t x, ) = [ u(02) {blt.2,0)0,U(0. x.10(2) + galt. 2.0000,U(t x.1)2) |

L; + % ~ should be understood as the infinitesimal operator associated to (X", [X{])ro.
admits a unique classical solution and we have the Feynman-Kac probabilistic representation formula :

)
U(tx.p) = B[O XD + [ s X (XD o

.
— [ ez Nt Tx 2 dz+ [ [ fo.2 X0 p(ut.5.x.2) dz s
RY t RY

o Related literature :
o Buckdhan & al. (2017) : same PDE but b, o, ¢ are smooth and f = 0.
o Chassagneux & al. (2017) : Master equation ~~ non-linear PDE but with regular coefficients.

o Crisan & Murray (2017) : similar PDE with f = 0, coefficients b, o are smooth, unif. ellipticity, ¢ irregular ~~
Malliavin calculus for McKean-Vlasov SDEs.
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From Kolmogorov PDE on P»(R?) to propagation of chaos

o On the same probability space, consider system of particles + coupling
N

t t
S . ) ) 1
X =+ [ blexuulyds [ols Xl oWl il = > 0y,
=

t t .
Xi— ¢y /0 b(s, X!, [X[]) ds + /0 o(s, Xg, (X)) dWg,  [XJ = pue.

Theorem : Propagation of chaos at the level of paths, (Chaudru de Raynal, F.)
Under the previous set of assumptions, assuming R? x P»(RY) > (x, 1) +— o(t, x, i) Lipschitz and ¢ € L*+(P), it holds

sup B[WE (i, u)] + max sup E[|X} - X[2| < Cen

o<tT =L, O<t<T
and
E[ sup W2 (ur, )]+ max E[ sup | X/ — X]| } < Cy/en
o<t<T =l 0<t<T
with

N-"2log(1 + N) if d = 4,

N=2/9ifd > 4.

;N N-'2if d < 4,
E[WZ (5 D derr )] 5
i=1

o |dea : Make use of Zvonkin’s technique.

o Take u solution of
(at + (ﬁt +$))U(t, X, M) = b(t> X, ,u)a U(T> ) =0

o Zvonkin's transforms : &(t, X/, N-1 31, Oy) = X{ — u(t, X{,N"" P 0x): O(L, X/, (X)) = Xi — u(t, X],[X])
allows to remove drift.
o Compare paths X/ and X;.
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From Kolmogorov PDE on P»(R?) to propagation of chaos

o System of interacting particles :

i ; t i1 N t i1 N i
stf :gl—l_/ b(r7 Xf’£7ﬁzéx;9£/)dr+/o O-(r7XI'S’£7N25Xr55')dWI{
S j:1

j=1
o Denote by p"N(u, s, t, z) the density of one particle.

Theorem : Propagation of chaos at the level of transition densities, (Chaudru de Raynal, F.)
Under the PDE assumptions, an upper-bound holds

(o™ — P)(M,OtZ)\<N{ [ atet.z = xlxiueb) +

- x)ule)}.

Under some additional smoothness assumptions of m +— b(t, x, m), a(t, x, m), a first order expansion holds

(p1’N = p)(,u, 0, t, Z) = /LE[(S(S ,O(PJ,O t, 5 )(6 ) - 5%:0(:“’0> t, 6172)(5)]

1 16 5 -
T WE[ mzp(:u’ 07 tv 5172)(575) - Wp(:ua 07 tv 5172)(5752)]

1
4L / E[Ap(jis, 8, t, 2)] d5 + ~R(11,0, 1, 2).
N J, N

o |ldea : Test the fundamental solution [0, t) x Pa(RY) > (s, 1) — p(i, S, t, z) on the particle system.

~ Strategy is reminiscent of prev. works : Mouhot-Mischler (2011), Cardaliaguet, Delarue, Lasry, Lions (2015).
o A natural candidate for p(y, 0, t, z) is

p(ﬂ.lsvas7 t,Z) %p(ﬂ&sa t,Z) :p(,uvoa t,Z), Sc [07 t),ZERd, with Ms : deX’

o Derive an expansion by applying Ito’s formula to the map defined by f(s, X!, --- , X)) := p(u¥, s, t, 2).

IR
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From Kolmogorov PDE on P»(R?) to propagation of chaos

o System of interacting particles
i : t i t i : 1 N
Xt‘&f =&+ / b(r, er’)E 7 IU’Is\{r) dar + /0 o(r, er,£ nuls\{r) aw;, :U'ls\{z‘ = N Z 5Xf”5/’

t t
)(t‘s’6 = 51 + / b(ra Xf’ga MS,I’) dr + / O-(ra XI’S7§7 MS,I’) dWI!a :uS,r = [X”Si]
s S

o Consider a continuous map ¢ : P(R?) — R with two bounded and a-Hélder flat derivatives.

Theorem : Propagation of chaos at the level of semigroup on P»(RY), (Chaudru de Raynal, F.)
Under the PDE assumptions, an upper-bound holds

Ta Wi (N Z Ogis M)a ‘E [‘b(ﬂgl,t) - ¢(Mo,t)] ‘ < tfg 1N

E|[6(ut) ~ Pocd()|] =E[o0b) — m00)|] < -

Under some additional smoothness assumptions of m — b(t, x, m), a(t, x, m), a first order expansion holds.

o ldea:
o Test the solution of the Backward-Kolmogorov PDE (s, ;1) — (1) on the empirical measure /g’

o Applying Itd’s formula and using the fact that (s, 1) — P ¢(11) solves the Kolmogorov PDE on P,(R?)

C

E||Zs0(ulls) = Poio(n)|| = E[| Zaio(lls) = Posolus)|| < E U%,WN 3 i) %@(u)” N
j=1

o Conclude by letting s 1 t and use the fact that y — [0/dm]| %% (¢(m)(y) is Lipschitz-continuous (uniformly in m).
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