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Asymptotics of P
{

supt∈M X (t) ≥ u
}

Trivial inequality. For a Gaussian process X =
(
X (t)

)
t≥0

and a set M ⊂ R

P
{

sup
t∈M

X (t) ≥ u
}
≥ sup

t∈M
P
{
X (t) ≥ u

}
= Ψ

(
u/σM

)
with σ2

M = supt∈M VarX (t).

For (non-stationary) processes with unique point of maximal variance

P
{

sup
t∈M

X (t) ≥ u
}

= Ψ
(
u/σM

)(
1 + o(1)

)
, u →∞.

Adler & Taylor’ 07, Azais & Wschebor’ 08, Piterbarg’ 15

First aim

To show that for some function P(u) and some θ > 0

P
{

sup
t∈M

X (t) ≥ u
}

= P
(
u
)(

1 + O(e−u2θ)
)
, u →∞.

Technical side: Rice’s method of moments, estimation of the second
factorial moment of the number of up-crossings
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Honest confidence sets
Given: X1, ...Xn ∼ f ,

f is an infinitely dimensional object (CDF, PDF,...).

Definition. (Li, 1989) Given any α ∈ (0, 1), we aim to construct (1− α)-
confidence set Cn(x) for f that are honest to a given class F of functions in the
sense

sup
f∈F

P
{
f (x) ∈ Cn(x), ∀x ∈ R

}
≥ 1− α + en,

where en → 0 as n→∞.

Honest confidence sets for CDF: Dvoretsky-Kiefer-Wolfowitz inequality (in
strong form - Massart, 1990)

P
{√

n sup
u∈R

∣∣∣F̂n(u)− F (u)
∣∣∣ > x

}
≤ 2e−2x2 , ∀x > 0.

Second aim

To construct honest confidence sets for PDF, which are

• based on the projection estimates;

• honest at polynomial rate en with |Cn(x)| ∼ n−1/2
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Confidence bands for densities

Maximal deviation: for an estimate p̂n of the density function p, denote

Dn := sup
u∈R

∣∣p̂n(u)− p(u)
∣∣√

p(u)
.

SBR-type (”Smirnov-Bickel-Rosenblatt”) limit theorems

sup
p∈F

∣∣∣∣P{Dn ≤
x

an
+ bn

}
− e−e−x

∣∣∣∣→ 0

for some sequences an and bn tending to infinity as n→∞.

Smirnov (1950), Bickel and Rosenblatt (1973), Konakov and Piterbarg (1984),
Giné, Koltchinskii, Sakhanenko (2004), Giné and Nickl (2010), Bull (2012).

Giné and Nickl (2016). Mathematical foundations of of infinitely-dimensional
statistical models.
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Challenges

1. SBR-type theorems are known only for kernel density estimate and certain
wavelet projection density estimates like Haar wavelets or Battle-Lemarie
wavelets.

Chernozhukov, Chetverikov and Kato (Annals of Statistics, 2014):
... the SBR condition has not been obtained for other density estimators
such as nonwavelet projection kernel estimators based, for example, on
Legendre polynomials or Fourier series.

2. The rates of convergence.

Giné and Nickl (Annals of Statistics, 2010):
... we finally remark that the results in this article are clearly of an
asymptotic (and hence “theoretical” nature).
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Key ingredient
Komlós - Major -Tusnady construction

Most estimates can be represented as

p̂n(x) =

∫
R
K(x , y)dPn(y).

The analysis of Dn leads to the study of asymptotic behaviour of the
Gaussian process

Υ(x) =

∫
R
K(x , y)dW (y).

Examples:

1. Kernel density estimates: K(x , y) = K((x − y)h−1)/h−1.
Υ(x) is a stationary process.

2. Wavelets: K(x , y) = 2j ∑
k φ(2jx − k)φ(2jy − k), j ∈ N.

Then Υ(x) is a nonstationary sprocess of some special type:
r(x , x + u) is periodic in x with the same period for any u.

Cyclostationary processes: Konstant and Piterbarg (1993),
Hüsler, Piterbarg, and Seleznjev (2003)



7/ 16

Two types of projection estimates
Let Ψ :=

{
ψ0, ψ1, ψ2, ...

}
be an orthonormal basis of L2([A,B]).

1. Consider with J →∞

p̂n(x) =
J∑

j=0

[∫
ψj(y)dPn(y)

]
ψj(x).

2. Let us divide I := [A,B] on M subintervals, and on each subinterval
Im = [am, bm] := [A + δ(m − 1),A + δm],m = 1..M, we reproduce Ψ:

ψ
(m)
j (x) =

√
M · ψj (M(x − am) + A) , m = 1..M j = 0, 1, ....

Consider with M →∞

p̂n(x) =
M∑

m=1

J∑
j=0

[∫
ψ

(m)
j (y)dPn(y)

]
ψ

(m)
j (x).

In both cases

Υ(x) =

∫
I

(
J∑

j=0

ψj(x)ψj(y)

)
dW (y).



8/ 16

Building bridge to the Gaussian process Υ(x)

Pq,H,β :=
{
p − p.d.f. , p ∈ L2([A,B]), inf

x∈[A,B]
p(x) ≥ q,

|p(x)− p(y)| ≤ H|x − y |β
}
.

Theorem

There exists a positive constant κ such that for any p ∈ Pq,H,β and any
u ∈ R it holds

P
{√ n

M
Rn ≤ u

}
≤

[
P
{

sup
x∈R
|Υ(x)| ≤ u + γn,M

}]M
+ C1n−κ,

P
{√ n

M
Rn ≤ u

}
≥

[
P
{

sup
x∈R
|Υ(x)| ≤ u − γn,M

}]M
− C1n−κ,

where Rn := supu∈R

∣∣p̂n(u)−Ep̂n(u)
∣∣

√
p(u)

, γn,M = C2 log(n)√
n/M

+ C3
√

log(n)
√
M

,

and C1, C2, C3 > 0 depend on q,H, β.



9/ 16

Main result
Theorem

Let X (t) be a centered Gaussian process with a.s. twice differentiable
trajectories. Assume that the variance σ2(t) = Var(X (t)) reaches its
maximum σ2

M at only one point t◦ ∈ [A,B]. For δ > 0, introduce the
informative set

M(δ) :=

{
t ∈ [A,B] : σ2(t) ≥ σ2

M

1 + δ

}
.

Then there exists some χ > 0 (depending on δ and the process Xt) such
that

P
{

max
t∈[A,B]

∣∣X (t)
∣∣ ≥ u

}
= P

(
u
)(

1 + O
(
e−u2χ/(2σ2

M ))), u →∞,

where

P(u) =


2E
[
N+

u (M(δ))
]
, if t0 ∈ (A,B], σ′(t0) = 0,

2Ψ
(
u/σM

)
+ 2E

[
N+

u (M(δ))
]
, if t0 = A, σ′(t0) = 0,

2Ψ
(
u/σM

)
, if t0 = A or t0 = B

and σ′(t0) 6= 0.
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Corollaries from the main result
Standard setup: argmaxσ2(t) = {t(1)◦ , ..., t(K)

◦ }. Let us choose disjoint intervals

Mi , t
(i)
◦ ∈Mi , i = 1, ...,K :

max
(s,t)∈Mi×Mj

ρ(s, t) < 1, ∀i , j = 1..k, i 6= j .

Then there exists some χ > 0 such that

P
{

max
t∈[A,B]

∣∣X (t)
∣∣ ≥ u

}
=

k∑
i=1

Pi (u)
(
1 + O

(
e−u2χ/(2σ2

M ))),
where Pi (u) are defined above for P

{
maxt∈Mi

∣∣X (t)
∣∣ ≥ u

}
.

Outcome for the process: Υ(x)

There exists some χ = χ(δ) > 0 such that

P
{

max
t∈[−1,1]

∣∣Υ(t)
∣∣ ≥ u

}
= 4Ψ

(
u/σM

)(
1 + O

(
e−u2χ/(2σ2

M ))).
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Dependence between χ and δ
Let δ be a small number such that M(δ) ∩ [−1, 0] = [−1, b].
Then χ < min (χ1(δ), χ2(δ), χ3(δ)) , where

χ1(δ) := min

{
δ,

4

(b − A)J(J + 2)
− 1

}
,

χ2(δ) := min
t∈[−1,b]

(
r 210(t, t)/r11(t, t)

)
,

χ3(δ) :=

{
J/(J + 2), J is even,

(J + 2)/J, J is odd.

Empirical result for J = 4: χmax = 2/3, for any δ ∈ (0.71, 2.13).

0 1 2 3 4

0
2

4
6

8

δ

χ

1
2
3

0.
0

0.
2

0.
4

0.
6

δ

χ

0.71 2.13 3 4
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Return to statistical problem

Theorem

Assume that p ∈ Pq,H,β with some q,H > 0, β ∈ (0, 1]. Denote the
sequence of distribution functions

AM(x) :=

{
exp
{
−M

∑k
i=1 Pi

(
x
)}
, if x ≥ cM ,

0, if x < cM ,

where cM = (2S logM)1/2 − S . If M = bnλc with λ ∈ ((2β + 1)−1, 1),
then

sup
x∈R

∣∣∣∣P{√ n

M
Dn ≤ x

}
− AM(x)

∣∣∣∣ ≤ c̄n−γ .

for some positive constants c̄ and γ.
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Honest confidence bands
Denote

kα,M :=
√

Mn/n · qα,M ,

where qα,M is the (1− α)- quantile of the distribution function AM(·).

Then

P
{ |p̂n(x)− p(x)|√

p(x)
≤ kα,M , ∀x ∈ I

}
= 1− α + en,M ,

where en,M converges to zero at polynomial level in both n and M.

Cn(x) :=

(
p̂n(x) + (k2

α,M/2)−
[
p̂n(x)k2

α,M + (k4
α,M/4)

]1/2
,

p̂n(x) + (k2
α,M/2) +

[
p̂n(x)k2

α,M + (k4
α,M/4)

]1/2)
is (1−α)−confidence set, which is honest to a class Pq,H,β at polynomial
rate.
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Numerical example
Consider the density (Bart Simpson density; the claw)

p(x) =
1

2
φ(0,1)(x) +

1

10

4∑
j=0

φ((j/2)−1,1/100)(x),

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
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0.
4

0.
5

0.
6

Bart Simpson

0.
2

0.
4

0.
6

Approximate the distribution of Dn = supu∈R |p̂n(u)− p(u)|/
√

p(u) via

AM(x) := exp
{
−4M

(
1− Φ

(√
6x/(J + 1)

))}
· I {x ≥ cM}

where cM = (J+1)√
3

√
log(M)− (J+1)2

6
.
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Figure: First raw: projection density estimates (black solid lines) in comparison
with the true densities (red lines) based on n = 500, 3000, 10000 simulations.
In this example, we take M = bn2/3c. Second raw: empirical distribution
functions of

√
n/M · Dn (black solid lines) based on 25 simulation runs in

comparison with the distribution function AM(x).
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Summary

1. Extremes of Gaussian non-stationary processes: a new theoretical
result revealing the asymptotic behaviour of Gaussian processes,
which are neither stationary nor cyclostationary.

2. Sequence of accompanying laws, which approximates the
distribution of maximal deviation at polynomial rate. Confidence
sets, which are honest to some classes of densities at polynomial
rate.

3. Preprint: arXiv.org, No. 2005.11249.

Thank you for your attention.
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