Transforming i.d. random variables into each other with conditional expectations.

Georgy Gaitsgori

Based on joint work with Stanislav A. Molchanov and Isaac M. Sonin

Stochastic Analysis and its Application in Economics RS at HSE

October 2, 2020

Original problem

Story begins in 2007, when A.Cherny and P.Grigoriev published a noteworthy result for Risk Theory.

Theorem 1

Let (Ω, F, P) be a nonatomic probability space, X, Y two bounded functions with the same distribution. Then for any $\epsilon>0$ there is a sequence of σ-subalgebras $F_{1}, F_{2}, \ldots, F_{n} \subseteq F$ such that for a sequence of random variables $X_{0}=X, X_{1}=E\left(X_{0} \mid F_{1}\right)$, $X_{2}=E\left(X_{1} \mid F_{2}\right), \ldots, X_{n}=E\left(X_{n-1} \mid F_{n}\right)$, the following inequality holds $\left\|X_{n}-Y\right\|_{\infty}<\epsilon$.

Original problem

Story begins in 2007, when A.Cherny and P.Grigoriev published a noteworthy result for Risk Theory.

Theorem 1

Let (Ω, F, P) be a nonatomic probability space, X, Y two bounded functions with the same distribution. Then for any $\epsilon>0$ there is a sequence of σ-subalgebras $F_{1}, F_{2}, \ldots, F_{n} \subseteq F$ such that for a sequence of random variables $X_{0}=X, X_{1}=E\left(X_{0} \mid F_{1}\right)$, $X_{2}=E\left(X_{1} \mid F_{2}\right), \ldots, X_{n}=E\left(X_{n-1} \mid F_{n}\right)$, the following inequality holds $\left\|X_{n}-Y\right\|_{\infty}<\epsilon$.

This result is highly connected to Risk Theory.

- One of the important objects studied in Financial Mathematics and Risk Theory is risk measures.
- For example, risk measure is used to determine the amount of an asset (currency) to be kept in reserve.
- A risk measure is defined as a mapping $\rho: \mathcal{L} \rightarrow \mathbb{R}$ from a set of random variables to the real numbers:
(1) Normalized $\rho(0)=0$;
(2) Translative If $a \in \mathbb{R}, X \in \mathcal{L}$, then $\rho(X+a)=\rho(X)-a$;
(3) Monotone If $X, Y \in \mathcal{L}$ and $X \leq Y$, then $\rho(Y) \leq \rho(X)$.
- One of the important objects studied in Financial Mathematics and Risk Theory is risk measures.
- For example, risk measure is used to determine the amount of an asset (currency) to be kept in reserve.
- A risk measure is defined as a mapping $\rho: \mathcal{L} \rightarrow \mathbb{R}$ from a set of random variables to the real numbers:
(1) Normalized $\rho(0)=0$;
(2) Translative If $a \in \mathbb{R}, X \in \mathcal{L}$, then $\rho(X+a)=\rho(X)-a$;
(3) Monotone If $X, Y \in \mathcal{L}$ and $X \leq Y$, then $\rho(Y) \leq \rho(X)$.
- For example: $\rho(X)=\mathbb{E}[-X]$.
- Counterexample: $\rho(X)=\operatorname{Var}[X]$
- One of the important objects studied in Financial Mathematics and Risk Theory is risk measures.
- For example, risk measure is used to determine the amount of an asset (currency) to be kept in reserve.
- A risk measure is defined as a mapping $\rho: \mathcal{L} \rightarrow \mathbb{R}$ from a set of random variables to the real numbers:
(1) Normalized $\rho(0)=0$;
(2) Translative If $a \in \mathbb{R}, X \in \mathcal{L}$, then $\rho(X+a)=\rho(X)-a$;
(3) Monotone If $X, Y \in \mathcal{L}$ and $X \leq Y$, then $\rho(Y) \leq \rho(X)$.
- For example: $\rho(X)=\mathbb{E}[-X]$.
- Counterexample: $\rho(X)=\operatorname{Var}[X]$
- Important family: Law invariant risk measures.
- Coherent risk measures: $\rho: L^{\infty} \rightarrow \mathbb{R}$ with
(1) Normalized + Monotonicity + Translation invariance
(2) Subadditivity $\rho(X+Y) \leq \rho(X)+\rho(Y)$.
(3) Positive homogenity If $\lambda \geq 0$ then $\rho(\lambda X)=\lambda \rho(X)$.

Families of risk measures

- Coherent risk measures: $\rho: L^{\infty} \rightarrow \mathbb{R}$ with
(1) Normalized + Monotonicity + Translation invariance
(2) Subadditivity $\rho(X+Y) \leq \rho(X)+\rho(Y)$.
(3) Positive homogenity If $\lambda \geq 0$ then $\rho(\lambda X)=\lambda \rho(X)$.
- Föllmer and Schied showed that it is too restrictive.
- Convex risk measures: $\rho: L^{\infty} \rightarrow \mathbb{R}$ with
(1) Normalized + Monotonicity + Translation invariance
(2) Convexity $\rho(\lambda X+(1-\lambda) Y) \leq \lambda \rho(X)+(1-\lambda) \rho(Y)$, where $\lambda \in[0,1]$.

Families of risk measures

- Coherent risk measures: $\rho: L^{\infty} \rightarrow \mathbb{R}$ with
(1) Normalized + Monotonicity + Translation invariance
(2) Subadditivity $\rho(X+Y) \leq \rho(X)+\rho(Y)$.
(3) Positive homogenity If $\lambda \geq 0$ then $\rho(\lambda X)=\lambda \rho(X)$.
- Föllmer and Schied showed that it is too restrictive.
- Convex risk measures: $\rho: L^{\infty} \rightarrow \mathbb{R}$ with
(1) Normalized + Monotonicity + Translation invariance
(2) Convexity $\rho(\lambda X+(1-\lambda) Y) \leq \lambda \rho(X)+(1-\lambda) \rho(Y)$, where $\lambda \in[0,1]$.

Theorem (Föllmer, Schied in '04)

Any law invariant convex risk measure on an atomless probability space has to satisfy

$$
\rho(\mathbb{E}(X \mid G)) \leq \rho(X)
$$

for any $X \in L^{\infty}$ and $\mathcal{G} \subset \mathcal{F}$.

Dilatation monotone risk measures

- Property $\rho(\mathbb{E}(X \mid G)) \leq \rho(X)$ for any $X \in \mathcal{L}^{\infty}$ and $\mathcal{G} \subset \mathcal{F}$ was introduced by Leitner in '04 and is called dilatation monotoninicty.
- Are dilatation monotone risk measures are law invariant?

Dilatation monotone risk measures

- Property $\rho(\mathbb{E}(X \mid G)) \leq \rho(X)$ for any $X \in \mathcal{L}^{\infty}$ and $\mathcal{G} \subset \mathcal{F}$ was introduced by Leitner in '04 and is called dilatation monotoninicty.
- Are dilatation monotone risk measures are law invariant?

Theorem (Cherny, Grigoriev in '07)

On an atomless probability space any L^{∞}-continuous dilatation monotone $\operatorname{map} R: L^{\infty} \rightarrow \mathbb{R}$ is law invariant.

Dilatation monotone risk measures

- Property $\rho(\mathbb{E}(X \mid G)) \leq \rho(X)$ for any $X \in \mathcal{L}^{\infty}$ and $\mathcal{G} \subset \mathcal{F}$ was introduced by Leitner in '04 and is called dilatation monotoninicty.
- Are dilatation monotone risk measures are law invariant?

Theorem (Cherny, Grigoriev in '07)

On an atomless probability space any L^{∞}-continuous dilatation monotone $\operatorname{map} R: L^{\infty} \rightarrow \mathbb{R}$ is law invariant.

Theorem

On an atomless probability space a convex risk measure is law invariant iff it is dilatation monotone.

Original problem

Theorem 1

Let (Ω, F, P) be a nonatomic probability space, X, Y two bounded functions with the same distribution. Then for any $\epsilon>0$ there is a sequence of σ-subalgebras $F_{1}, F_{2}, \ldots, F_{n} \subseteq F$ such that for a sequence of random variables $X_{0}=X, X_{1}=E\left(X_{0} \mid F_{1}\right)$,
$X_{2}=E\left(X_{1} \mid F_{2}\right), \ldots, X_{n}=E\left(X_{n-1} \mid F_{n}\right)$, the following inequality holds $\left\|X_{n}-Y\right\|_{\infty}<\epsilon$.

Original problem

Theorem 1

Let (Ω, F, P) be a nonatomic probability space, X, Y two bounded functions with the same distribution. Then for any $\epsilon>0$ there is a sequence of σ-subalgebras $F_{1}, F_{2}, \ldots, F_{n} \subseteq F$ such that for a sequence of random variables $X_{0}=X, X_{1}=E\left(X_{0} \mid F_{1}\right)$,
$X_{2}=E\left(X_{1} \mid F_{2}\right), \ldots, X_{n}=E\left(X_{n-1} \mid F_{n}\right)$, the following inequality holds $\left\|X_{n}-Y\right\|_{\infty}<\epsilon$.

Note that $\mathbb{F}:=\left(F_{i}\right)$ is a not a filtration, which is unusual for financial mathematics.

Original problem

Theorem 1

Let (Ω, F, P) be a nonatomic probability space, X, Y two bounded functions with the same distribution. Then for any $\epsilon>0$ there is a sequence of σ-subalgebras $F_{1}, F_{2}, \ldots, F_{n} \subseteq F$ such that for a sequence of random variables $X_{0}=X, X_{1}=E\left(X_{0} \mid F_{1}\right)$,
$X_{2}=E\left(X_{1} \mid F_{2}\right), \ldots, X_{n}=E\left(X_{n-1} \mid F_{n}\right)$, the following inequality holds $\left\|X_{n}-Y\right\|_{\infty}<\epsilon$.

Note that $\mathbb{F}:=\left(F_{i}\right)$ is a not a filtration, which is unusual for financial mathematics.

In other words, we can «fully» transform r.v. X into Y with the sequence of «averaging» operations.

Main results

Points to improve:

- Highly formal concept of conditional expectations;
- No explicit sequence or way how to build it;
- No optimality or asymptotic behavior.

Main results

Points to improve:

- Highly formal concept of conditional expectations;
- No explicit sequence or way how to build it;
- No optimality or asymptotic behavior.

Main results:

- Transparent interpretation using «hydrostatic» setup;
- Explicit and optimal algorithm of transformations;
- Exact first term of the asymptotic behavior.

The structure:

- Transparent interpretation;
- Optimal algorithm for a simple case;
- Asymptotic behaviour of the optimal algorithm (Basic Lemma);
- Implication of the Basic Lemma to the Theorem 1.
- Optimality of the algorithm.

Transparent interpretation

Problem

How much water can be transferred from the left to the right cups with a series of such «mixing operations»?

Transparent interpretation

Problem

How much water can be transferred from the left to the right cups with a series of such «mixing operations»?

Basic Lemma

In the setup with $2 n$ cups the first term of the asymptotic behaviour of water amount left under the optimal transfer is $\frac{2}{\sqrt{n \pi}}$.

Optimal algorithm

- Let the cups be numbered as $1,2, \ldots, n$ from the center to the right, and as $-1,-2, \ldots,-n$ from the center to the left;
- On the first stage, we start with connecting the full cup -1 sequentially with all cups $1,2,3, \ldots, n$;

Optimal algorithm

- Let the cups be numbered as $1,2, \ldots, n$ from the center to the right, and as $-1,-2, \ldots,-n$ from the center to the left;
- On the first stage, we start with connecting the full cup -1 sequentially with all cups $1,2,3, \ldots, n$;
- As a result, these n cups receive levels $1 / 2,1 / 4,1 / 8, \ldots, 1 / 2^{n}$, the cup -1 gets the same level as the cup n, i.e. $1 / 2^{n}$;

Optimal algorithm

- Let the cups be numbered as $1,2, \ldots, n$ from the center to the right, and as $-1,-2, \ldots,-n$ from the center to the left;
- On the first stage, we start with connecting the full cup -1 sequentially with all cups $1,2,3, \ldots, n$;
- As a result, these n cups receive levels $1 / 2,1 / 4,1 / 8, \ldots, 1 / 2^{n}$, the cup -1 gets the same level as the cup n, i.e. $1 / 2^{n}$;
- On our second stage, we connect the full cup -2 sequentially again with all cups $1,2,3, \ldots, n$, or again with all cups $1,2, \ldots$;
- As a result, these n cups involved receive levels $(1+1 / 2) / 2=3 / 4,(3 / 4+1 / 4) / 2=1 / 2,(1 / 2+1 / 8)=5 / 16, \ldots$

Amount of water left untransferred

- Let $x_{i}(j)$ be the relative level in the cup $j, j=1,2, \ldots, n$ after i stages of our procedure, $i=1,2, \ldots, n$;
- Denote by d_{n} (the «deficit») the total amount of water untransferred to the right after n stages of finite transfer;
- The deficit equals

$$
\begin{equation*}
d_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}(n) \tag{1}
\end{equation*}
$$

Amount of water left untransferred

- Let $x_{i}(j)$ be the relative level in the cup $j, j=1,2, \ldots, n$ after i stages of our procedure, $i=1,2, \ldots, n$;
- Denote by d_{n} (the «deficit») the total amount of water untransferred to the right after n stages of finite transfer;
- The deficit equals

$$
\begin{equation*}
d_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}(n) \tag{1}
\end{equation*}
$$

Objective

We want to prove that

$$
d_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}(n) \sim \frac{2}{\sqrt{n \pi}}
$$

Asymptotic behavior - sketch of the proof - step 1

Lemma 1

Denote S_{k} as a random variable with Negative Binomial distribution with parameters $k, p=1 / 2$ (a number of failures before the k-th success occurs). Then

$$
\begin{equation*}
x_{k}(j)=P\left(S_{1}=j-1\right)+\cdots+P\left(S_{k}=j-1\right), j=1,2, \ldots \tag{2}
\end{equation*}
$$

Asymptotic behavior - sketch of the proof - step 1

Lemma 1

Denote S_{k} as a random variable with Negative Binomial distribution with parameters $k, p=1 / 2$ (a number of failures before the k-th success occurs). Then

$$
\begin{equation*}
x_{k}(j)=P\left(S_{1}=j-1\right)+\cdots+P\left(S_{k}=j-1\right), j=1,2, \ldots \tag{2}
\end{equation*}
$$

- Introduce generating function $F_{n}(z)=\sum_{j=1}^{\infty} x_{n}(j) z^{j}, n=1,2, \ldots$
- Use recursive relation

$$
x_{i}(j)=\frac{x_{i-1}(j)}{2}+\frac{x_{i-1}(j-1)}{2^{2}}+\cdots+\frac{x_{i-1}(1)}{2^{j}}+\frac{1}{2^{j}}, j=1,2, \ldots
$$

Asymptotic behavior - sketch of the proof - step 1

Lemma 1

Denote S_{k} as a random variable with Negative Binomial distribution with parameters $k, p=1 / 2$ (a number of failures before the k-th success occurs). Then

$$
\begin{equation*}
x_{k}(j)=P\left(S_{1}=j-1\right)+\cdots+P\left(S_{k}=j-1\right), j=1,2, \ldots \tag{2}
\end{equation*}
$$

- Introduce generating function $F_{n}(z)=\sum_{j=1}^{\infty} x_{n}(j) z^{j}, n=1,2, \ldots$
- Use recursive relation

$$
x_{i}(j)=\frac{x_{i-1}(j)}{2}+\frac{x_{i-1}(j-1)}{2^{2}}+\cdots+\frac{x_{i-1}(1)}{2^{j}}+\frac{1}{2^{j}}, j=1,2, \ldots
$$

- Get $F_{n}(z)=\sum_{k=1}^{n} \frac{z}{(2-z)^{k}}, n=1,2, \ldots$

Asymptotic behavior - sketch of the proof - step 1

Lemma 1

Denote S_{k} as a random variable with Negative Binomial distribution with parameters $k, p=1 / 2$ (a number of failures before the k-th success occurs). Then

$$
\begin{equation*}
x_{k}(j)=P\left(S_{1}=j-1\right)+\cdots+P\left(S_{k}=j-1\right), j=1,2, \ldots \tag{2}
\end{equation*}
$$

- Introduce generating function $F_{n}(z)=\sum_{j=1}^{\infty} x_{n}(j) z^{j}, n=1,2, \ldots$.
- Use recursive relation

$$
x_{i}(j)=\frac{x_{i-1}(j)}{2}+\frac{x_{i-1}(j-1)}{2^{2}}+\cdots+\frac{x_{i-1}(1)}{2^{j}}+\frac{1}{2^{j}}, j=1,2, \ldots
$$

- Get $F_{n}(z)=\sum_{k=1}^{n} \frac{z}{(2-z)^{k}}, n=1,2, \ldots$

Proposition 2

Using (1) and (2) we obtain $n d_{n}=\sum_{k=1}^{n} P\left(S_{k} \geq n\right)$.

Asymptotic behavior - sketch of the proof - step 2

Using notation $m_{n}=n^{3 / 5}$ we can rewrite (3) as

$$
\begin{align*}
n d_{n}= & \sum_{k=1}^{n-\left\lfloor m_{n}\right\rfloor} P\left(S_{k} \geq n\right)+\sum_{k=n-\left\lfloor m_{n}\right\rfloor+1}^{n} P\left(S_{k} \geq n+m_{n}\right)+ \tag{3}\\
& +\sum_{k=n-\left\lfloor m_{n}\right\rfloor+1}^{n} P\left(n \leq S_{k}<n+m_{n}\right)=A_{1}+A_{2}+A_{3}
\end{align*}
$$

Asymptotic behavior - sketch of the proof - step 2

Using notation $m_{n}=n^{3 / 5}$ we can rewrite (3) as

$$
\begin{align*}
n d_{n}= & \sum_{k=1}^{n-\left\lfloor m_{n}\right\rfloor} P\left(S_{k} \geq n\right)+\sum_{k=n-\left\lfloor m_{n}\right\rfloor+1}^{n} P\left(S_{k} \geq n+m_{n}\right)+ \tag{3}\\
& +\sum_{k=n-\left\lfloor m_{n}\right\rfloor+1}^{n} P\left(n \leq S_{k}<n+m_{n}\right)=A_{1}+A_{2}+A_{3}
\end{align*}
$$

Proposition 3

If $k \leq n-m_{n}$, then $P\left(S_{k} \geq n\right) \leq \exp \left(-\frac{n^{\frac{1}{5}}}{4}+O\left(n^{-\frac{1}{5}}\right)\right)$.

Proposition 4

For any $k \leq n P\left(S_{k} \geq n+m_{n}\right) \leq \exp \left(-\frac{n^{\frac{1}{5}}}{4}+O\left(n^{\frac{1}{6}}\right)\right)$.

Proof of Propositions 3

- If $1 \leq k \leq n-m_{n}$ and $1<z<2$, Markov inequality implies

$$
P\left(S_{k} \geq n\right)=P\left(z^{S_{k}} \geq z^{n}\right) \leq \frac{E z^{S_{k}}}{z^{n}}=\frac{1}{(2-z)^{k} z^{n}}
$$

Proof of Propositions 3

- If $1 \leq k \leq n-m_{n}$ and $1<z<2$, Markov inequality implies

$$
P\left(S_{k} \geq n\right)=P\left(z^{S_{k}} \geq z^{n}\right) \leq \frac{E z^{S_{k}}}{z^{n}}=\frac{1}{(2-z)^{k} z^{n}}
$$

- Put $z=1+\varepsilon$. Then for large n and small ε we have

$$
\begin{aligned}
P\left(S_{k} \geq n\right) & =P\left((1+\varepsilon)^{S_{k}} \geq(1+\varepsilon)^{n}\right) \leq(1-\varepsilon)^{-k}(1+\varepsilon)^{-n} \leq \\
& \leq(1-\varepsilon)^{-n+m_{n}}(1+\varepsilon)^{-n}= \\
& =\exp \left[-m_{n} \varepsilon+n \varepsilon^{2}+O\left(m_{n} \varepsilon^{2}\right)+O\left(n \varepsilon^{3}\right)\right]
\end{aligned}
$$

Proof of Propositions 3

- If $1 \leq k \leq n-m_{n}$ and $1<z<2$, Markov inequality implies

$$
P\left(S_{k} \geq n\right)=P\left(z^{S_{k}} \geq z^{n}\right) \leq \frac{E z^{S_{k}}}{z^{n}}=\frac{1}{(2-z)^{k} z^{n}}
$$

- Put $z=1+\varepsilon$. Then for large n and small ε we have

$$
\begin{aligned}
P\left(S_{k} \geq n\right) & =P\left((1+\varepsilon)^{S_{k}} \geq(1+\varepsilon)^{n}\right) \leq(1-\varepsilon)^{-k}(1+\varepsilon)^{-n} \leq \\
& \leq(1-\varepsilon)^{-n+m_{n}}(1+\varepsilon)^{-n}= \\
& =\exp \left[-m_{n} \varepsilon+n \varepsilon^{2}+O\left(m_{n} \varepsilon^{2}\right)+O\left(n \varepsilon^{3}\right)\right]
\end{aligned}
$$

- Put $\varepsilon=\varepsilon_{n}=\frac{1}{2 n^{2 / 5}}$, as it approximately minimizes of the exponent. It gives for $k \leq n-m_{n}$

$$
P\left(S_{k} \geq n\right) \leq \exp \left(-\frac{1}{4} n^{\frac{1}{5}}+O\left(n^{-\frac{1}{5}}\right)\right)
$$

Asymptotic behavior - sketch of the proof - step 3.1

Therefore, $A_{1}(n) \rightarrow 0, A_{2}(n) \rightarrow 0$ and $n d_{n}=A_{3}(n)+o(1)$.

Asymptotic behavior - sketch of the proof - step 3.1

Therefore, $A_{1}(n) \rightarrow 0, A_{2}(n) \rightarrow 0$ and $n d_{n}=A_{3}(n)+o(1)$.

- Recall $A_{3}(n)=\sum_{k=n-\left\lfloor m_{n}\right\rfloor+1}^{n} P\left(n \leq S_{k}<n+m_{n}\right)$;
- Note that $P\left(S_{k+1}=m\right)=b(k \mid k+m)$, where $b(k \mid n)$ is a Binomial distribution with parameters $n, 1 / 2$;

Asymptotic behavior - sketch of the proof - step 3.1

Therefore, $A_{1}(n) \rightarrow 0, A_{2}(n) \rightarrow 0$ and $n d_{n}=A_{3}(n)+o(1)$.

- Recall $A_{3}(n)=\sum_{k=n-\left\lfloor m_{n}\right\rfloor+1}^{n} P\left(n \leq S_{k}<n+m_{n}\right)$;
- Note that $P\left(S_{k+1}=m\right)=b(k \mid k+m)$, where $b(k \mid n)$ is a Binomial distribution with parameters $n, 1 / 2$;
- By the De Moivre-Laplace Theorem

$$
b(k \mid n, p)=\frac{1}{\sqrt{2 \pi n p q}} \exp \left[-\frac{(k-n p)^{2}}{2 n p q}+o(1)\right] ;
$$

- Therefore, we obtain

$$
A_{3}(n)=\sum_{k=n-\left\lfloor m_{n}\right\rfloor}^{n-1} \sum_{m=n}^{n+\left\lfloor m_{n}\right\rfloor} \sqrt{\frac{2}{\pi(k+m)}} \exp \left(-\frac{(m-k)^{2}}{2(k+m)}+o(1)\right) ;
$$

Asymptotic behavior - sketch of the proof - step 3.1

Therefore, $A_{1}(n) \rightarrow 0, A_{2}(n) \rightarrow 0$ and $n d_{n}=A_{3}(n)+o(1)$.

- Recall $A_{3}(n)=\sum_{k=n-\left\lfloor m_{n}\right\rfloor+1}^{n} P\left(n \leq S_{k}<n+m_{n}\right)$;
- Note that $P\left(S_{k+1}=m\right)=b(k \mid k+m)$, where $b(k \mid n)$ is a Binomial distribution with parameters $n, 1 / 2$;
- By the De Moivre-Laplace Theorem
$b(k \mid n, p)=\frac{1}{\sqrt{2 \pi n p q}} \exp \left[-\frac{(k-n p)^{2}}{2 n p q}+o(1)\right]$;
- Therefore, we obtain

$$
A_{3}(n)=\sum_{k=n-\left\lfloor m_{n}\right\rfloor}^{n-1} \sum_{m=n}^{n+\left\lfloor m_{n}\right\rfloor} \sqrt{\frac{2}{\pi(k+m)}} \exp \left(-\frac{(m-k)^{2}}{2(k+m)}+o(1)\right) ;
$$

- Or $A_{3}(n)=\frac{1}{\sqrt{\pi n}} \sum_{l=1}^{\left\lfloor n^{3 / 5}\right\rfloor}(l+1) \exp \left(-\frac{l^{2}}{4 n}\right)+O\left(n^{\frac{7}{10}} \exp \left(-\frac{n^{\frac{1}{5}}}{4}\right)\right)$

Asymptotic behavior - sketch of the proof - step 3.2

Euler-Maclaurin formula

Suppose that L is a positive integer, $f(x)$ is a non-negative continuous function with the absolute maximum at the point $x_{0} \in[0, L]$, and monotonously increasing on $\left[0, x_{0}\right]$, and monotonously decreasing on $\left[x_{0}, L\right]$. Then for $S_{L}=f(0)+f(1)+\cdots+f(L)$

$$
\left|S_{L}-\int_{0}^{L} f(x) d x\right| \leq 3 f\left(x_{0}\right)=3 \max _{x \in[0, L]} f(x) .
$$

Asymptotic behavior - sketch of the proof - step 3.2

Euler-Maclaurin formula

Suppose that L is a positive integer, $f(x)$ is a non-negative continuous function with the absolute maximum at the point $x_{0} \in[0, L]$, and monotonously increasing on $\left[0, x_{0}\right]$, and monotonously decreasing on $\left[x_{0}, L\right]$. Then for $S_{L}=f(0)+f(1)+\cdots+f(L)$

$$
\left|S_{L}-\int_{0}^{L} f(x) d x\right| \leq 3 f\left(x_{0}\right)=3 \max _{x \in[0, L]} f(x) .
$$

- Apply to function $(x+1) \exp \left(-\frac{x^{2}}{4 n}\right)$ with maximum of an order \sqrt{n}.
- Get

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi n}} \sum_{l=1}^{\left\lfloor n^{3 / 5}\right\rfloor}(I+1) \exp \left(-\frac{l^{2}}{4 n}\right)= \\
& =\frac{1}{\sqrt{\pi n}} \int_{1}^{\left\lfloor n^{3 / 5}\right\rfloor}(x+1) \exp \left(-\frac{x^{2}}{4 n}\right) d x+O(1) \sim \frac{2}{\sqrt{n \pi}} .
\end{aligned}
$$

Intermediate results

- We devided $n d_{n}$ into sum $n d_{n}=A_{1}(n)+A_{2}(n)+A_{3}(n)$;
- We showed that $A_{1}(n) \rightarrow 0, A_{2}(n) \rightarrow 0$;
- We showed that $A_{3}(n) \sim 2 \sqrt{\frac{n}{\pi}}+o(1)$;
- Therefore, we proved Basic Lemma.

Basic Lemma

In the setup with $2 n$ cups the first term of the asymptotic behaviour of water amount left under the optimal transfer is $d_{n}=\frac{2}{\sqrt{n \pi}}$.

Intermediate results

- We devided $n d_{n}$ into sum $n d_{n}=A_{1}(n)+A_{2}(n)+A_{3}(n)$;
- We showed that $A_{1}(n) \rightarrow 0, A_{2}(n) \rightarrow 0$;
- We showed that $A_{3}(n) \sim 2 \sqrt{\frac{n}{\pi}}+o(1)$;
- Therefore, we proved Basic Lemma.

Basic Lemma

In the setup with $2 n$ cups the first term of the asymptotic behaviour of water amount left under the optimal transfer is $d_{n}=\frac{2}{\sqrt{n \pi}}$.

Remark

Basic Lemma proves Theorem 1 for the case when $X=c_{1} 1_{A}+c_{2} 1_{B}, Y=c_{2} 1_{A}+c_{1} 1_{B}$ for some disjoint subsets $A, B \subseteq \Omega$ such that $\mu(A)=\mu(B)$.

We should show the derivation of the Cherny-Grigoriev Theorem 1 from this basic case.

Equivalence of Basic Lemma and Theorem 1 - steps 1 and 2

- It is sufficient to consider only simple bounded function X, Y (functions with finitely many values).
- Indeed, for an arbitrary $\delta>0$ and equidistributed bounded functions X, Y there exist equidistributed bounded simple functions \tilde{X}, \tilde{Y} such that $\|X-\tilde{X}\|_{\infty}<\delta,\|Y-\tilde{Y}\|_{\infty}<\delta$.

Equivalence of Basic Lemma and Theorem 1 - steps 1 and 2

- It is sufficient to consider only simple bounded function X, Y (functions with finitely many values).
- Indeed, for an arbitrary $\delta>0$ and equidistributed bounded functions X, Y there exist equidistributed bounded simple functions \tilde{X}, \tilde{Y} such that $\|X-\tilde{X}\|_{\infty}<\delta,\|Y-\tilde{Y}\|_{\infty}<\delta$.
- Say that X takes values $x_{1}<x_{2}<\cdots<x_{N}$ on subsets $A_{1}, \ldots, A_{N} \subset \Omega, Y$ takes the same values $x_{1}<x_{2}<\cdots<x_{N}$ on subsets $B_{1}, \ldots, B_{N} \subset \Omega$, and $\forall i=1, \ldots, N: \mu\left(A_{i}\right)=\mu\left(B_{i}\right)$.
- We now will transform X into Y step by step.

Equivalence of Basic Lemma and Theorem 1 - steps 1 and 2

- It is sufficient to consider only simple bounded function X, Y (functions with finitely many values).
- Indeed, for an arbitrary $\delta>0$ and equidistributed bounded functions X, Y there exist equidistributed bounded simple functions \tilde{X}, \tilde{Y} such that $\|X-\tilde{X}\|_{\infty}<\delta,\|Y-\tilde{Y}\|_{\infty}<\delta$.
- Say that X takes values $x_{1}<x_{2}<\cdots<x_{N}$ on subsets $A_{1}, \ldots, A_{N} \subset \Omega, Y$ takes the same values $x_{1}<x_{2}<\cdots<x_{N}$ on subsets $B_{1}, \ldots, B_{N} \subset \Omega$, and $\forall i=1, \ldots, N: \mu\left(A_{i}\right)=\mu\left(B_{i}\right)$.
- We now will transform X into Y step by step.
- At the first step we will make X equal (up to fixed ϵ) to x_{N} on B_{N}.
- Then without touching previous results we will make our new X_{1} equal (up to fixed ϵ) to x_{N-1} on B_{N-1} and so on.
- As the result, we will obtain X_{N} such that on every B_{N} it is equal to Y up to fixed ϵ, i.e. $\left\|X_{N}-Y\right\|_{\infty}<\epsilon$.

Equivalence of Basic Lemma and Theorem 1 - step 3.1

- Suppose that $A_{N} \cap B_{N}=\varnothing$, if not we will not touch their intersection.
- Suppose X takes values $x_{1}<x_{2}<\cdots<x_{N}$ on subsets $C_{1}, \ldots, C_{N} \subset B_{N}$ respectively, $\cup_{i=1}^{N} C_{i}=B_{N}$.
- Divide A_{N} into disjoint sets $D_{1}, \ldots, D_{N} \subset A_{N}$ such that $\cup_{i=1}^{N} D_{i}=A_{N}$ and $\forall i=1, \ldots, N: \mu\left(D_{i}\right)=\mu\left(C_{i}\right)$.
- Basic Lemma implies that we can swap the values of X on all these subsets C_{i} and D_{i} up to a fixed ϵ : first, swap C_{1} and D_{1}, then C_{2} and D_{2}, etc.

Equivalence of Basic Lemma and Theorem 1 - step 3.2

- After that, we will obtain new function X_{1} such that $\forall i=1, \ldots, N:\left|\left|X_{1}\right| c_{c_{i}}-Y\right| c_{c_{i}} \|_{\infty}<\epsilon$ or $\left\|\left.X_{1}\right|_{B_{N}}-\left.Y\right|_{B_{N}}\right\|_{\infty}<\epsilon$.
- Moreover, on $\Omega \backslash B_{N}$ up to an arbitrary small ϵX_{1} and Y again equidistributed, but take only $N-1$ values.
- Therefore, we can similarly obtain next X_{2} such that $\left|\left|X_{2}\right|_{B_{N-1}}-Y\right|_{B_{N-1}} \|_{\infty}<\epsilon$ or $\left\|\left.X_{2}\right|_{B_{N} \cup B_{N-1}}-\left.Y\right|_{B_{N} \cup B_{N-1}}\right\|_{\infty}<\epsilon$.
- After N such steps we will obtain $\left\|X_{N}-Y\right\|_{\infty}<\epsilon$.

Equivalence of Basic Lemma and Theorem 1 - step 3.2

- After that, we will obtain new function X_{1} such that $\forall i=1, \ldots, N:\left|\left|X_{1}\right| c_{c_{i}}-Y\right| c_{c_{i}} \|_{\infty}<\epsilon$ or $\left\|\left.X_{1}\right|_{B_{N}}-\left.Y\right|_{B_{N}}\right\|_{\infty}<\epsilon$.
- Moreover, on $\Omega \backslash B_{N}$ up to an arbitrary small ϵX_{1} and Y again equidistributed, but take only $N-1$ values.
- Therefore, we can similarly obtain next X_{2} such that $\left|\left|X_{2}\right|_{B_{N-1}}-Y\right|_{B_{N-1}} \|_{\infty}<\epsilon$ or $\left\|\left.X_{2}\right|_{B_{N} \cup B_{N-1}}-\left.Y\right|_{B_{N} \cup B_{N-1}}\right\|_{\infty}<\epsilon$.
- After N such steps we will obtain $\left\|X_{N}-Y\right\|_{\infty}<\epsilon$.
- What is about optimality?

Optimal algorithms - defining space

- Consider the problem of transferring water from n left cups to n right cups.

Optimal algorithms - defining space

- Consider the problem of transferring water from n left cups to n right cups.
- Triple discretization problem:
- Consider the problem of transferring water from n left cups to n right cups.
- Triple discretization problem:
(1) A space (for example $(0,1)$) is divided into $2 n$ equal parts;
(2) Possible values of functions are in a fixed grid;
(3) Discretizing discrete time even more, allowing only one unit of a transfer at a time.
- Consider the problem of transferring water from n left cups to n right cups.
- Triple discretization problem:
(1) A space (for example $(0,1))$ is divided into $2 n$ equal parts;
(2) Possible values of functions are in a fixed grid;
(3) Discretizing discrete time even more, allowing only one unit of a transfer at a time.
- Suppose that levels of the cups are integers $s=0,1, \ldots$ or fractions s / M, where s and M are integers (for continuous case let n and M tend independently to infinity).

Family of optimal algorithms

- Suppose that the i-th cup on the left has level $a(i)$ and the j-th cup on can connect if $a(i)>b(j))$.
- After the connection levels become $a(i)^{\prime}=a(i)-1$ and $b(j)^{\prime}=b(j)+1$.

Family of optimal algorithms

- Suppose that the i-th cup on the left has level $a(i)$ and the j-th cup on can connect if $a(i)>b(j))$.
- After the connection levels become $a(i)^{\prime}=a(i)-1$ and $b(j)^{\prime}=b(j)+1$.
- Say that a cup i on the left is open at moment m, if there is at least one cup on the right with the lower the level.
- Denote $A_{m}^{0}(i)$, the «inner set» of a cup i at the moment m, i.e. all cups available to it, which are not available to any cup with a lower level.

Family of optimal algorithms

- Suppose that the i-th cup on the left has level $a(i)$ and the j-th cup on can connect if $a(i)>b(j))$.
- After the connection levels become $a(i)^{\prime}=a(i)-1$ and $b(j)^{\prime}=b(j)+1$.
- Say that a cup i on the left is open at moment m, if there is at least one cup on the right with the lower the level.
- Denote $A_{m}^{0}(i)$, the «inner set» of a cup i at the moment m, i.e. all cups available to it, which are not available to any cup with a lower level.

Optimal strategy

Let π_{*} be the following strategy: At each moment a cup with lowest level from the left among all open cups is connected with an available for it cup with the greatest level on the right. And if at any moment there are some draws, connections can be ordered in some arbitrary way.

Proof of optimality - step 1

- At each moment the state of a system is described by a $2 n$ dimensional vector

$$
c=(a, b), a=(a(i), i=1,2, \ldots, n), b=(b(j), j=1,2, \ldots, n) .
$$

- Define $k(c \mid \pi)$ as the total number of connections obtained from state c using a strategy π and let $\pi(c)$ be the next state obtained from c, when π is applied.
- Define $k_{0}(c)=\sup _{\pi} k(c \mid \pi)$, i.e. maximum possible number of connections from state c. Let $k_{*}(c)$ be the number of connections from state c using the strategy π_{*}.

Proof of optimality - step 1

- At each moment the state of a system is described by a $2 n$ dimensional vector

$$
c=(a, b), a=(a(i), i=1,2, \ldots, n), b=(b(j), j=1,2, \ldots, n) .
$$

- Define $k(c \mid \pi)$ as the total number of connections obtained from state c using a strategy π and let $\pi(c)$ be the next state obtained from c, when π is applied.
- Define $k_{0}(c)=\sup _{\pi} k(c \mid \pi)$, i.e. maximum possible number of connections from state c. Let $k_{*}(c)$ be the number of connections from state c using the strategy π_{*}.

Objective

We want to show that for any given state c we have $k_{*}(c)=k_{0}(c)$.

Proof of optimality - step 2

- We shall prove Theorem 2 by induction on the maximal number of remaining steps n.
- The induction statement $P_{n}, n=0,1, \ldots$ is: For any state c, if $k_{0}(c)=n$, then $k_{*}(c)=n$.

Proof of optimality - step 2

- We shall prove Theorem 2 by induction on the maximal number of remaining steps n.
- The induction statement $P_{n}, n=0,1, \ldots$ is: For any state c, if $k_{0}(c)=n$, then $k_{*}(c)=n$.
- Base is trivial as if for a particular state $c: n=0$, then it means that there is no open cups and P_{0} is trivially true.

Proof of optimality - step 2

- We shall prove Theorem 2 by induction on the maximal number of remaining steps n.
- The induction statement $P_{n}, n=0,1, \ldots$ is: For any state c, if $k_{0}(c)=n$, then $k_{*}(c)=n$.
- Base is trivial as if for a particular state $c: n=0$, then it means that there is no open cups and P_{0} is trivially true.
- Now suppose that P_{k} holds for all $1 \leq k \leq n$, and $k_{0}(c)=n+1$. Let an optimal strategy π_{0} asks (s, t) connection and the strategy π_{*} asks (i, j) connection.
- Let us denote states $c_{0}=\pi_{0}(c)$ and $c_{*}=\pi_{*}(c)$. According to the induction assumption the strategy π_{0} after the first step can be continued by the strategy π_{*}, i.e. $k_{0}\left(c_{0}\right)=k_{*}\left(c_{0}\right)=n$.

Proof of optimality - step 2

- We shall prove Theorem 2 by induction on the maximal number of remaining steps n.
- The induction statement $P_{n}, n=0,1, \ldots$ is: For any state c, if $k_{0}(c)=n$, then $k_{*}(c)=n$.
- Base is trivial as if for a particular state $c: n=0$, then it means that there is no open cups and P_{0} is trivially true.
- Now suppose that P_{k} holds for all $1 \leq k \leq n$, and $k_{0}(c)=n+1$. Let an optimal strategy π_{0} asks (s, t) connection and the strategy π_{*} asks (i, j) connection.
- Let us denote states $c_{0}=\pi_{0}(c)$ and $c_{*}=\pi_{*}(c)$. According to the induction assumption the strategy π_{0} after the first step can be continued by the strategy π_{*}, i.e. $k_{0}\left(c_{0}\right)=k_{*}\left(c_{0}\right)=n$.
- And we want to show that $k_{*}\left(c_{*}\right)=k_{0}\left(c_{0}\right)=n$ either, or that there exists a strategy π^{\prime} such that $k\left(c_{*} \mid \pi^{\prime}\right)=n$.

Proof of optimality - step 3

- If an optimal strategy π_{0} is different from strategy π_{*}, then the definition of π_{*} implies that $a(s) \geq a(i)$ and if $b(t)<a(i)$, then $b(j) \leq b(j)$.
- Only the following four situations are possible:
(1) $a(s)>a(i)$ and $b(t) \geq a(i)$;
(2) $a(s)>a(i)$ and $b(t)<b(j)$;
(3) $a(s)>a(i)$ and $b(t)=b(j)$;
(9) $a(s)=a(i)$ and $b(t)<b(j)$.

Proof of optimality - step 3

- If an optimal strategy π_{0} is different from strategy π_{*}, then the definition of π_{*} implies that $a(s) \geq a(i)$ and if $b(t)<a(i)$, then $b(j) \leq b(j)$.
- Only the following four situations are possible:
(1) $a(s)>a(i)$ and $b(t) \geq a(i)$;
(2) $a(s)>a(i)$ and $b(t)<b(j)$;
(3) $a(s)>a(i)$ and $b(t)=b(j)$;
(9) $a(s)=a(i)$ and $b(t)<b(j)$.
- In all cases we shall show that the state c_{*} is «at least good» as state c_{0}, i.e. there is a matching strategy π^{\prime} applied to c_{*} with at least n steps.

Proof of optimality - step 4 - case 1

- In case 1) the strategy π_{*} applied to c_{0} asks for (i, j) connection, because in this state, as in state c, the left cup i is still the lowest open and the right cup j is still its greatest available.

Proof of optimality - step 4 - case 1

- In case 1) the strategy π_{*} applied to c_{0} asks for (i, j) connection, because in this state, as in state c, the left cup i is still the lowest open and the right cup j is still its greatest available.
- Hence $c^{\prime}=\pi_{*}\left(c_{0}\right)=(a(s)-1, a(i)-1, \ldots ; b(t)+1, b(j)+1, \ldots)$ and $k_{*}\left(c^{\prime}\right)=k_{0}\left(c^{\prime}\right)=n-1$.

Proof of optimality - step 4 - case 1

- In case 1) the strategy π_{*} applied to c_{0} asks for (i, j) connection, because in this state, as in state c, the left cup i is still the lowest open and the right cup j is still its greatest available.
- Hence $c^{\prime}=\pi_{*}\left(c_{0}\right)=(a(s)-1, a(i)-1, \ldots ; b(t)+1, b(j)+1, \ldots)$ and $k_{*}\left(c^{\prime}\right)=k_{0}\left(c^{\prime}\right)=n-1$.
- But state c^{\prime} can be obtained also from state c_{*} using strategy π^{\prime} with the first connection (s, t).

Proof of optimality - step 4 - case 1

- In case 1) the strategy π_{*} applied to c_{0} asks for (i, j) connection, because in this state, as in state c, the left cup i is still the lowest open and the right cup j is still its greatest available.
- Hence $c^{\prime}=\pi_{*}\left(c_{0}\right)=(a(s)-1, a(i)-1, \ldots ; b(t)+1, b(j)+1, \ldots)$ and $k_{*}\left(c^{\prime}\right)=k_{0}\left(c^{\prime}\right)=n-1$.
- But state c^{\prime} can be obtained also from state c_{*} using strategy π^{\prime} with the first connection (s, t).
- If this connection is continued by π_{0} then $k_{0}\left(c_{*}\right) \geq k\left(c_{*} \mid \pi^{\prime}\right)=1+k_{0}\left(c^{\prime}\right)=1+(n-1)=n$.
- Therefore, we obtain P_{n+1}.

Main results

Main results:

- We showed transparent interpretation of Theorem 1 using «hydrostatic» setup;
- We provided explicit and optimal algorithm of transformations for the simplest case;
- We found an exact first term of the asymptotic behavior (Basic Lemma);
- We proved that our simplest case implies Theorem 1.

Bibliography

围 V．I．Arnold（2006），Mathematical Understanding of Nature：Essays on Amazing Physical Phenomena and Their Understanding by Mathematicians． MCCME．

目 A．S．Cherny，P．G．Grigoriev（2007），Dilatation monotone risk measures are law invariant．Finance and Stochastic，Vol．2，291－298．
图 W．Feller（1967），An Introduction to Probability Theory and Its Applications． Vol．1．Wiley．
H．Föllmer，A．Schied（2002），Convex measures of risk and trading constraints．Finance and Stochastics，6，No．4，429－447．
（ J．Leitner（2004），Belayage monotonous risk measures．International Journal of Theoretical and Applied Finance，7，No．7，887－900．

