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Original problem

Story begins in 2007, when A.Cherny and P.Grigoriev published a
noteworthy result for Risk Theory.

Theorem 1
Let (Ω,F ,P) be a nonatomic probability space, X ,Y two bounded
functions with the same distribution. Then for any 𝜖 > 0 there is a
sequence of 𝜎-subalgebras F1,F2, . . . ,Fn ⊆ F such that for a sequence of
random variables X0 = X ,X1 = E (X0|F1),
X2 = E (X1|F2), . . . ,Xn = E (Xn−1|Fn), the following inequality holds
||Xn − Y ||∞ < 𝜖.

This result is highly connected to Risk Theory.
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Risk measures

One of the important objects studied in Financial Mathematics and
Risk Theory is risk measures.
For example, risk measure is used to determine the amount of an asset
(currency) to be kept in reserve.
A risk measure is defined as a mapping 𝜌 : ℒ → R from a set of
random variables to the real numbers:

1 Normalized 𝜌(0) = 0;
2 Translative If a ∈ R,X ∈ ℒ, then 𝜌(X + a) = 𝜌(X )− a;
3 Monotone If X ,Y ∈ ℒ and X ≤ Y , then 𝜌(Y ) ≤ 𝜌(X ).

For example: 𝜌(X ) = E[−X ].
Counterexample: 𝜌(X ) = Var [X ]

Important family: Law invariant risk measures.
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Families of risk measures

Coherent risk measures: 𝜌 : L∞ → R with
1 Normalized + Monotonicity + Translation invariance
2 Subadditivity 𝜌(X + Y ) ≤ 𝜌(X ) + 𝜌(Y ).
3 Positive homogenity If 𝜆 ≥ 0 then 𝜌(𝜆X ) = 𝜆𝜌(X ).

Föllmer and Schied showed that it is too restrictive.
Convex risk measures: 𝜌 : L∞ → R with

1 Normalized + Monotonicity + Translation invariance
2 Convexity 𝜌(𝜆X +(1−𝜆)Y ) ≤ 𝜆𝜌(X )+ (1−𝜆)𝜌(Y ), where 𝜆 ∈ [0,1].

Theorem (Föllmer, Schied in ’04)
Any law invariant convex risk measure on an atomless probability space has
to satisfy

𝜌(E(X |G )) ≤ 𝜌(X )

for any X ∈ L∞ and 𝒢 ⊂ ℱ .
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Dilatation monotone risk measures

Property 𝜌(E(X |G )) ≤ 𝜌(X ) for any X ∈ ℒ∞ and 𝒢 ⊂ ℱ was
introduced by Leitner in ’04 and is called dilatation monotoninicty.
Are dilatation monotone risk measures are law invariant?

Theorem (Cherny, Grigoriev in ’07)
On an atomless probability space any L∞-continuous dilatation monotone
map R : L∞ → R is law invariant.

Theorem
On an atomless probability space a convex risk measure is law invariant iff
it is dilatation monotone.
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Original problem

Theorem 1
Let (Ω,F ,P) be a nonatomic probability space, X ,Y two bounded
functions with the same distribution. Then for any 𝜖 > 0 there is a
sequence of 𝜎-subalgebras F1,F2, . . . ,Fn ⊆ F such that for a sequence of
random variables X0 = X ,X1 = E (X0|F1),
X2 = E (X1|F2), . . . ,Xn = E (Xn−1|Fn), the following inequality holds
||Xn − Y ||∞ < 𝜖.

Note that F := (Fi ) is a not a filtration, which is unusual for financial
mathematics.

In other words, we can «fully» transform r.v. X into Y with the sequence
of «averaging» operations.
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Main results

Points to improve:
Highly formal concept of
conditional expectations;
No explicit sequence or way how
to build it;
No optimality or asymptotic
behavior.

Main results:
Transparent interpretation using
«hydrostatic» setup;
Explicit and optimal algorithm of
transformations;
Exact first term of the
asymptotic behavior.
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The structure of the work

The structure:
Transparent interpretation;
Optimal algorithm for a simple case;
Asymptotic behaviour of the optimal algorithm (Basic Lemma);
Implication of the Basic Lemma to the Theorem 1.
Optimality of the algorithm.
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Transparent interpretation

Problem
How much water can be transferred from the left to the right cups with a
series of such «mixing operations»?

Basic Lemma
In the setup with 2n cups the first term of the asymptotic behaviour of
water amount left under the optimal transfer is 2√

n𝜋
.
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Optimal algorithm

Let the cups be numbered as 1, 2, . . . , n from the center to the right,
and as −1,−2, . . . ,−n from the center to the left;
On the first stage, we start with connecting the full cup −1
sequentially with all cups 1, 2, 3, . . . , n;

As a result, these n cups receive levels 1/2, 1/4, 1/8, . . . , 1/2n, the
cup −1 gets the same level as the cup n, i.e. 1/2n;
On our second stage, we connect the full cup −2 sequentially again
with all cups 1, 2, 3, . . . , n, or again with all cups 1, 2, . . . ;
As a result, these n cups involved receive levels
(1 + 1/2)/2 = 3/4, (3/4 + 1/4)/2 = 1/2, (1/2 + 1/8) = 5/16, . . .
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Amount of water left untransferred

Let xi (j) be the relative level in the cup j , j = 1, 2, . . . , n after i stages
of our procedure, i = 1, 2, . . . , n;
Denote by dn (the «deficit») the total amount of water untransferred
to the right after n stages of finite transfer;
The deficit equals

dn =
1
n

n∑︁
i=1

xi (n). (1)

Objective
We want to prove that

dn =
1
n

n∑︁
i=1

xi (n) ∼
2√
n𝜋

.
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Asymptotic behavior — sketch of the proof — step 1

Lemma 1
Denote Sk as a random variable with Negative Binomial distribution with
parameters k , p = 1/2 (a number of failures before the k-th success
occurs). Then

xk(j) = P(S1 = j − 1) + · · ·+ P(Sk = j − 1), j = 1, 2, . . . (2)

Introduce generating function Fn(z) =
∞∑︀
j=1

xn(j)z
j , n = 1, 2, . . .

Use recursive relation
xi (j) =

xi−1(j)
2 +

xi−1(j−1)
22 + · · ·+ xi−1(1)

2j + 1
2j , j = 1, 2, . . .

Get Fn(z) =
n∑︀

k=1

z
(2−z)k

, n = 1, 2, . . .

Proposition 2
Using (1) and (2) we obtain ndn =

∑︀n
k=1 P (Sk ≥ n) .
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Asymptotic behavior — sketch of the proof — step 2

Using notation mn = n3/5 we can rewrite (3) as

ndn =

n−⌊mn⌋∑︁
k=1

P (Sk ≥ n) +
n∑︁

k=n−⌊mn⌋+1

P (Sk ≥ n +mn)+

+
n∑︁

k=n−⌊mn⌋+1

P (n ≤ Sk < n +mn) = A1 + A2 + A3

(3)

Proposition 3

If k ≤ n −mn, then P (Sk ≥ n) ≤ exp

(︂
−n

1
5
4 + O

(︁
n−

1
5

)︁)︂
.

Proposition 4

For any k ≤ n P (Sk ≥ n +mn) ≤ exp

(︂
−n

1
5
4 + O

(︁
n

1
6

)︁)︂
.
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Proof of Propositions 3

If 1 ≤ k ≤ n −mn and 1 < z < 2, Markov inequality implies

P (Sk ≥ n) = P
(︁
zSk ≥ zn

)︁
≤ EzSk

zn
=

1
(2 − z)kzn

.

Put z = 1 + 𝜀. Then for large n and small 𝜀 we have

P (Sk ≥ n) = P
(︁
(1 + 𝜀)Sk ≥ (1 + 𝜀)n

)︁
≤ (1 − 𝜀)−k(1 + 𝜀)−n ≤

≤ (1 − 𝜀)−n+mn(1 + 𝜀)−n =

= exp
[︀
−mn𝜀+ n𝜀2 + O

(︀
mn𝜀

2)︀+ O
(︀
n𝜀3)︀]︀ .

Put 𝜀 = 𝜀n = 1
2n2/5 , as it approximately minimizes of the exponent. It

gives for k ≤ n −mn

P (Sk ≥ n) ≤ exp

(︂
−1

4
n

1
5 + O

(︁
n−

1
5

)︁)︂
,
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Asymptotic behavior — sketch of the proof — step 3.1

Therefore, A1(n) → 0,A2(n) → 0 and ndn = A3(n) + o(1).

Recall A3(n) =
∑︀n

k=n−⌊mn⌋+1 P (n ≤ Sk < n +mn);
Note that P (Sk+1 = m) = b(k|k +m), where b(k |n) is a Binomial
distribution with parameters n, 1/2;
By the De Moivre-Laplace Theorem
b(k|n, p) = 1√

2𝜋npq exp
[︁
− (k−np)2

2npq + o(1)
]︁
;

Therefore, we obtain

A3(n) =
n−1∑︁

k=n−⌊mn⌋

n+⌊mn⌋∑︁
m=n

√︃
2

𝜋(k +m)
exp

(︂
− (m − k)2

2(k +m)
+ o(1)

)︂
;

Or A3(n) =
1√
𝜋n

⌊n3/5⌋∑︀
l=1

(l + 1) exp
(︁
− l2

4n

)︁
+ O

(︂
n

7
10 exp

(︂
−n

1
5
4

)︂)︂
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Asymptotic behavior — sketch of the proof — step 3.2

Euler-Maclaurin formula
Suppose that L is a positive integer, f (x) is a non-negative continuous
function with the absolute maximum at the point x0 ∈ [0, L], and
monotonously increasing on [0, x0], and monotonously decreasing on [x0, L].
Then for SL = f (0) + f (1) + · · ·+ f (L)⃒⃒⃒⃒

SL −
∫︁ L

0
f (x)dx

⃒⃒⃒⃒
≤ 3f (x0) = 3 max

x∈[0,L]
f (x).

Apply to function (x + 1) exp
(︁
− x2

4n

)︁
with maximum of an order

√
n.

Get

1√
𝜋n

⌊n3/5⌋∑︁
l=1

(l + 1) exp
(︂
− l2

4n

)︂
=

=
1√
𝜋n

∫︁ ⌊n3/5⌋

1
(x + 1) exp

(︂
−x2

4n

)︂
dx + O(1) ∼ 2√

n𝜋
.
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Intermediate results

We devided ndn into sum ndn = A1(n) + A2(n) + A3(n);
We showed that A1(n) → 0,A2(n) → 0;
We showed that A3(n) ∼ 2

√︀
n
𝜋 + o(1);

Therefore, we proved Basic Lemma.

Basic Lemma
In the setup with 2n cups the first term of the asymptotic behaviour of
water amount left under the optimal transfer is dn = 2√

n𝜋
.

Remark
Basic Lemma proves Theorem 1 for the case when
X = c11A + c21B ,Y = c21A + c11B for some disjoint subsets A,B ⊆ Ω
such that 𝜇(A) = 𝜇(B).

We should show the derivation of the Cherny-Grigoriev Theorem 1 from
this basic case.
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Equivalence of Basic Lemma and Theorem 1 — steps 1 and 2

It is sufficient to consider only simple bounded function X ,Y
(functions with finitely many values).
Indeed, for an arbitrary 𝛿 > 0 and equidistributed bounded functions
X ,Y there exist equidistributed bounded simple functions X̃ , Ỹ such
that ||X − X̃ ||∞ < 𝛿, ||Y − Ỹ ||∞ < 𝛿.

Say that X takes values x1 < x2 < · · · < xN on subsets
A1, . . . ,AN ⊂ Ω, Y takes the same values x1 < x2 < · · · < xN on
subsets B1, . . . ,BN ⊂ Ω, and ∀i = 1, . . . ,N : 𝜇(Ai ) = 𝜇(Bi ).
We now will transform X into Y step by step.

At the first step we will make X equal (up to fixed 𝜖) to xN on BN .
Then without touching previous results we will make our new X1 equal
(up to fixed 𝜖) to xN−1 on BN−1 and so on.
As the result, we will obtain XN such that on every BN it is equal to
Y up to fixed 𝜖, i.e. ||XN − Y ||∞ < 𝜖.
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Equivalence of Basic Lemma and Theorem 1 — step 3.1

Suppose that AN ∩BN = ∅, if not we will not touch their intersection.
Suppose X takes values x1 < x2 < · · · < xN on subsets
C1, . . . ,CN ⊂ BN respectively, ∪N

i=1Ci = BN .
Divide AN into disjoint sets D1, . . . ,DN ⊂ AN such that ∪N

i=1Di = AN

and ∀i = 1, . . . ,N : 𝜇(Di ) = 𝜇(Ci ).
Basic Lemma implies that we can swap the values of X on all these
subsets Ci and Di up to a fixed 𝜖: first, swap C1 and D1, then C2 and
D2, etc.
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Equivalence of Basic Lemma and Theorem 1 — step 3.2

After that, we will obtain new function X1 such that
∀i = 1, . . . ,N : ||X1|Ci

− Y |Ci
||∞ < 𝜖 or ||X1|BN

− Y |BN
||∞ < 𝜖.

Moreover, on Ω ∖ BN up to an arbitrary small 𝜖 X1 and Y again
equidistributed, but take only N − 1 values.
Therefore, we can similarly obtain next X2 such that
||X2|BN−1 − Y |BN−1 ||∞ < 𝜖 or ||X2|BN∪BN−1 − Y |BN∪BN−1 ||∞ < 𝜖.
After N such steps we will obtain ||XN − Y ||∞ < 𝜖.

What is about optimality?
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Optimal algorithms - defining space

Consider the problem of transferring water from n left cups to n right
cups.

Triple discretization problem:

1 A space (for example (0, 1)) is divided into 2n equal parts;
2 Possible values of functions are in a fixed grid;
3 Discretizing discrete time even more, allowing only one unit of a

transfer at a time.

Suppose that levels of the cups are integers s = 0, 1, . . . or fractions
s/M, where s and M are integers (for continuous case let n and M
tend independently to infinity).
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Family of optimal algorithms

Suppose that the i-th cup on the left has level a(i) and the j-th cup
on can connect if a(i) > b(j)).
After the connection levels become a(i)′ = a(i)− 1 and
b(j)′ = b(j) + 1.

Say that a cup i on the left is open at moment m, if there is at least
one cup on the right with the lower the level.
Denote A0

m(i), the «inner set» of a cup i at the moment m, i.e. all
cups available to it, which are not available to any cup with a lower
level.

Optimal strategy
Let 𝜋* be the following strategy: At each moment a cup with lowest level
from the left among all open cups is connected with an available for it cup
with the greatest level on the right. And if at any moment there are some
draws, connections can be ordered in some arbitrary way.
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Proof of optimality - step 1

At each moment the state of a system is described by a 2n
dimensional vector
c = (a, b), a = (a(i), i = 1, 2, . . . , n), b = (b(j), j = 1, 2, . . . , n).
Define k(c |𝜋) as the total number of connections obtained from state
c using a strategy 𝜋 and let 𝜋(c) be the next state obtained from c ,
when 𝜋 is applied.
Define k0(c) = sup𝜋 k(c |𝜋), i.e. maximum possible number of
connections from state c . Let k*(c) be the number of connections
from state c using the strategy 𝜋*.

Objective
We want to show that for any given state c we have k*(c) = k0(c).
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Proof of optimality - step 2

We shall prove Theorem 2 by induction on the maximal number of
remaining steps n.
The induction statement Pn, n = 0, 1, . . . is: For any state c , if
k0(c) = n, then k*(c) = n.

Base is trivial as if for a particular state c : n = 0, then it means that
there is no open cups and P0 is trivially true.
Now suppose that Pk holds for all 1 ≤ k ≤ n, and k0(c) = n + 1. Let
an optimal strategy 𝜋0 asks (s, t) connection and the strategy 𝜋* asks
(i , j) connection.
Let us denote states c0 = 𝜋0(c) and c* = 𝜋*(c). According to the
induction assumption the strategy 𝜋0 after the first step can be
continued by the strategy 𝜋*, i.e. k0(c0) = k*(c0) = n.
And we want to show that k*(c*) = k0(c0) = n either, or that there
exists a strategy 𝜋′ such that k(c*|𝜋′) = n.
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Proof of optimality - step 3

If an optimal strategy 𝜋0 is different from strategy 𝜋*, then the
definition of 𝜋* implies that a(s) ≥ a(i) and if b(t) < a(i), then
b(j) ≤ b(j).
Only the following four situations are possible:

1 a(s) > a(i) and b(t) ≥ a(i);
2 a(s) > a(i) and b(t) < b(j);
3 a(s) > a(i) and b(t) = b(j);
4 a(s) = a(i) and b(t) < b(j).

In all cases we shall show that the state c* is «at least good» as state
c0, i.e. there is a matching strategy 𝜋′ applied to c* with at least n
steps.
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Proof of optimality - step 4 - case 1

In case 1) the strategy 𝜋* applied to c0 asks for (i ,j) connection,
because in this state, as in state c , the left cup i is still the lowest
open and the right cup j is still its greatest available.

Hence c ′ = 𝜋*(c0) = (a(s)− 1, a(i)− 1, . . . ; b(t) + 1, b(j) + 1, . . . )
and k*(c

′) = k0(c
′) = n − 1.

But state c ′ can be obtained also from state c* using strategy 𝜋′ with
the first connection (s, t).
If this connection is continued by 𝜋0 then
k0(c*) ≥ k(c*|𝜋′) = 1 + k0(c

′) = 1 + (n − 1) = n.
Therefore, we obtain Pn+1.
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Main results

Main results:
We showed transparent interpretation of Theorem 1 using
«hydrostatic» setup;
We provided explicit and optimal algorithm of transformations for the
simplest case;
We found an exact first term of the asymptotic behavior (Basic
Lemma);
We proved that our simplest case implies Theorem 1.
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