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Why extensions are needed

Abstract

In the previous lectures various aspects of SDEs,
including existence and uniqueness in strong and weak
sense, Markov property, as well as some ergodic
properties of solutions were studied. Yet, this theory
would remain incomplete if we do not touch Krylov’s
estimates and related issues of some extensions of Ito’s
formula and weak and strong solutions under relaxed
regularity conditions. Some brief introduction to these
topics will be presented here in this last additional
lecture to the course. Not many full proofs will be
provided for this advanced material; however, after this
lecture the reader should be able to use these methods
if required.
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Yamada and Watanabe principle: strong uniqueness
Xt = x +

∫ t
0 b(s,Xs)ds +

∫ t
0 σ(s,Xs)dWs, t ≥ 0

Principle (Yamada & Watanabe theorem 1971)

Let SDE have a (weak) solution on some probability space,
and let there be a pathwise (=strong) uniqueness, that is, on
any probability space with a Wiener process, two solutions
coincide with probability one. Then every solution is strong,
and it exists on any probability space with a WP.

For the proof, see [Yamada, Watanabe 1971], [Ikeda and
Watanabe, the monograph], [Zvonkin and Krylov, the paper
in the Proceedings of the 1974 Druniskininkai Stochastic
workshop (1975, vol. II)], [H.J. Engelbert, On Yamada and
Watanabe principle..., 2007], [T.G. Kurtz, The Yamada -
Watanabe - Engelbert theorem for general stochastic
equations and inequalities, Elec. J. Probab. 12, (2007),
951-965.].
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Example 10.1: strong uniqueness =⇒ strong existence
dim = 1; this is a very simple version of Zvonkin’s (and mine in d>1) result

Consider a 1D SDE

dXt = b(Xt )dt + dWt , X0 = x . (1)

Example (10.1)

Let b ∈ Cb. Then the equation (1) is pathwise unique and,
hence, has a strong solution.

Recall that it has a (possibly weak) solution by virtue of
Girsanov’s theorem. Now it follows that it is, actually, strong.
The condition b ∈ Cb may be relaxed just to b ∈ B, but it
requires Krylov’s estimates and Ito-Krylov’s formula, which
topic will be presented on the following pages. For more
general d=1 result for a non-homogeneous SDE see
[Zvonkin 1974, Mat sb.]; for d>1 [AYV 1979, Mat sb. & Mat
zametki 1982]; later see [Krylov & Röckner 2005], etc.
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Example 10.1, Proof
Xt = x +

∫ t
0 b(s,Xs)ds + Wt , t ≥ 0, dimension d=1

We will prove strong uniqueness. Let u(x) be a (any)
solution of an ODE

(Lu(x) =)
1
2

u′′(x) + b(x)u′(x) = 0.

Let us solve this equation. Denote u′ = v , then assuming
v 6= 0 and, moreover, v > 0, we get

1
2

v ′(x) + b(x)v(x) = 0 ∼ v ′

v
(x) = (ln v)′(x) = −2b(x);

hence,

ln v(x) = −2
∫ x

0
b(y)dy + C, but we take C = 0;

then,

v(x) = exp(−2
∫ x

0
b(y)dy) = u′(x).
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Example 10.1, proof, ctd v ′(x) = −2b(x)v(x)
v(x) = exp(−2

∫ x
0 b(y)dy); Xt = x +

∫ t
0 b(s,Xs)ds + Wt , t ≥ 0

So, one of solutions (which suffices!) has a form

u(x) =

∫ x

0
exp(−2

∫ y

0
b(z)dz)dy + C,

and again we take C = 0 here. Note that u ∈ C2. Denote
now

Yt = u(Xt ).

By Ito’s formula,

dYt = du(Xt ) = u′(Xt )dWt = v(Xt )dWt .

Since u′ = v > 0, the mapping x 7→ u(x) is 1-1. Denote by
u−1 its inverse (also in C2), so that Xt = u−1(Yt ). Then

dYt = v(u−1(Yt ))dWt .
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Example 10.1, proof, ctd dYt = v(u−1(Yt))dWt
v(x) = exp(−2

∫ x
0 b(y)dy); Xt = x +

∫ t
0 b(s,Xs)ds + Wt , t ≥ 0

Note that with x = u−1(y) we have,

d
dy

v(u−1(y)) =
v ′(u−1(y))

u′(u−1(y))
=

v ′(x)

u′(x)

=
−2b(x)v(x)

v(x)
= −2b(x).

In other words, the new diffusion coefficient for Yt is C1
b ; in

particular, it is Lipschitz. So, Yt is a pathwise unique
solution of the SDE for Y . Equivalently, solution Xt of the
initial SDE is also pathwise unique. QED.

In particular, solution Xt is strong, and it exists on any
probability space with a WP. The requirement b ∈ C may be
dropped and this example is valid for any b ∈ B, but to show
this we need to introduce Krylov’s bounds.
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[Krylov, Controlled diffusion processes, ch.2]
Simplified versions of K-bounds are presented below

Let ξt be an Ito process in Rd , that is,

ξt = ξ0 +

∫ t

0
σsdWs +

∫ t

0
bsds,

with adapted stochastic processes σ and b which are both
bounded and such that σσ∗ is uniformly nondegenerate. Let
D ⊂ BR (domain) and τ := inf(t ≥ 0 : Xt 6∈ D).

Theorem (Krylov’s bounds 1 – in the domain in Rd )

For any R > 0 and for any p ≥ d there exists N such that

E
∫ τ

0
g(ξt )dt ≤ NR‖g‖Lp(D), (2)

and
E
∫ τ

0
f (t , ξt )dt ≤ NR‖f‖Lp+1([0,T ]×D). (3)



SDEs
introduction

Yamada and
Watanabe

Krylov’s
bounds

PDE equation
solutions in
Sobolev
spaces

Krylov’s bounds, ctd
Q: if g = 0 a.s., is it true that E

∫ T
0 g(ξt )dt = 0? We know little about the law

of ξ, and it is unclear whether or not it may have a component singular to Λ

The first K-bounds were for a bounded domain, with N depending
on R (the diameter of D). Here are K-bounds for the whole space.

Theorem (Krylov’s bounds 2 – in Rd )

For any T > 0 and for any p ≥ d there exists N such that

E
∫ T

0
g(ξt )dt ≤ N‖g‖Lp(Rd ), (4)

and

E
∫ T

0
f (t , ξt )dt ≤ N‖f‖Lp+1([0,T ]×Rd ). (5)

In both theorems constants N depend also on the constants of
ellipticity of σσ∗ and the B-norm of the drift; in the first theorem in
both bounds they also depend on R, and in the second on T .
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Application of Krylov’s bounds
The law of ξ on [0,T ]× Rd (not on Rd ∀t) is << Lebesgue’s measure in t , x

Corollary

Let ξt be an Ito process in Rd , that is,

ξt = ξ0 +

∫ t

0
σsdWs +

∫ t

0
bsds,

with adapted stochastic processes σ and b which are both
bounded and such that σσ∗ is uniformly nondegenerate. Let
g(x) ≥ 0 and f (t , x) ≥ 0 be Borel measurable functions
such that g(x) = 0 a.e., and f (t , x) = 0 a.e. Then ∀T > 0,∫ T

0
g(ξt )dt = 0

∫ T

0
f (t , ξt )dt = 0 a.s.

E
∫ T

0 g(ξt )dt ≤ N‖g‖Ld (Rd ) = 0 = N‖f‖Ld+1 ≥ E
∫ T

0 f (t , ξt )dt .



SDEs
introduction

Yamada and
Watanabe

Krylov’s
bounds

PDE equation
solutions in
Sobolev
spaces

Sobolev space W 2
p

Recall that the Sobolev space W 2
p consists of real-valued

functions on Rd satisfying the following conditions:
f ∈ Lp(Rd );
There exist vector and matrix functions f1, f2 and
sequences f n, f n

1 , f
n
2 ∈ Lp(Rd )

⋂
C∞(Rd ) (vector and

matrix functions) such that (the 2nd term is a matrix,
not ∆f !)

f n
1 = ∇f n, f n

2 = ∇2f n,

and

‖f n − f‖Lp(Rd ) + ‖f n
1 − f1‖Lp(Rd ) + ‖f n

2 − f2‖Lp(Rd ) →n→∞ 0.

Here f1 and f2 are called, respectively, the first and the
second Sobolev derivatives of f .
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Sobolev space W 1,2
p

The Sobolev space W 1,2
p consists of real-valued functions

f (t , x) on [0,∞)× Rd satisfying the following conditions:
f ∈ Lp([0,∞)× Rd );
There exist vector and matrix functions f0, f1, f2 and
sequences f n

0 , f
n, f n

1 , f
n
2 ∈ Lp(Rd )

⋂
C∞(Rd ) (scalar,

vector and matrix functions) such that

f n
0 =

df n

dt
, f n

1 = ∇x f n, f n
2 = ∇2

x f n,

and ‖f n − f‖Lp(Rd )+

+‖f n
0 −

df
dt
‖Lp(Rd ) +‖f n

1 − f1‖Lp(Rd ) +‖f n
2 − f2‖Lp(Rd ) →n→∞ 0.

Here f0 is called the Sobolev derivative of f wrt t .
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Ito–Krylov’s formula
ξt = ξ0 +

∫ t
0 σsdWs +

∫ t
0 bsds, Lt = 1

2

∑
ij (σtσ

∗
t )ij

∂2

∂xi∂xj
+

∑
i (bt )

i ∂
∂xi

Theorem (Ito–Krylov’s formula)

Let u ∈W 1,2
p ([0,∞)× Rd ) and ∇xu ∈ L2p([0,∞)× Rd ) with

p ≥ d + 1. Then

du(s, ξs) = σ∗∇u(s, ξs)dWs

+[us(s, ξs) + Lsu(s, ξs)]ds,

or, equivalently, in the integral form,

u(T , ξT ) = u(0, x) +

∫ T

0
σ∗∇u(s, ξs)dWs

+

∫ T

0
[us(s, ξs) + Lsu(s, ξs)]ds.

NB: here all derivatives of u are regarded as Sobolev ones.



SDEs
introduction

Yamada and
Watanabe

Krylov’s
bounds

PDE equation
solutions in
Sobolev
spaces

Ito–Krylov’s formula
Idea of proof

Idea of proof is straightforward: let us approximate our
function u by smooth functions un in the norm (∇2u stands
for the (Sobolev) Hessian of u)

‖u‖W := ‖u‖Lp + ‖∇u‖L2p + ‖∇2u‖Lp ,

apply Ito’s formula to un(t ,Xt ), and pass to the limit by using
Krylov’s bounds. Naturally, this idea allows a localization.
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Example 10.1 with b ∈ B
via Ito–Krylov’s formula, idea

In the setting of the Example 10.1 under the condition b ∈ B,
it is possible to approximate b in the norm ‖ · ‖L1([−N,N]) for
any N by smooth C∞ uniformly bounded functions: say,

‖bn − b‖L1([−N,N]) → 0, n→∞.
Let

vn(x) = exp(−2
∫ x

0
bn(y)dy) = (un)′(x),

un(x) =

∫ x

0
exp(−2

∫ y

0
bn(z)dz)dy .

It is possible to show that locally ‖un − u‖W → 0, n→∞. In
the limit we obtain the equation, as earlier,

dYt = σ̃(Yt )dWt , with σ(y) = v(u−1(y)).

The diffusion coefficient σ̃(y) is Lipschitz. Hence, the
solution of the SDE is pathwise unique, as required.
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Krylov type bounds for stochastic processes
with jumps

Krylov’s bounds were extended to serve for SDEs with
nondegenerate diffusion and jumps over Poisson random
measures in the paper [S. Anulova and H. Pragarauskas,
On strong Markov weak solutions of stochastic equations,
Liet. Mat. Rinkinys XVII (2) (1977) 5-26] and under more
rigorous conditions and with just brief proofs in [Lepeltier,
J.-P. & Marchal, B. Problème des martingales et équations
différentielles stochastiques associées à un opérateur
intégro-différentiel. Ann. Inst. H. Poincaré Sect. B (N.S.) 12
(1976), no. 1, 43-103. MR413288]
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Parabolic equations in Sobolev spaces
The basic monographs

[Ladyzenskaya, Solonnikov, Ural’tseva]; [Krylov]
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Elliptic equations in Sobolev spaces
The basic monographs and articles

[Ladyzenskaya, Ural’tseva]; [Solonnikov]; [Gilbarg,
Trudinger]; [Krylov]
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PDEs and SDEs
with Sobolev spaces

It is suggested after reading about Sobolev PDE solutions to
return to the lecture 7. All examples there can be
reformulated for PDE solutions in Sobolev spaces. A special
attention should be paid to the boundary conditions, which
now may include some discontinuous indicator functions.

THE END OF THE COURSE
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