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Example 8

Particular case of Example 5

sl Let D be a bounded domain (by definition open one and

introduction

connected; condition to be connected can be dropped, it is
—— just for simplicity) in R9. Consider the Laplace equation
examples
1
ZA8u(x)=0,xeD, & ulr=¢(x), (1)

where I' = 0D and ¢(x) = 1(x € A), AcC I'. Recall that
D¢ := R\ D. Let 7 := inf(t > 0 : x + W; € D°).

Example (8 (already proved!))

1. Let u(x) € CE(D) be a solution of the Laplace equation
(1) with ¢ € C(D). Then u(x) can be represented as

ux)=E¢p(x+W,)=P(x+ W, €A), xebD.

2. Vice versa: the probability P(x + W, € A) as a function
of x satisfies the Laplace equation (1).



Example 8, Comments

el Some obstacle may arise form the fact that often an
indicator of a part of the boundary turns out to be

Further discontinuous. Indeed, is it possible that the function

exampies $(x) = 1(x € A) € C? And, if it is not, how can we apply the

earlier results in such a case?

One option is to consider domains with a disconnected
boundary as in the next example 9 of a ring on the plane: in
R?let D := {x:0 < a< |x| < b}, and, say, we are
interested in computing the probability P(|x + W;| = a).
Here ¢(x) = 1(|x| = a), while the complement of the
boundary is the (x : |x| = b). In this example the function ¢
is smooth on I' = 9D, not at all discontinuous.

Another option is to study solutions in Sobolev classes
which allow discontinuities in boundary conditions. Not in
this lecture.



General Theorem  lau(x)=0,xeD (1)
Homework: to prove! (Hint: use stopping times as in Example 2)
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Theorem (variation of K.6.6.6)

Futer Let u(x) € C2(D) be a solution of the Laplace equation (1),
and let u € C(D). Assume thatE/ |Au(x + Ws)|ds < oc.
0

Then u(x) can be represented as

u(x) = Eu(x + W;) — %E/ Au(x + Ws)ds, x e D.
0

Note, we already know that for a bounded domain D, the
stopping time 7 is a.s. finite, and even ET < oo, due to the
Lemma from the previous lecture.

NB: In his lectures N.V. Krylov states Theorem 6.6.6 for a more
general diffusion. Hence, he has to assume that P(T < c0) = 1.



Poisson equation and expected hitting time

Example 9, K.6.7.1  JAu(x) = —¢(x), x € D; choose 1) = 1

sl Here ¢ = 0 and ) = 1; both functions are very-very smooth!
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Example (9)

Further
examples In RY consider an open ball Bg = {x : |x| < R} with some

R >0, and let
7:=inf(t >0: W; &€ Bg).

Consider the function
u(x) =

Then

We do not explain how function u was found: an educated guess.
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Further
examples

Example 9, Proof

By Ito’s formula,

t2 RZ
U(Wt):—t—/o aWdes‘i‘F

Replace t by t A 7 and take expectations:

AT 2 RZ
Eu(Wipn,) = —Et AT — E/ —WsdWs + —.
o d d
We have, u(Win,) < %2. Since we already know (from the
Lemma of the previous lecture) that E+ < oo, and as
Efot W2ds < oo, then we can pass to the limit here as
l — oo:
R? R?

Er = — Eu(W,) = .



Poisson equation and expected hitting time, ctd

Example 10, K.6.7.1 variation  1Au(x) = -1, x€ D
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introduction Again, ¢) =0 and Q]b =1.

Further
examples

Example (10)
Again Bg = {x : |x| < R} in R, and let

Tx = inf(t>0: x+ W; & Bp).
Consider the same function from Example 9,

u(x) = =(R? — x?).

Q|-

Then
Ery =u(x), |x]<R.

This is a homework!



Laplace equation inthe ring ¢ < |x| < Rin RY
K.6.7.2: compute P.gr = P(|xo + W:_,| =€) & limc_olimp_oo Pe R

SDE:
introducstion Example (1 1 )

D€7R:{X: €< |X| < R},Te’,q = inf(t >0: Xo + Wt Q Deﬂ),

Further
examples

A(ln|x| —InR), if d=2,

A(x|~(9-2) — g-(d-2)) jf o >3,
A(x| - R), if d=1,

(Ine—InR)~", if d=2,
(e—R)T, if d=1,

Then A¢(x) =0in D. g, P.r = E¢, and

{ (e7(d=2) — p=(d=2)y=1 " jf d >3,
A=

- _ [ (e/I0))@?, d=>3,
Pﬁ'_a'i“oopﬂ"’_{ 1, d<2.



e Homework: check yourself that A¢(x) = 0 in D g, & the
gradient V¢ bounded.

Further Now apply Ito’s formula to ¢(xo + W;) for t < 7. g:
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1
do(xo + Wi) = Vo (xo + We)dW; + §A¢(Xo + Wh)dt
= Vo(xo + Wp)dW;.
Hence,
INTe R
6(X0 + Winr, 1) = 6(x0) + /O V(o + We)dWs.
Since Vo(xo + Ws) is bounded on s < 7. g, we obtain,

Ed(xo + Winr, 5) = d(xX0).



Proof, ctd.

oDES (Recall: we have obtained)
- Ed(xo + Wirr.g) = ¢(X0)-

SRS Taking t — oo, and using that 7. g < oo a.s. (by Lemma), we
get due to the Lebesgue bounded convergence theorem,

¢(x0) = E¢(xo + Wrp).

But at 7. g by the choice of ¢, the value of E¢(xo + W;_,)
coincides with

E¢(X0 + WTE,R) = P(|X0 + WTe,R| = 6)'
Therefore,

A(|X0|_(d_2) - R_(d_Q))v d>3,
P(1Xo+ Wy ol = €) = d(x0)={  A(n|xo| —InR), d =2,

A(x| — R), d=1.



Proof, ctd.

Pe =limp_soo P(|X0 + W:_p| =€)

SDE:
introducstion Recall that

Further (6_(d_2) - R—(d—Z))—‘I’ If d Z 3,
examples A= (Ine —InR)™", if d=2,
(e—R)T, if d=1,

Hence, as R — oo, we obtain from

P(xo + Wyl = €)= A(ln|x| —InR), d = 2,

{A(Xo(dz) ~R972) d >3,
Allxo| — R), d

1,

that
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Further
examples

Proof, ctd.

Indeed,

(|X0|—(d—2) o R—(d—2)) B |XO|—(d—2) B 6(d—2)

Rose (@2 _ R=(@-2)) — (@2  [x |2’
. (In|xo| =InR)
R|I—r>noo (Ine—1InR) =1
e (1%l - R)
. Xo| — .
AN e—R)

By words, a 1D WP a.s. returns to any neighborhood — and,
hence, to the origin as well —of 0 € R'; a 2D WP a.s.
returns to any neighborhood — but, actually, not to the origin!
— of the origin in R?; and any WP in dimension d > 3
returns to any of the origin in RY with a probability strictly
less than one (it is, hence, probably transient).



Example 13

K.6.7.4

e As we have seen, in dimension d > 3 a WP is transient.
Does it go to +o00 by absolute value then?

Further
examples

Example (13)
In RY with d > 3,

lim [Wi = +o00 a.s.
t—oo

Consider the function which slightly differs from ¢ from the
previous Example,

f(x) =[x~ |x| > 0.
Let |xo| > € > 0, and define the stopping time

Te .= inf(t >0 :|xo + Wi <e).



Example 13, Proof

, |X%|>€e>0, 7e:=inf(t>0:|x + Wi <e)

f(x) = x>~
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Let
. 2—d
Further Xt = |X0 + Wt/\TE’

examples

We have seen earlier that Af(x) = 0 at any |x| > 0. Hence,
the process X; is a bounded martingale. (It is bounded
because before 7. the modulus |xyo + W;a+. | is greater than
¢, and this value to the negative 2 — d is bounded by
1/¢9-2.) By one of the limit theorems for non-negative
(super)martingales, such a process has an a.s. limit as

t — oo. Hence, we write,

X279 = EXy = EX; = Jim EX;=E Jim Xi,

the last equality by Lebesgue’s bounded convergence.



Example 13, Proof, ctd.

f(x) = X7 |xo| >€>0, 7:=inf(t>0:|x+ Wi <e)
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Further ’XO’z_d = E lim Xt = E lim ’XO + Wt/\7—€’2_d
t—oo t—oo

examples

1
=Eli
t—l>rgo |Xo + Wt/\7-€|d_2
1
=E 1(1e = 0) 4+ €7 9E1 (1. < x0).

B |XO + |imt—>oo WI‘/\'r6|d_2

We highlight that from the existence of the limit for X; it
follows that there exists a limit a.s. for the term

3 |X0+ lim Wt/\Télz_d
t—o0

on the set (7. = 00), which set has a positive P-measure
(see the previous Example): P(7. = co) = 1 — (¢/|x0|)9 2.



Example 13, Proof, ctd.

f(X) = [x[>79, |xo| >€e>0, 7:=inf(t>0:|x+ Wi <e)

sl Repeat:

introduction

1
2—d

X - E 1 =0
z::r:;res ’ O’ |X0 + limt 00 Wf/\‘r5|27d (7‘5 )

+e2"9E1 (1. < o0).
The last term here equals (see the previous Example)
2 9E1 (1. < 00) = é€79P(7, < o0)
= 29 (d-2) |y 1= (d=2) _ |y 12—
So (we drop "A7." on 7. = 00),

1

% T mpom Wt]2_d1(7-€ =o00) =0.




Proof, ctd

1

sl This means that for any € > 0
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lim |W;| = 400 a.s. on the set (7. = o0).
Further o0
examples

But the union of all these sets (7. = oo) (which increase as ¢
decreases) equals (J...q(7e = o0) = Up>1(71/m = o0), which
probability equals

P(U(ﬁ/mzoo))z lim P(7y/m = 00)

m—oo
m>1

Therefore,

as required.



	Further examples

