Introduction to stochastic differential equations - 4 Links to PDEs - 2

Alexander Veretennikov ${ }^{1}$ Spring 2020

April 17, 2020

${ }^{1}$ National Research University HSE, Moscow State University, Russia online mini couren

Example 8

Particular case of Example 5

SDEs introduction

Further examples

Let D be a bounded domain (by definition open one and connected; condition to be connected can be dropped, it is just for simplicity) in R^{d}. Consider the Laplace equation

$$
\begin{equation*}
\frac{1}{2} \Delta u(x)=0, x \in D,\left.\quad \& \quad u\right|_{\Gamma}=\phi(x) \tag{1}
\end{equation*}
$$

where $\Gamma=\partial D$ and $\phi(x)=1(x \in A), A \subset \Gamma$. Recall that $D^{c}:=R^{d} \backslash D$. Let $\tau:=\inf \left(t \geq 0: x+W_{t} \in D^{c}\right)$.

Example (8 (already proved!))

1. Let $u(x) \in C_{b}^{2}(\bar{D})$ be a solution of the Laplace equation
(1) with $\phi \in C(\bar{D})$. Then $u(x)$ can be represented as

$$
u(x)=E \phi\left(x+W_{\tau}\right)=P\left(x+W_{\tau} \in A\right), \quad x \in D
$$

2. Vice versa: the probability $P\left(x+W_{\tau} \in A\right)$ as a function of x satisfies the Laplace equation (1).

Example 8, Comments

SDEs introduction

Further examples

Some obstacle may arise form the fact that often an indicator of a part of the boundary turns out to be discontinuous. Indeed, is it possible that the function $\phi(x)=1(x \in A) \in C$? And, if it is not, how can we apply the earlier results in such a case?

One option is to consider domains with a disconnected boundary as in the next example 9 of a ring on the plane: in R^{2} let $D:=\{x: 0<a<|x|<b\}$, and, say, we are interested in computing the probability $P\left(\left|x+W_{\tau}\right|=a\right)$. Here $\phi(x)=1(|x|=a)$, while the complement of the boundary is the $(x:|x|=b)$. In this example the function ϕ is smooth on $\Gamma=\partial D$, not at all discontinuous.

Another option is to study solutions in Sobolev classes which allow discontinuities in boundary conditions. Not in this lecture.

General Theorem $\frac{1}{2} \Delta u(x)=0, x \in D$

Homework: to prove! (Hint: use stopping times as in Example 2)

SDEs introduction

Further examples

Theorem (variation of K.6.6.6)

Let $u(x) \in C_{b}^{2}(D)$ be a solution of the Laplace equation (1), and let $u \in C(\bar{D})$. Assume that $E \int_{0}^{\tau}\left|\Delta u\left(x+W_{s}\right)\right| d s<\infty$. Then $u(x)$ can be represented as

$$
u(x)=E u\left(x+W_{\tau}\right)-\frac{1}{2} E \int_{0}^{\tau} \Delta u\left(x+W_{s}\right) d s, \quad x \in D
$$

Note, we already know that for a bounded domain D, the stopping time τ is a.s. finite, and even $E \tau<\infty$, due to the Lemma from the previous lecture.
NB: In his lectures N.V. Krylov states Theorem 6.6.6 for a more general diffusion. Hence, he has to assume that $P(\tau<\infty)=1$.

Poisson equation and expected hitting time

Example 9 , K.6.7.1 $\frac{1}{2} \Delta u(x)=-\psi(x), x \in D$; choose $\psi=1$

SDEs introduction

Further examples

Here $\phi \equiv 0$ and $\psi \equiv 1$; both functions are very-very smooth!

Example (9)

In R^{d} consider an open ball $B_{R}=\{x:|x|<R\}$ with some $R>0$, and let

$$
\tau:=\inf \left(t \geq 0: W_{t} \notin B_{R}\right)
$$

Consider the function

$$
u(x):=\frac{1}{d}\left(R^{2}-x^{2}\right)
$$

Then

$$
E \tau=\frac{R^{2}}{d}
$$

We do not explain how function u was found: an educated guess.

Example 9, Proof

SDEs introduction

By Ito's formula,

$$
u\left(W_{t}\right)=-t-\int_{0}^{t} \frac{2}{d} W_{s} d W_{s}+\frac{R^{2}}{d}
$$

Replace t by $t \wedge \tau$ and take expectations:

$$
E u\left(W_{t \wedge \tau}\right)=-E t \wedge \tau-E \int_{0}^{t \wedge \tau} \frac{2}{d} W_{s} d W_{s}+\frac{R^{2}}{d} .
$$

We have, $u\left(W_{t \wedge \tau}\right) \leq \frac{R^{2}}{d}$. Since we already know (from the Lemma of the previous lecture) that $E \tau<\infty$, and as $E \int_{0}^{t} W_{s}^{2} d s<\infty$, then we can pass to the limit here as $t \rightarrow \infty$:

$$
E \tau=\frac{R^{2}}{d}-E u\left(W_{\tau}\right)=\frac{R^{2}}{d}
$$

Poisson equation and expected hitting time, ctd

Example 10, K.6.7.1 variation $\quad \frac{1}{2} \Delta u(x)=-1, x \in D$

SDEs introduction

Again, $\phi \equiv 0$ and $\psi \equiv 1$.

Example (10)

Again $B_{R}=\{x:|x|<R\}$ in R^{d}, and let

$$
\tau_{x}:=\inf \left(t \geq 0: x+W_{t} \notin B_{R}\right)
$$

Consider the same function from Example 9,

$$
u(x):=\frac{1}{d}\left(R^{2}-x^{2}\right)
$$

Then

$$
E \tau_{x}=u(x), \quad|x| \leq R
$$

This is a homework!

Laplace equation in the ring $\epsilon<|x|<R$ in R^{d} K.6.7.2: compute $P_{\epsilon, R}=P\left(\left|x_{0}+W_{\tau_{\epsilon, R}}\right|=\epsilon\right) \& \lim _{\epsilon \rightarrow 0} \lim _{R \rightarrow \infty} P_{\epsilon, R}$

SDEs introduction

Further examples

Example (11)

$$
\begin{gathered}
D_{\epsilon, R}=\{x: \epsilon<|x|<R\}, \tau_{\epsilon, R}=\inf \left(t \geq 0: x_{0}+W_{t} \notin D_{\epsilon, R}\right), \\
\phi(x):=\left\{\begin{array}{cl}
A\left(|x|^{-(d-2)}-R^{-(d-2)}\right), & \text { if } d \geq 3, \\
A(\ln |x|-\ln R), & \text { if } d=2, \\
A(|x|-R), & \text { if } d=1,
\end{array}\right.
\end{gathered}
$$

$$
A:=\left\{\begin{array}{cl}
\left(\epsilon^{-(d-2)}-R^{-(d-2)}\right)^{-1}, & \text { if } d \geq 3 \\
(\ln \epsilon-\ln R)^{-1}, & \text { if } d=2 \\
(\epsilon-R)^{-1}, & \text { if } d=1
\end{array}\right.
$$

Then $\Delta \phi(x)=0$ in $D_{\epsilon, R}, P_{\epsilon, R}=E \phi$, and

$$
P_{\epsilon}:=\lim _{R \rightarrow \infty} P_{\epsilon, R}=\left\{\begin{array}{cc}
\left(\epsilon /\left|x_{0}\right|\right)^{(d-2)}, & d \geq 3 \\
1, & d \leq 2
\end{array}\right.
$$

Proof

SDEs introduction

Homework: check yourself that $\Delta \phi(x)=0$ in $D_{\epsilon, R}$, \& the gradient $\nabla \phi$ bounded.

Now apply Ito's formula to $\phi\left(x_{0}+W_{t}\right)$ for $t<\tau_{\epsilon, R}$:

$$
\begin{array}{r}
d \phi\left(x_{0}+W_{t}\right)=\nabla \phi\left(x_{0}+W_{t}\right) d W_{t}+\frac{1}{2} \Delta \phi\left(x_{0}+W_{t}\right) d t \\
=\nabla \phi\left(x_{0}+W_{t}\right) d W_{t}
\end{array}
$$

Hence,

$$
\phi\left(x_{0}+W_{t \wedge \tau_{\epsilon, R}}\right)=\phi\left(x_{0}\right)+\int_{0}^{t \wedge \tau_{\epsilon, R}} \nabla \phi\left(x_{0}+W_{s}\right) d W_{s} .
$$

Since $\nabla \phi\left(x_{0}+W_{s}\right)$ is bounded on $s<\tau_{\epsilon, R}$, we obtain,

$$
E \phi\left(x_{0}+W_{t \wedge \tau_{\epsilon}, R}\right)=\phi\left(x_{0}\right)
$$

Proof, ctd.

SDEs introduction

Further examples
(Recall: we have obtained)

$$
E \phi\left(x_{0}+W_{t \wedge \tau_{\epsilon, R}}\right)=\phi\left(x_{0}\right)
$$

Taking $t \rightarrow \infty$, and using that $\tau_{\epsilon, R}<\infty$ a.s. (by Lemma), we get due to the Lebesgue bounded convergence theorem,

$$
\phi\left(x_{0}\right)=E \phi\left(x_{0}+W_{\tau_{\epsilon, R}}\right) .
$$

But at $\tau_{\epsilon, R}$ by the choice of ϕ, the value of $E \phi\left(x_{0}+W_{\tau_{\epsilon, R}}\right)$ coincides with

$$
E \phi\left(x_{0}+W_{\tau_{\epsilon, R}}\right)=P\left(\left|x_{0}+W_{\tau_{\epsilon, R}}\right|=\epsilon\right)
$$

Therefore,

$$
P\left(\left|x_{0}+W_{\tau_{\epsilon, R}}\right|=\epsilon\right)=\phi\left(x_{0}\right)=\left\{\begin{array}{c}
A\left(\left|x_{0}\right|^{-(d-2)}-R^{-(d-2)}\right), d \geq 3, \\
A\left(\ln \left|x_{0}\right|-\ln R\right), d=2, \\
A\left(\left|x_{0}\right|-R\right), d=1 .
\end{array}\right.
$$

```
Proof, ctd.
\(P_{\epsilon}=\lim _{R \rightarrow \infty} P\left(\left|x_{0}+W_{\tau_{\epsilon, ~}}\right|=\epsilon\right)\)
```

SDEs introduction

Further examples

Recall that

$$
A:=\left\{\begin{array}{cl}
\left(\epsilon^{-(d-2)}-R^{-(d-2)}\right)^{-1}, & \text { if } d \geq 3 \\
(\ln \epsilon-\ln R)^{-1}, & \text { if } d=2 \\
(\epsilon-R)^{-1}, & \text { if } d=1
\end{array}\right.
$$

Hence, as $R \rightarrow \infty$, we obtain from

$$
P\left(\left|x_{0}+W_{\tau_{\epsilon, R}}\right|=\epsilon\right)=\left\{\begin{array}{c}
A\left(\left|x_{0}\right|^{-(d-2)}-R^{-(d-2)}\right), d \geq 3 \\
A\left(\ln \left|x_{0}\right|-\ln R\right), d=2 \\
A\left(\left|x_{0}\right|-R\right), d=1,
\end{array}\right.
$$

that

$$
P_{\epsilon}=\left\{\begin{array}{c}
\epsilon^{(d-2)}\left|x_{0}\right|^{-(d-2)}, d \geq 3 \\
1, d=2 \\
1, d=1
\end{array}\right.
$$

Proof, ctd.

SDEs introduction

Further examples

Indeed,

$$
\begin{gathered}
\lim _{R \rightarrow \infty} \frac{\left(\left|x_{0}\right|^{-(d-2)}-R^{-(d-2)}\right)}{\left(\epsilon^{-(d-2)}-R^{-(d-2)}\right)}=\frac{\left|x_{0}\right|^{-(d-2)}}{\epsilon^{-(d-2)}}=\frac{\epsilon^{(d-2)}}{\left|x_{0}\right|^{(d-2)}} \\
\lim _{R \rightarrow \infty} \frac{\left(\ln \left|x_{0}\right|-\ln R\right)}{(\ln \epsilon-\ln R)}=1 ;
\end{gathered}
$$

and

$$
\lim _{R \rightarrow \infty} \frac{\left(\left|x_{0}\right|-R\right)}{(\epsilon-R)}=1
$$

By words, a 1D WP a.s. returns to any neighborhood - and, hence, to the origin as well - of $0 \in R^{1}$; a 2D WP a.s. returns to any neighborhood - but, actually, not to the origin!

- of the origin in R^{2}; and any WP in dimension $d \geq 3$ returns to any of the origin in R^{d} with a probability strictly less than one (it is, hence, probably transient).

Example 13

SDEs introduction

Further examples

As we have seen, in dimension $d \geq 3$ a WP is transient. Does it go to $+\infty$ by absolute value then?

Example (13)

In R^{d} with $d \geq 3$,

$$
\lim _{t \rightarrow \infty}\left|W_{t}\right|=+\infty \quad \text { a.s. }
$$

Consider the function which slightly differs from ϕ from the previous Example,

$$
f(x)=|x|^{2-d}, \quad|x|>0
$$

Let $\left|x_{0}\right|>\epsilon>0$, and define the stopping time

$$
\tau_{\epsilon}:=\inf \left(t \geq 0:\left|x_{0}+W_{t}\right| \leq \epsilon\right)
$$

Example 13, Proof
 $f(x)=|x|^{2-d}, \quad\left|x_{0}\right|>\epsilon>0, \quad \tau_{\epsilon}:=\inf \left(t \geq 0:\left|x_{0}+W_{t}\right| \leq \epsilon\right)$

Let

$$
X_{t}:=\left|x_{0}+W_{t \wedge \tau_{\epsilon}}\right|^{2-d}
$$

We have seen earlier that $\Delta f(x)=0$ at any $|x|>0$. Hence, the process X_{t} is a bounded martingale. (It is bounded because before τ_{ϵ} the modulus $\left|x_{0}+W_{t \wedge \tau_{\epsilon}}\right|$ is greater than ϵ, and this value to the negative $2-d$ is bounded by $1 / \epsilon^{d-2}$.) By one of the limit theorems for non-negative (super)martingales, such a process has an a.s. limit as $t \rightarrow \infty$. Hence, we write,

$$
\left|x_{0}\right|^{2-d}=E X_{0}=E X_{t}=\lim _{t \rightarrow \infty} E X_{t}=E \lim _{t \rightarrow \infty} X_{t}
$$

the last equality by Lebesgue's bounded convergence.

Example 13, Proof, ctd.
 $$
f(x)=|x|^{2-d}, \quad\left|x_{0}\right|>\epsilon>0, \quad \tau_{\epsilon}:=\inf \left(t \geq 0:\left|x_{0}+W_{t}\right| \leq \epsilon\right)
$$

$$
\begin{aligned}
\left|x_{0}\right|^{2-d}=E \lim _{t \rightarrow \infty} X_{t} & =E \lim _{t \rightarrow \infty}\left|x_{0}+W_{t \wedge \tau_{\epsilon}}\right|^{2-d} \\
& =E \lim _{t \rightarrow \infty} \frac{1}{\left|x_{0}+W_{t \wedge \tau_{\epsilon}}\right|^{d-2}} \\
=E \frac{1}{\left|x_{0}+\lim _{t \rightarrow \infty} W_{t \wedge \tau_{\epsilon}}\right|^{d-2}} 1\left(\tau_{\epsilon}\right. & =\infty)+\epsilon^{2-d} E 1\left(\tau_{\epsilon}<\infty\right) .
\end{aligned}
$$

We highlight that from the existence of the limit for X_{t} it follows that there exists a limit a.s. for the term

$$
\exists\left|x_{0}+\lim _{t \rightarrow \infty} W_{t \wedge \tau_{\epsilon}}\right|^{2-d}
$$

on the set $\left(\tau_{\epsilon}=\infty\right)$, which set has a positive P-measure (see the previous Example): $P\left(\tau_{\epsilon}=\infty\right)=1-\left(\epsilon /\left|x_{0}\right|\right)^{d-2}$.

Example 13, Proof, ctd.

$$
f(x)=|x|^{2-d}, \quad\left|x_{0}\right|>\epsilon>0, \quad \tau_{\epsilon}:=\inf \left(t \geq 0:\left|x_{0}+W_{t}\right| \leq \epsilon\right)
$$

SDEs introduction

Further examples

Repeat:

$$
\begin{array}{r}
\left|x_{0}\right|^{2-d}=E \frac{1}{\left|x_{0}+\lim _{t \rightarrow \infty} W_{t \wedge \tau_{\epsilon}}\right|^{2-d}} 1\left(\tau_{\epsilon}=\infty\right) \\
+\epsilon^{2-d} E 1\left(\tau_{\epsilon}<\infty\right) .
\end{array}
$$

The last term here equals (see the previous Example)

$$
\begin{gathered}
\epsilon^{2-d} E 1\left(\tau_{\epsilon}<\infty\right)=\epsilon^{2-d} P\left(\tau_{\epsilon}<\infty\right) \\
=\epsilon^{2-d} \epsilon^{(d-2)}\left|x_{0}\right|^{-(d-2)}=\left|x_{0}\right|^{2-d} .
\end{gathered}
$$

So (we drop " $\wedge \tau_{\epsilon}$ " on $\tau_{\epsilon}=\infty$),

$$
E \frac{1}{\left|x_{0}+\lim _{t \rightarrow \infty} W_{t}\right|^{2-d}} 1\left(\tau_{\epsilon}=\infty\right)=0
$$

```
Proof, ctd
\(E_{\frac{1}{\left|x_{0}+\lim _{t \rightarrow \infty} W_{t}\right|^{-d}}} 1\left(\tau_{\epsilon}=\infty\right)=0\) for any \(\epsilon>0\)
```

SDEs introduction

Further examples

This means that for any $\epsilon>0$

$$
\lim _{t \rightarrow \infty}\left|W_{t}\right|=+\infty \quad \text { a.s. on the set }\left(\tau_{\epsilon}=\infty\right)
$$

But the union of all these sets $\left(\tau_{\epsilon}=\infty\right)$ (which increase as ϵ decreases) equals $\bigcup_{\epsilon>0}\left(\tau_{\epsilon}=\infty\right)=\bigcup_{m \geq 1}\left(\tau_{1 / m}=\infty\right)$, which probability equals

$$
\begin{aligned}
P\left(\bigcup _ { m \geq 1 } \left(\tau_{1 / m}\right.\right. & =\infty))=\lim _{m \rightarrow \infty} P\left(\tau_{1 / m}=\infty\right) \\
& =1-\lim _{m \rightarrow \infty} \frac{1}{\left(m\left|x_{0}\right|\right)^{d-2}}=1 .
\end{aligned}
$$

Therefore,

$$
\lim _{t \rightarrow \infty}\left|W_{t}\right|=+\infty \quad \text { a.s. }
$$

as required.

