Stochastic exponentials

Exponential bound for S Introduction to stochastic differential equations – 2 Stochastic exponentials, Girsanov's theorems

> Alexander Veretennikov¹ Spring 2020

> > April 15, 2020

(日) (日) (日) (日) (日) (日) (日)

Abstract

First example of weak solutions; no Lipschitz conditions

SDEs introduction

Stochastic exponentials

Exponential bound for SI

A stochastic differential equation in \mathbb{R}^d is considered

$$dX_t = b(t, X_t)dt + dW_t, t \ge 0, \qquad X_0 = x_0, \qquad (1)$$

Or, equivalently in the integral form,

$$X_t = x_0 + \int_0^t b(s, X_s) ds + W_t.$$
 (2)

Here (W_t, \mathcal{F}_t) is a standard *d*-dimensional Wiener process, *b* and σ are vector and matrix Borel functions of corresponding dimensions *d* and $d \times d$. The initial value x_0 may be non-random, or random but \mathcal{F}_0 -measurable. Yet, the function *b* is only Borel measurable and bounded. Is there a solution?

Stochastic exponentials

SDEs introduction

Stochastic exponentials

Exponential bound for SI Let b_t be an adapted bounded stochastic vector-valued d-dimensional process. Denote

$$\rho_t = \rho_t[b] := \exp(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds),$$

where $b^2 := (b, b)$, that is, a scalar product. By Ito's formula,

 $d\rho_t = b_t \rho_t dW_t$ (here bdW_t is also a scalar product).

In other words, ρ_t is a solution of an SDE with a random diffusion coefficient

$$dX_t = b_t X_t dW_t, \quad X_0 = 1.$$

In the integral form we have,

$$\rho_t = 1 + \int_0^t b_s \rho_s dW_s.$$

$$\rho_t = \exp\left(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds\right)$$

$$\rho_t = 1 + \int_0^t b_s \rho_s dW_s$$

Stochastic exponentials

Exponential bound for SI The integral form gives us a hope that possibly ρ_t may be a martingale, as usual for stochastic integral. If this is true, we would have, in particular, $E\rho_t = 1$. In turn, any object which is non-negative and integrates to one can serve as a density. May ρ_t serve as a probability density?

Theorem

If b_t is bounded, then $\rho_t[b]$ is a martingale and $E\rho_t = 1$.

Proof. Let $\tau_N := \inf(t \ge 0 : \rho_t \ge N)$. Then clearly $\int_0^t \mathbf{1}(s \le \tau_N) b_s \rho_s dW_s$ is a martingale ("mart") because

$$E\int_0^t \mathbf{1}^2 (s \leq \tau_N) b_s^2 \rho_s^2 ds \leq t \|b\|_B^2 N^2 < \infty.$$

So, $E\rho_{t\wedge\tau_N} = 1 + E \int_0^{t\wedge\tau_N} b_s \rho_s dW_s = 1$.

$$\rho_t[b] = \exp\left(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 dS\right)$$

$$\rho_t = 1 + \int_0^t b_s \rho_s dW_s; \quad E\rho_{t \wedge \tau_N} = 1 + E \int_0^{t \wedge \tau_N} b_s \rho_s dW_s = 1$$

Stochastic exponentials

Exponential bound for SI Moreover, by virtue of the martingale property for $\rho_{t \wedge \tau_N}$,

$$E(
ho_{t\wedge au_N}|\mathcal{F}_s) =
ho_{s\wedge au_N}, \quad s < t.$$

Here due to the continuity of ρ_t ,

$$\tau_N \to \infty, \quad N \to \infty.$$

Therefore, the right hand side here tends to ρ_s as $N \to \infty$. What happens with the left hand side? We would show the martingale property of ρ_t if we knew that $\rho_{t \wedge \tau_N}$ is uniformly integrable. Indeed, uniform integrability allows to use Lebesgue's analugue of the dominated convergence theorem *for conditional expectations*, under the U.I. condition instead of the domination assumption. [*This is a material for your homework: to repeat all limit theorems for conditional expectatoins*.]

$$\rho_t[b] = \exp\left(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 dS\right)$$

$$\rho_t = 1 + \int_0^t b_s \rho_s dW_s; \quad E\rho_{t \wedge \tau_N} = 1 + E \int_0^{t \wedge \tau_N} b_s \rho_s dW_s = 1$$

Stochastic exponentials

Exponential bound for SI So, it suffices to show that

$$E \rho_{t \wedge \tau_N}^2 \leq C$$

with some C, independent of N. We estimate,

$$\begin{split} E\rho_{t\wedge\tau_{N}}^{2}[b] &= E\exp(2\int_{0}^{t\wedge\tau_{N}}b_{s}dW_{s} - \int_{0}^{t\wedge\tau_{N}}b_{s}^{2}ds)\\ &= E\exp(\int_{0}^{t\wedge\tau_{N}}2b_{s}dW_{s} - \frac{1}{4}\int_{0}^{t\wedge\tau_{N}}(2b)_{s}^{2}ds)\\ &= E\exp(\int_{0}^{t\wedge\tau_{N}}2b_{s}dW_{s} - \frac{1}{2}\int_{0}^{t\wedge\tau_{N}}(2b)_{s}^{2}ds + \frac{1}{4}\int_{0}^{t\wedge\tau_{N}}(2b)_{s}^{2}ds)\\ &\leq \exp(\frac{1}{4}t\|(2b)^{2}\|_{B})E\rho_{t\wedge\tau_{N}}[2b] = \exp(\frac{1}{4}t\|(2b)^{2}\|_{B}) < \infty. \end{split}$$

Note that the right hand side here does not depend on *N*.

$$\rho_t = \exp\left(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds\right)$$

$$\rho_t = 1 + \int_0^t b_s \rho_s dW_s$$

Stochastic exponentials

Exponential bound for SI Thus, for any bounded *b* the stochastic exponential ρ_t is a (non-negative) martingale with $E\rho_t = 1$. Hence, this exponential may serve as a probability density. Let us define a new measure on \mathcal{F} ,

$$\tilde{\mathsf{P}}(\mathsf{A}) = \mathsf{P}^{\rho_t}(\mathsf{A}) := \mathsf{E}\rho_t \mathsf{1}(\mathsf{A}).$$

[Homework: check that P̃ is, indeed, a probability measure.]

Can the boundedness of *b* for the martingale property of ρ be relaxed and how far? The most well-known is Novikov's condition

$$E\exp(rac{1}{2}\int_0^t b_s^2 ds) < \infty.$$

There were preceding conditions by Gikhman and Skorokhod, and there are extensions due to Krylov. We will learn one small step towards these weaker conditions. Martingale property of $\rho_t = \exp(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds)$ Assumption $E \exp(C \int_0^t b_s^2 ds) < \infty$

SDEs introduction

Stochastic exponentials

Exponential bound for S Let us return to the calculus establishing the uniform integrability of $\rho_{\cdot\wedge\tau_N}$; we will try to improve it a bit. We have,

$$\begin{split} E\rho_{t\wedge\tau_N}^2[b] &= E\exp(2\int_0^{t\wedge\tau_N}b_s dW_s - \int_0^{t\wedge\tau_N}b_s^2 ds) \\ &= E\exp(\int_0^{t\wedge\tau_N}2b_s dW_s - (4-3)\int_0^{t\wedge\tau_N}b_s^2 ds) \\ &\leq \left(E\exp(\int_0^{t\wedge\tau_N}4b_s dW_s - 8\int_0^{t\wedge\tau_N}b_s^2 ds\right)^{\frac{1}{2}} \\ &\times \left(E\exp(6\int_0^{t\wedge\tau_N}b_s^2 ds)\right)^{\frac{1}{2}} \leq \left(E\exp(6\int_0^tb_s^2 ds)\right)^{\frac{1}{2}}. \end{split}$$

A conclusion: the condition $E \exp(6 \int_0^t b_s^2 ds) < \infty$ suffices.

Supermart property of $\rho_t = \exp(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds)$ Assumption $P(\int_0^t b_s^2 ds < \infty) = 1$ (so that a SI $\int_0^t b_s dW_s$ is defined)

SDEs introduction

Stochastic exponentials

Exponential bound for SI

Theorem (recall that $\rho_t = 1 + \int_0^t b_s \rho_s dW_s$)

Under the assumption $P(\int_0^t b_s^2 ds < \infty) = 1$ the process ρ is a supermartingale: $\rho_{t_1} \ge E(\rho_{t_2}|\mathcal{F}_{t_1}), \forall t_1 < t_2, \& E\rho_t \le 1$.

Proof. Return to the beginning of the proof of the last theorem. With a stopping time $\tau_N := \inf(t \ge 0 : \rho_t \ge N)$, the process $\int_0^t \mathbf{1}(s \le \tau_N) b_s \rho_s dW_s$ is a martingale, so,

$$1+E(\int_0^{t_2\wedge\tau_N}b_s\rho_s dW_s|\mathcal{F}_{t_1})=1+\int_0^{t_1\wedge\tau_N}b_s\rho_s dW_s.$$

In other words, $E(\rho_{t_2 \wedge \tau_N} | \mathcal{F}_{t_1}) = \rho_{t_1 \wedge \tau_N}$. The supermart inequality follows from the Fatou lemma for conditional expectations $E(\liminf_{N \to \infty} \rho_{t_2 \wedge \tau_N} | \mathcal{F}_{t_1}) \leq \liminf_{N \to \infty} \rho_{t_1 \wedge \tau_N}$, since $\rho_{s \wedge \tau_N} \to \rho_s$ due to continuity of ρ .

Corollary

SDEs introduction

Stochastic exponentials

Exponential bound for SI

Corollary

For any bounded adapted process b_t,

$$E\exp(\int_0^t b_s dW_s) < \infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

New measure $\tilde{P} \mapsto$ new WP \tilde{W} Assume ρ is a mart on [0, t]; define $\tilde{W}_s := W_s - \int_0^s b_u du, s \le t$.

SDEs introduction

Stochastic exponentials

Exponential bound for SI The next question is natural: we changed our measure; it is likely that W_s is no more a WP under this new measure; but is there a new WP instead? Igor Vladimirovich Girsanov proposed a new WP to be:

$$\widetilde{W}_s := W_s - \int_0^s b_u du, \quad 0 \le s \le t.$$

Theorem (Girsanov)

Let b_t be bounded. Then \tilde{W}_s is a Wiener process on [0, t]under the measure $\tilde{P} : d\tilde{P}/dP = \rho_t$.

As an immediate consequence, for any bounded Borel drift $b(\cdot)$ we can construct a *weak* solution of an SDE

$$dX_t = b(X_t)dt + dW_t, \quad X_0 = x. \tag{3}$$

Weak solution from Girsanov's theorem By changing measure!

SDEs introduction

Exponential bound for SI

Denote
$$X_s = W_s + x$$
 and

$$ilde{W}_s = W_s - \int_0^s b(x+W_u) du, \quad s \leq t.$$

This is a new WP under the new probability measure

$$\frac{d\tilde{P}}{dP} = \rho_t := \exp(\int_0^t b(x+W_s)dW_s - \frac{1}{2}\int_0^t b^2(x+W_s)ds).$$

Then we have,

$$W_s = \tilde{W}_s + \int_0^s b(x + W_u) du, \quad s \leq t.$$

and therefore, X is a solution to the SDE with a new WP on [0, t],

$$X_s = x + \tilde{W}_s + \int_0^s b(X_u) du, \quad s \le t.$$

Proof of Girsanov's theorem about a new WP $\tilde{W}_s := W_s - \int_0^s b_u du$, and $d\tilde{P} = \rho_t dP$ with $\rho_t = \exp(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds)$

SDEs introduction

Stochastic exponentials

Exponential bound for S For the proof we need one lemma and the definition of a WP via its characteristic function, namely, for any $0 = t_0 < t_1 < t_2 \ldots < t_N$ and real values $\lambda_j, 1 \le j \le N$,

$$\tilde{E}\exp(\sum_{j=0}^{N-1}i\lambda_j(\tilde{W}_{t_{j+1}}-\tilde{W}_{t_j}))=\exp(-\frac{1}{2}\sum_j\lambda_j^2(t_{j+1}-t_j)).$$

Lemma

Let $\beta_t = \beta_t^1 + i \beta_t^2$ be a bounded adapted random process, where $i = \sqrt{-1}$. Then the (complex-valued) process

$$\rho_t[\beta] := \exp(\int_0^t \beta_s dW_s - \frac{1}{2} \int_0^t \beta_s^2 ds)$$

is a (complex-valued) martingale.

Proof of Theorem $\rho_t[b] = \exp(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds); \quad \tilde{W}_s := W_s - \int_0^s b_u du$

Let $\lambda_s := i\lambda_i$ on $[t_i, t_{i+1})$, and $B_s = b_s + \lambda_s$. Then

SDEs introduction

Stochastic exponentials

Exponential bound for SI

$$\begin{split} \tilde{E} \exp(\sum_{j=0}^{N-1} i\lambda_j (\tilde{W}_{t_{j+1}} - \tilde{W}_{t_j})) &= E\rho_t[b] \exp(\sum_{j=0}^{N-1} i\lambda_j (\tilde{W}_{t_{j+1}} - \tilde{W}_{t_j})) \\ &= E\exp(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds \\ &\times \exp(\sum_{j=0}^N i\lambda_j (W_{t_{j+1}} - W_{t_j} - \int_{t_j}^{t_{j+1}} b_u du)) \end{split}$$

$$= E \exp(\int_0^t B_s dW_s - \frac{1}{2} \int_0^t B_s^2 ds + \frac{1}{2} \int_0^t \lambda_s^2 ds).$$

Indeed,

$$B_s^2 = (b_s + \lambda_s)^2 = b_s^2 + \lambda_s^2 + 2b_s\lambda_s.$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

End of Proof of Girsanov's theorem $\lambda_s := i\lambda_j$ on $[t_{j+1} - t_j)$; $B_s = b_s + \lambda_s$

SDEs introduction

Stochastic exponentials

Exponential bound for SI But due to the last Lemma

$$E\exp(\int_0^t B_s dW_s - \frac{1}{2}\int_0^t B_s^2 ds) = 1$$

while $\frac{1}{2} \int_0^t \lambda_s^2 ds$ is non-random and equals

$$\frac{1}{2}\int_0^t \lambda_s^2 ds = -\frac{1}{2}\sum_j \lambda_j^2 (t_{j+1} - t_j).$$

Therefore,

$$\tilde{E}\exp(\sum_{j=0}^{N-1}i\lambda_j(\tilde{W}_{t_{j+1}}-\tilde{W}_{t_j}))=\exp(-\frac{1}{2}\sum_j\lambda_j^2(t_{j+1}-t_j)),$$

as required. Girsanov's theorem about a new WP under the (Girsanov's) change of measure is proved.

Proof of Lemma (Recall:)

Lemma

SDEs introduction

Stochastic exponentials

Exponential bound for S

Let $\beta_t = \beta_t^1 + i \beta_t^2$ be a bounded adapted random process, where $i = \sqrt{-1}$. Then the (complex-valued) process

$$\rho_t[\beta] := \exp(\int_0^t \beta_s dW_s - \frac{1}{2} \int_0^t \beta_s^2 ds)$$

is a (complex-valued) martingale.

Proof. It suffices to check for any $A \in \mathcal{F}_{t_1}$, $t_2 > t_1$, and a complex value z,

$$E1(A)exp(\int_{0}^{t_{2}}(\beta_{s}^{1}+z\beta_{s}^{2})dW_{s}-\frac{1}{2}\int_{0}^{t_{2}}(\beta_{s}^{1}+z\beta_{s}^{2})^{2}ds)$$

= E1(A)exp($\int_{0}^{t_{1}}(\beta_{s}^{1}+z\beta_{s}^{2})dW_{s}-\frac{1}{2}\int_{0}^{t_{1}}(\beta_{s}^{1}+z\beta_{s}^{2})^{2}ds).$

Stochastic exponentials

Exponential bound for S We already know the equality for all real-valued z,

$$E1(A)exp(\int_0^{t_2}(\beta_s^1 + z\beta_s^2)dW_s - \frac{1}{2}\int_0^t(\beta_s^1 + z\beta_s^2)^2ds)$$

= $E1(A)exp(\int_0^{t_1}(\beta_s^1 + z\beta_s^2)dW_s - \frac{1}{2}\int_0^t(\beta_s^1 + z\beta_s^2)^2ds).$

Hence, the claim will be proved if we show that both sides are analytic functions of *z*. For the latter, it suffices to show that both sides are continuous in *z* and that their integrals along any closed bounded contours are equal to zero (Morera's theorem). Because of the analyticity of the expressions **under** the expectations and by Fubini's theorem (i.e., we can change the order of expectation and integration over the contour), we only need to show that for any R > 0 and $|z| \le R$, these expressions are bounded by an integrable r.v. independently of *z*.

Stochastic exponentials

Exponential bound for SI Clearly, to show such domination we only need to care about the stochasic integrals (since Lebesgue's ones are bounded for $|z| \le R$). By virtue of the clever inequality for any $\alpha, \beta \in R$ with $|\alpha| \le |\beta|$,

$$\exp(lpha) \leq \exp(lpha) + \exp(-lpha) \leq \exp(eta) + \exp(-eta),$$

we have,

$$\begin{split} \exp(\int_{0}^{t_{2}}(\beta_{s}^{1}+z\beta_{s}^{2})dW_{s})| &= \exp(\int_{0}^{t_{2}}(\beta_{s}^{1}+Re(z)\beta_{s}^{2})dW_{s})\\ &\leq \exp(\int_{0}^{t_{2}}(\beta_{s}^{1}+R\beta_{s}^{2})dW_{s}) + \exp(\int_{0}^{t_{2}}(\beta_{s}^{1}-R\beta_{s}^{2})dW_{s}). \end{split}$$

The latter expression is integrable independently of *z* (of course, for $|z| \le R$).

Exponential inequality via stochastic exponential $\rho_t[b] = \exp(\int_0^t b_s dW_s - \frac{1}{2} \int_0^t b_s^2 ds)$

SDEs introduction

Stochastic exponentials

Exponential bound for SI

Theorem (SI exp bounds)

Let the adapted process b. be bounded. Then there exist C_1 , C_2 such that for any a > 0 and for any T > 0,

$$P(\sup_{0 \le t \le T} |\int_0^t b_s dW_s| \ge a) \le C_1 \exp(-a^2/(C_2 T))$$

The setting is *d*-dimensional; *b* here is a vector. It is also true for *b* matrices with some slight changes in constants.

Corollary

Under the same assumptions, for any $T > 0 \exists \alpha > 0$ such that

$$E \exp(lpha \sup_{0 \le t \le T} |\int_0^t b_s dW_s|^2) < \infty$$

Proof

SDEs introduction

Stochastic exponentials

Exponential bound for SI For any λ , $\rho_t[\lambda b]$ is a continuous martingale. So, with any $\lambda > 0$ by Bienaymé–Chebyshev–Markov's inequality we have,

$$P(\sup_{0 \le t \le T} | \int_0^t b_s dW_s | \ge a)$$

$$\leq P(\sup_{0 \le t \le T} \int_0^t \lambda b_s dW_s \ge \lambda a) + P(\sup_{0 \le t \le T} \int_0^t (-\lambda) b_s dW_s \ge \lambda a)$$

$$\leq e^{-\lambda a} E e^{\sup_{0 \le t \le T} \int_0^t \lambda b_s dW_s} + e^{-\lambda a} e^{\sup_{0 \le t \le T} \int_0^t (-\lambda) b_s dW_s}.$$

Consider each term separately and in the same manner.

4

Proof, ctd. In the middle of the calculus we use Doob's inequality:

 $e^{-\lambda a} E e^{\sup_{0 \le t \le T} \int_0^t \lambda b_s dW_s} = e^{-\lambda a} E \sup e^{\int_0^t \lambda b_s dW_s}$ $0 \le t \le T$ $= e^{-\lambda a} E \sup_{0 \le t < T} \rho_t[\lambda b] e^{+\frac{1}{2} \int_0^t (\lambda b_s)^2 ds} \le e^{-\lambda a + Ct\lambda^2} E \sup_{\alpha < t < T} \rho_t[\lambda b]$ $\leq e^{-\lambda a + Ct\lambda^2} \sqrt{4E\rho_T^2[\lambda b]}$ $=2e^{-\lambda a+Ct\lambda^{2}}\left(E\rho_{T}[2\lambda b]\exp(\int_{a}^{t}(\lambda b_{s})^{2}ds)\right)^{1/2}$ $\overset{\mathsf{new } C}{\leq} 2e^{-\lambda a + Ct\lambda^2} \left(E\rho_T [2\lambda b] \right)^{1/2} = 2\exp(-\lambda a + Ct\lambda^2).$

Taking $\inf_{\lambda>0}$, obtain with $\lambda = a/(2Ct)$ the bound

$$e^{-\lambda a} E e^{\sup_{0 \le t \le \tau} \int_0^t \lambda b_s dW_s} \le 2 \exp(-a^2/(4Ct)).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

SDEs introduction

Stochastic exponentials

Exponential bound for SI

Proof, ctd.

SDEs introduction

Stochastic exponentials

Exponential bound for SI

Check yourself that the other term

$$e^{-\lambda a}e^{\sup_{0\leq t\leq T}\int_0^t(-\lambda)b_s dW_s}$$

admits the same bound,

$$e^{-\lambda a} E e^{\sup_{0 \le t \le \tau} \int_0^t (-\lambda b_s) dW_s} \le 2 \exp(-a^2/(4Ct)).$$

Overall, we obtain, as required,

$$\begin{split} P(\sup_{0\leq t\leq T}|\int_0^t b_s dW_s|\geq a) &\leq e^{-\lambda a} E e^{\sup_{0\leq t\leq T}\int_0^t \lambda b_s dW_s} \\ &+ e^{-\lambda a} e^{\sup_{0\leq t\leq T}\int_0^t (-\lambda) b_s dW_s} \leq 4\exp(-a^2/(4Ct)). \end{split}$$

Proof of Corollary

The idea is to use the bound with $a^2 = z \ge 0$

SDEs introduction

Stochastic exponentials

Exponential bound for SI

$$P(\sup_{0 \le t \le T} |\int_0^t b_s dW_s|^2 \ge a^2) = P(\sup_{0 \le t \le T} |\int_0^t b_s dW_s| \ge a)$$

$$\le 4 \exp(-a^2/(4Ct)).$$

Now integrate (in the middle by parts) with $\alpha < (4Ct)^{-1}$:
$$E \exp(\alpha \sup_{0 \le t \le T} |\int_0^t b_s dW_s|^2)$$

$$= \int_0^\infty \exp(\alpha z) d(-P(\sup_{0 \le t \le T} |\int_0^t b_s dW_s|^2 \ge z))$$

$$= 1 + \int_0^\infty P(\sup_{0 \le t \le T} |\int_0^t b_s dW_s|^2 \ge z) d \exp(\alpha z)$$

$$\leq 1 + \alpha \int_0^\infty 4 \exp(-z[(4Ct)^{-1} - \alpha]) dz < \infty.$$