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Abstract
First example of weak solutions; no Lipschitz conditions

A stochastic differential equation in Rd is considered

dXt = b(t ,Xt)dt + dWt , t ≥ 0, X0 = x0, (1)

Or, equivalently in the integral form,

Xt = x0 +

∫ t

0
b(s,Xs)ds + Wt . (2)

Here (Wt ,Ft) is a standard d-dimensional Wiener process,
b and σ are vector and matrix Borel functions of
corresponding dimensions d and d × d . The initial value x0
may be non-random, or random but F0-measurable. Yet, the
function b is only Borel measurable and bounded. Is there a
solution?
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Stochastic exponentials

Let bt be an adapted bounded stochastic vector-valued
d-dimensional process. Denote

ρt = ρt [b] := exp(

∫ t

0
bsdWs −

1
2

∫ t

0
b2

sds),

where b2 := (b,b), that is, a scalar product. By Ito’s formula,

dρt = btρtdWt (here bdWt is also a scalar product).

In other words, ρt is a solution of an SDE with a random
diffusion coefficient

dXt = btXtdWt , X0 = 1.

In the integral form we have,

ρt = 1 +

∫ t

0
bsρsdWs.
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ρt = exp(
∫ t

0 bsdWs − 1
2

∫ t
0 b2

sds)
ρt = 1 +

∫ t
0 bsρsdWs

The integral form gives us a hope that possibly ρt may be a
martingale, as usual for stochastic integral. If this is true, we
would have, in particular, Eρt = 1. In turn, any object which
is non-negative and integrates to one can serve as a
density. May ρt serve as a probability density?

Theorem

If bt is bounded, then ρt [b] is a martingale and Eρt = 1.

Proof. Let τN := inf(t ≥ 0 : ρt ≥ N). Then clearly∫ t
0 1(s ≤ τN)bsρsdWs is a martingale ("mart") because

E
∫ t

0
12(s ≤ τN)b2

sρ
2
sds ≤ t‖b‖2BN2 <∞.

So, Eρt∧τN = 1 + E
∫ t∧τN

0 bsρsdWs = 1.
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ρt [b] = exp(
∫ t

0 bsdWs − 1
2

∫ t
0 b2

sds)
ρt = 1 +

∫ t
0 bsρsdWs; Eρt∧τN = 1 + E

∫ t∧τN
0 bsρsdWs = 1

Moreover, by virtue of the martingale property for ρt∧τN ,

E(ρt∧τN |Fs) = ρs∧τN , s < t .

Here due to the continuity of ρt ,

τN →∞, N →∞.

Therefore, the right hand side here tends to ρs as N →∞.
What happens with the left hand side? We would show the
martingale property of ρt if we knew that ρt∧τN is uniformly
integrable. Indeed, uniform integrability allows to use
Lebesgue’s analugue of the dominated convergence
theorem for conditional expectations, under the U.I.
condition instead of the domination assumption. [This is a
material for your homework: to repeat all limit theorems for
conditional expectatoins.]
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ρt [b] = exp(
∫ t

0 bsdWs − 1
2

∫ t
0 b2

sds)
ρt = 1 +

∫ t
0 bsρsdWs; Eρt∧τN = 1 + E

∫ t∧τN
0 bsρsdWs = 1

So, it suffices to show that

Eρ2
t∧τN
≤ C

with some C, independent of N. We estimate,

Eρ2
t∧τN

[b] = E exp(2
∫ t∧τN

0
bsdWs −

∫ t∧τN

0
b2

sds)

= E exp(

∫ t∧τN

0
2bsdWs −

1
4

∫ t∧τN

0
(2b)2

sds)

= E exp(

∫ t∧τN

0
2bsdWs −

1
2

∫ t∧τN

0
(2b)2

sds +
1
4

∫ t∧τN

0
(2b)2

sds)

≤ exp(
1
4

t‖(2b)2‖B)Eρt∧τN [2b] = exp(
1
4

t‖(2b)2‖B) <∞.

Note that the right hand side here does not depend on N.
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ρt = exp(
∫ t

0 bsdWs − 1
2

∫ t
0 b2

sds)
ρt = 1 +

∫ t
0 bsρsdWs

Thus, for any bounded b the stochastic exponential ρt is a
(non-negative) martingale with Eρt = 1. Hence, this
exponential may serve as a probability density. Let us define
a new measure on F ,

P̃(A) = Pρt (A) := Eρt1(A).

[Homework: check that P̃ is, indeed, a probability measure.]

Can the boundedness of b for the martingale property of ρ
be relaxed and how far? The most well-known is Novikov’s
condition

E exp(
1
2

∫ t

0
b2

sds) <∞.

There were preceding conditions by Gikhman and
Skorokhod, and there are extensions due to Krylov. We will
learn one small step towards these weaker conditions.
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Martingale property of ρt = exp(
∫ t

0 bsdWs − 1
2

∫ t
0 b2

sds)
Assumption E exp(C

∫ t
0 b2

s ds) <∞

Let us return to the calculus establishing the uniform
integrability of ρ·∧τN ; we will try to improve it a bit. We have,

Eρ2
t∧τN

[b] = E exp(2
∫ t∧τN

0
bsdWs −

∫ t∧τN

0
b2

sds)

= E exp(

∫ t∧τN

0
2bsdWs − (4− 3)

∫ t∧τN

0
b2

sds)

CBS
≤
(

E exp(

∫ t∧τN

0
4bsdWs − 8

∫ t∧τN

0
b2

sds
) 1

2

×
(

E exp(6
∫ t∧τN

0
b2

sds)
) 1

2

≤
(

E exp(6
∫ t

0
b2

sds)
) 1

2

.

A conclusion: the condition E exp(6
∫ t

0 b2
sds) <∞ suffices.
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Supermart property of ρt = exp(
∫ t

0 bsdWs − 1
2

∫ t
0 b2

sds)
Assumption P(

∫ t
0 b2

s ds <∞) = 1 (so that a SI
∫ t

0 bsdWs is defined)

Theorem (recall that ρt = 1 +
∫ t

0 bsρsdWs)

Under the assumption P(
∫ t

0 b2
sds <∞) = 1 the process ρ is

a supermartingale: ρt1 ≥ E(ρt2 |Ft1), ∀t1 < t2, & Eρt ≤ 1.

Proof. Return to the beginning of the proof of the last
theorem. With a stopping time τN := inf(t ≥ 0 : ρt ≥ N), the
process

∫ t
0 1(s ≤ τN)bsρsdWs is a martingale, so,

1 + E(

∫ t2∧τN

0
bsρsdWs|Ft1) = 1 +

∫ t1∧τN

0
bsρsdWs.

In other words, E(ρt2∧τN |Ft1) = ρt1∧τN . The supermart
inequality follows from the Fatou lemma for conditional
expectations E(lim infN→∞ ρt2∧τN |Ft1) ≤ lim infN→∞ ρt1∧τN ,
since ρs∧τN → ρs due to continuity of ρ.
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Corollary

Corollary

For any bounded adapted process bt ,

E exp(

∫ t

0
bsdWs) <∞.
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New measure P̃ 7→ new WP W̃
Assume ρ is a mart on [0, t ]; define W̃s := Ws −

∫ s
0 budu, s ≤ t .

The next question is natural: we changed our measure; it is
likely that Ws is no more a WP under this new measure; but
is there a new WP instead? Igor Vladimirovich Girsanov
proposed a new WP to be:

W̃s := Ws −
∫ s

0
budu, 0 ≤ s ≤ t .

Theorem (Girsanov)

Let bt be bounded. Then W̃s is a Wiener process on [0, t ]
under the measure P̃ : dP̃/dP = ρt .

As an immediate consequence, for any bounded Borel drift
b(·) we can construct a weak solution of an SDE

dXt = b(Xt)dt + dWt , X0 = x . (3)
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Weak solution from Girsanov’s theorem
By changing measure!

Denote Xs = Ws + x and

W̃s = Ws −
∫ s

0
b(x + Wu)du, s ≤ t .

This is a new WP under the new probability measure

dP̃
dP

= ρt := exp(

∫ t

0
b(x + Ws)dWs −

1
2

∫ t

0
b2(x + Ws)ds).

Then we have,

Ws = W̃s +

∫ s

0
b(x + Wu)du, s ≤ t .

and therefore, X is a solution to the SDE with a new WP on
[0, t ],

Xs = x + W̃s +

∫ s

0
b(Xu)du, s ≤ t .
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Proof of Girsanov’s theorem about a new WP
W̃s := Ws −

∫ s
0 budu, and dP̃ = ρtdP with ρt = exp(

∫ t
0 bsdWs − 1

2

∫ t
0 b2

s ds)

For the proof we need one lemma and the definition of a
WP via its characteristic function, namely, for any
0 = t0 < t1 < t2 . . . < tN and real values λj ,1 ≤ j ≤ N,

Ẽ exp(
N−1∑
j=0

iλj(W̃tj+1 − W̃tj )) = exp(−1
2

∑
j

λ2
j (tj+1 − tj)).

Lemma

Let βt = β1
t + i β2

t be a bounded adapted random process,
where i =

√
−1. Then the (complex-valued) process

ρt [β] := exp(

∫ t

0
βsdWs −

1
2

∫ t

0
β2

s ds)

is a (complex-valued) martingale.
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Proof of Theorem
ρt [b] = exp(

∫ t
0 bsdWs − 1

2

∫ t
0 b2

s ds); W̃s := Ws −
∫ s

0 budu

Let λs := iλj on [tj , tj+1), and Bs = bs + λs. Then

Ẽ exp(
N−1∑
j=0

iλj(W̃tj+1 − W̃tj )) = Eρt [b] exp(
N−1∑
j=0

iλj(W̃tj+1 − W̃tj ))

= E exp(

∫ t

0
bsdWs −

1
2

∫ t

0
b2

sds)

× exp(
N∑

j=0

iλj(Wtj+1 −Wtj −
∫ tj+1

tj
budu))

= E exp(

∫ t

0
BsdWs −

1
2

∫ t

0
B2

s ds +
1
2

∫ t

0
λ2

sds).

Indeed,
B2

s = (bs + λs)
2 = b2

s + λ2
s + 2bsλs.
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End of Proof of Girsanov’s theorem
λs := iλj on [tj+1 − tj); Bs = bs + λs

But due to the last Lemma

E exp(

∫ t

0
BsdWs −

1
2

∫ t

0
B2

s ds) = 1

while 1
2

∫ t
0 λ

2
sds is non-random and equals

1
2

∫ t

0
λ2

sds = −1
2

∑
j

λ2
j (tj+1 − tj).

Therefore,

Ẽ exp(
N−1∑
j=0

iλj(W̃tj+1 − W̃tj )) = exp(−1
2

∑
j

λ2
j (tj+1 − tj)),

as required. Girsanov’s theorem about a new WP under the
(Girsanov’s) change of measure is proved.
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Proof of Lemma
(Recall:)

Lemma

Let βt = β1
t + i β2

t be a bounded adapted random process,
where i =

√
−1. Then the (complex-valued) process

ρt [β] := exp(

∫ t

0
βsdWs −

1
2

∫ t

0
β2

s ds)

is a (complex-valued) martingale.

Proof. It suffices to check for any A ∈ Ft1 , t2 > t1, and a
complex value z,

E1(A)exp(
∫ t2

0
(β1

s + zβ2
s )dWs −

1
2

∫ t2

0
(β1

s + zβ2
s )

2ds)

= E1(A)exp(
∫ t1

0
(β1

s + zβ2
s )dWs −

1
2

∫ t1

0
(β1

s + zβ2
s )

2ds).
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We already know the equality for all real-valued z,

E1(A)exp(
∫ t2

0
(β1

s + zβ2
s )dWs −

1
2

∫ t

0
(β1

s + zβ2
s )

2ds)

= E1(A)exp(
∫ t1

0
(β1

s + zβ2
s )dWs −

1
2

∫ t

0
(β1

s + zβ2
s )

2ds).

Hence, the claim will be proved if we show that both sides
are analytic functions of z. For the latter, it suffices to show
that both sides are continuous in z and that their integrals
along any closed bounded contours are equal to zero
(Morera’s theorem). Because of the analyticity of the
expressions under the expectations and by Fubini’s
theorem (i.e., we can change the order of expectation and
integration over the contour), we only need to show that for
any R > 0 and |z| ≤ R, these expressions are bounded by
an integrable r.v. independently of z.
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Clearly, to show such domination we only need to care
about the stochasic integrals (since Lebesgue’s ones are
bounded for |z| ≤ R). By virtue of the clever inequality for
any α, β ∈ R with |α| ≤ |β|,

exp(α) ≤ exp(α) + exp(−α) ≤ exp(β) + exp(−β),

we have,

| exp(
∫ t2

0
(β1

s + zβ2
s )dWs)| = exp(

∫ t2

0
(β1

s + Re(z)β2
s )dWs)

≤ exp(

∫ t2

0
(β1

s + Rβ2
s )dWs) + exp(

∫ t2

0
(β1

s − Rβ2
s )dWs).

The latter expression is integrable independently of z (of
course, for |z| ≤ R).
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Exponential inequality via stochastic exponential
ρt [b] = exp(

∫ t
0 bsdWs − 1

2

∫ t
0 b2

s ds)

Theorem (SI exp bounds)

Let the adapted process b· be bounded. Then there exist
C1,C2 such that for any a > 0 and for any T > 0,

P( sup
0≤t≤T

|
∫ t

0
bsdWs| ≥ a) ≤ C1 exp(−a2/(C2T )).

The setting is d-dimensional; b here is a vector. It is also
true for b matrices with some slight changes in constants.

Corollary

Under the same assumptions, for any T > 0 ∃α > 0 such
that

E exp(α sup
0≤t≤T

|
∫ t

0
bsdWs|2) <∞.
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Proof

For any λ, ρt [λb] is a continuous martingale. So, with any
λ > 0 by Bienaymé–Chebyshev–Markov’s inequality we
have,

P( sup
0≤t≤T

|
∫ t

0
bsdWs| ≥ a)

≤ P( sup
0≤t≤T

∫ t

0
λbsdWs ≥ λa) + P( sup

0≤t≤T

∫ t

0
(−λ)bsdWs ≥ λa)

≤ e−λaEesup0≤t≤T
∫ t

0 λbsdWs + e−λaesup0≤t≤T
∫ t

0 (−λ)bsdWs .

Consider each term separately and in the same manner.
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Proof, ctd.
In the middle of the calculus we use Doob’s inequality:

e−λaEesup0≤t≤T
∫ t

0 λbsdWs = e−λaE sup
0≤t≤T

e
∫ t

0 λbsdWs

= e−λaE sup
0≤t≤T

ρt [λb]e+ 1
2

∫ t
0 (λbs)2ds ≤ e−λa+Ctλ2

E sup
0≤t≤T

ρt [λb]

≤ e−λa+Ctλ2
√

4Eρ2
T [λb]

= 2e−λa+Ctλ2
(

EρT [2λb] exp(
∫ t

0
(λbs)

2ds)
)1/2

new C
≤ 2e−λa+Ctλ2

(EρT [2λb])1/2 = 2 exp(−λa + Ctλ2).

Taking infλ>0, obtain with λ = a/(2Ct) the bound

e−λaEesup0≤t≤T
∫ t

0 λbsdWs ≤ 2 exp(−a2/(4Ct)).
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Proof, ctd.

Check yourself that the other term

e−λaesup0≤t≤T
∫ t

0 (−λ)bsdWs

admits the same bound,

e−λaEesup0≤t≤T
∫ t

0 (−λbs)dWs ≤ 2 exp(−a2/(4Ct)).

Overall, we obtain, as required,

P( sup
0≤t≤T

|
∫ t

0
bsdWs| ≥ a) ≤ e−λaEesup0≤t≤T

∫ t
0 λbsdWs

+e−λaesup0≤t≤T
∫ t

0 (−λ)bsdWs ≤ 4 exp(−a2/(4Ct)).
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Proof of Corollary
The idea is to use the bound with a2 = z ≥ 0

P( sup
0≤t≤T

|
∫ t

0
bsdWs|2 ≥ a2) = P( sup

0≤t≤T
|
∫ t

0
bsdWs| ≥ a)

≤ 4 exp(−a2/(4Ct)).

Now integrate (in the middle by parts) with α < (4Ct)−1:

E exp(α sup
0≤t≤T

|
∫ t

0
bsdWs|2)

=

∫ ∞
0

exp(αz)d(−P( sup
0≤t≤T

|
∫ t

0
bsdWs|2 ≥ z))

= 1 +

∫ ∞
0

P( sup
0≤t≤T

|
∫ t

0
bsdWs|2 ≥ z)d exp(αz)

≤ 1 + α

∫ ∞
0

4 exp(−z[(4Ct)−1 − α])dz <∞.
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