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Abstract

First example of weak solutions; no Lipschitz conditions
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A stochastic differential equation in R? is considered

o dXi = b(t, Xy)dt + dW;, t >0,  Xo = Xo, (1)

Or, equivalently in the integral form,
t
Xt = Xo + / b(S7 Xs)dS + W (2)
0

Here (W;, Ft) is a standard d-dimensional Wiener process,
b and o are vector and matrix Borel functions of
corresponding dimensions d and d x d. The initial value xg
may be non-random, or random but Fy-measurable. Yet, the
function b is only Borel measurable and bounded. Is there a
solution?



Stochastic exponentials

oDES Let b; be an adapted bounded stochastic vector-valued
d-dimensional process. Denote

Stochastic t 1 t
pr = pilb] = exol | baaWs — 5 | bEd),
0 2 Jo
where b? := (b, b), that is, a scalar product. By Ito’s formula,
dpt = biptdW;  (here bdW; is also a scalar product).

In other words, p; is a solution of an SDE with a random
diffusion coefficient

dXs = b XedWs,  Xo = 1.

In the integral form we have,

t
pt =1 +/0 bspsdWs.



pt = exp(fy bsdWs — 1 [ b2ds)

pt=1+ J(; bsPdes

el The integral form gives us a hope that possibly p; may be a

martingale, as usual for stochastic integral. If this is true, we
Stochastic would have, in particular, Ep; = 1. In turn, any object which
@l  is non-negative and integrates to one can serve as a
density. May p; serve as a probability density?

Theorem
If bt is bounded, then p;[b] is a martingale and Ep; = 1.

Proof. Let 7y := inf(t > 0 : p; > N). Then clearly
fo (s < 7n)bspsdWs is a martingale ("mart") because

E/ 12(s < ) b2p2ds < t|b|BN? < cc.

SO, E,Ot/\TN =1 + Efot/\TN bSdeWs =1.



pi[b] = exp( [y bsdWs — 1 [ b2ds)

pt=1+ J(; bspsdWs; Epinry =1+ EfOMTN bspsdWs = 1

sl Moreover, by virtue of the martingale property for ptar-,,

introduction

E(pt/\TN|]:S) = IOS/\TNa S < t.
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Here due to the continuity of p;,
™ — o0, N— .

Therefore, the right hand side here tends to ps as N — oo.
What happens with the left hand side? We would show the
martingale property of p; if we knew that p¢a-,, is uniformly
integrable. Indeed, uniform integrability allows to use
Lebesgue’s analugue of the dominated convergence
theorem for conditional expectations, under the U.I.
condition instead of the domination assumption. [This is a
material for your homework: to repeat all limit theorems for
conditional expectatoins.]



pi[b] = exp( [y bsdWs — 1 [ b2ds)

Pt = 1 aF ‘/g bsPdes; Ept/\‘rN — 1 = EJ‘OI/\TN bSdeWS = 1

vl So, it suffices to show that
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Ep?/\TN é C
with some C, independent of N. We estimate,
tATN tATN
EpZn, [b] = Eexp(2 / bsdWs — / b2ds)
0 0
tATN 1 tATN
— Eexp( / 2bsdWs — / (2b)2ds)
0 4 Jo
tATN 1 tATN 1 tATN
— Eexp( / DbsdWs — / (2b)2ds + / (2b)2ds)
0 2 Jo 4 Jo
1 1
< exp(ZtII(Zb)zIIB)EmeN[Zb] = exp(ztll(-?b)zlls) < 0.

Note that the right hand side here does not depend on N.



pt = exp(fy bsdWs — 1 [ b2ds)

pt=1+ J(; bsPdes

oDES Thus, for any bounded b the stochastic exponential p; is a
(non-negative) martingale with Ep; = 1. Hence, this
R exponential may serve as a probability density. Let us define
SpelEtER a new measure on F,

P(A) = PP{(A) := Epi1(A).

[Homework: check that P is, indeed, a probability measure.]

Can the boundedness of b for the martingale property of p
be relaxed and how far? The most well-known is Novikov’s
condition

t
Eexp(;/0 b2ds) < oo.

There were preceding conditions by Gikhman and
Skorokhod, and there are extensions due to Krylov. We will
learn one small step towards these weaker conditions.



Martingale property of p: = exp(J; bsdWs — 1 [ b2ds)

Assumption E exp(C [ b2ds) < co

SDEs
el et us return to the calculus establishing the uniform

integrability of p.A-,; we will try to improve it a bit. We have,
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IATN tATN
Enfnb) = Eexp(2 | boaWe— | bids)

tATN tATN
— Eexp( / 2bsdWs — (4 — 3) / p2ds)
0 0

CBS tATN IATN 5 %
< (E exp(/ 4bsdWs — 8/ bsds>
0 0

IATN % t %
« (Eexp(B / b§ds)> < <Eexp(6 / b§ds)> |
0 0

A conclusion: the condition E exp(6 [; b2ds) < oo suffices.



Supermart property of p, = exp(J; bsaws — } [ b2ds)
Assumption P(fo’ b2ds < c0) =1 (sothata Sl fO' bsdWs is defined)
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Theorem (recall that p; = 1 + [} bspsdWs)

Sttt Under the assumption P( fot b2ds < oo) = 1 the process p is
a supermartingale: py, > E(py,|Ft,), Vi < b, & Ept < 1.

Proof. Return to the beginning of the proof of the last
theorem. With a stopping time 7y := inf(t > 0 : p; > N), the
process fot 1(s < 7nv)bspsdWs is a martingale, so,

WATN

bATN
14 E( /0 bepsdWel Fy ) = 1 + /0 bepedWs

In other words, E(pt,ary|Ft;) = ptiary- The supermart
inequality follows from the Fatou lemma for conditional
expectations E(liminfy_o ptoary|Ft,) < liminfy_soo ot Arys
since pspry — ps due to continuity of p.



Corollary
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Corollary

For any bounded adapted process by,

t
Eexp(/ bdes) < 00.
0



New measure P — new WP W

Assume p is a mart on [0, f]; define W := W; — fos bydu, s < t.

oDES The next question is natural: we changed our measure; it is

likely that W is no more a WP under this new measure; but
R is there a new WP instead? Igor Vladimirovich Girsanov
exponentials proposed a new WP to be:

S
Ws:: WS_/ budu, OSSST
0

Theorem (Girsanov)

Let b; be bounded. NThenNWs is a Wiener process on [0, t]
under the measure P : dP/dP = p;.

As an immediate consequence, for any bounded Borel drift
b(-) we can construct a weak solution of an SDE

dX; = b(X;)dt + dW;,  Xo = x. (3)



Weak solution from Girsanov’s theorem

By changing measure!

SDEs Denote Xs = W5 + x and
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)
0

This is a new WP under the new probability measure
dap _
ap ~ "

Then we have,

t 1 t
0 0

S
0

and therefore, X is a solution to the SDE with a new WP on
[0, 1],

- S
0




Proof of Girsanov’s theorem about a new WP

Ws := Ws — [5 budu, and dP = p,dP with p; = exp( [, bsdWs — § [ b3ds)

oDES For the proof we need one lemma and the definition of a
WP via its characteristic function, namely, for any
R O=fh<t<tk.. <tyandrealvalues )1 <j<N,

exponentials

N-1

Eexp(Zl)\ th+1 th))—exp 22)\ t/+1 t))
j=0

Lemma

Let s = ﬁ, /ﬁtz be a bounded adapted random process,
where i = /—1. Then the (complex-valued) process

t 1 t
)= expl [ BsaWe 5 [ s2)

is a (complex-valued) martingale.



Proof of Theorem

pi[b] = exp(f; bsdWs — 1 [\ b2ds); Ws := Ws — [ bydu

SDEs

introduction Let \g := I)\/ on [t/, t/'+1 ), and Bs = bs + As. Then

Stochastic N-1

N—1
L Eexp()  iN(Wy,, — Wtj))—Ept[b]exp(Z iN(W,, — W)
j=0

_ Eexp / bedWs — / p2ds)
N by

.
xexp(> iN(Wy,, — Wy — b,du))
j=0 f

t 1 t 1 t
:Eexp(/ Bdes—Z/ B§ds+2/ A2ds).
0 0 0

Indeed,



End of Proof of Girsanov’s theorem

As 1= I)\/ on [tj+1 - t/), Bs = bs + As

SDEs But due to the last Lemma
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t 1 t
Stochastic Eexp(/ BSdWS - / Bgds) = 1
0 2 Jo

exponentials

. 1 t 2 .
while 5 [ A5ds is non-random and equals

;/)\zds——ZA (f41 —

Therefore,
Lo N , 1
Eexp(> iN(Wy,, — Wy)) = exp(— 5 D X(tier — 1),
j=0 J

as required. Girsanov’s theorem about a new WP under the
(Girsanov’s) change of measure is proved.




Proof of Lemma
(Recall:)

Lemma

Let Bt = 6,1 + iﬂtz be a bounded adapted random process,
T where i = /—1. Then the (complex-valued) process
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Stochastic

t 1 t
)= expl [ BeaWe 5 [ s2)

is a (complex-valued) martingale.

Proof. It suffices to check forany A € F;, & > t;, and a
complex value z,

A)exp/ (,85 +zBS YdWs — / (,85 +zBs) ds)

= E1(A exp(/ 53 + Zﬁs)dWS - 1/ (/Bs + 2/83) )



SDEs We already know the equality for all real-valued z,
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Lo 2 11 2\2
E1(Aerpl | (51 + 2w — 5 [ (1 + 26%)%0s)

oo 2 1 212
— Et(Ayexp( | (31 + 2y — 5 [ (31 +z62)7dk).

Hence, the claim will be proved if we show that both sides
are analytic functions of z. For the latter, it suffices to show
that both sides are continuous in z and that their integrals
along any closed bounded contours are equal to zero
(Morera’s theorem). Because of the analyticity of the
expressions under the expectations and by Fubini’s
theorem (i.e., we can change the order of expectation and
integration over the contour), we only need to show that for
any R > 0 and |z| < R, these expressions are bounded by
an integrable r.v. independently of z.



el Clearly, to show such domination we only need to care

about the stochasic integrals (since Lebesgue’s ones are
Stochastic bounded for |z| < R). By virtue of the clever inequality for
exponentials any a,,B c RWlth |C¥’ S |ﬁ’,

exp(a) < exp(a) + exp(—a) < exp(5) + exp(—f),
we have,

) t
| exp( /0 (81 + 282)dWe)| = expl /0 (81 + Re(2)52)aWs)

b

b
< exp( /O (B2 + REZ)aWs) + exp( /O (8! — REZ)dWs).

The latter expression is integrable independently of z (of
course, for |z| < R).



Exponential inequality via stochastic exponential
pi[b] = exp( [, bsdWs — 1 [ b2ds)

SDE:
nroducton | Theorem (S| exp bounds)

Let the adapted process b. be bounded. Then there exist
Cy, Cs such that forany a > 0 and forany T > 0,

Exponential
bound for SI

t
P( sup | [ bsdWs| > a) < Cyexp(—a?/(CaT)).
o<t<T JO

The setting is d-dimensional; b here is a vector. It is also
true for b matrices with some slight changes in constants.

Corollary

Under the same assumptions, for any T > 0 da > 0 such
that

t
Eexp(a sup | [ bsdWs[?) < co.
0<t<T Jo
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For any A, p¢[\b] is a continuous martingale. So, with any
A > 0 by Bienaymé—Chebyshev—Markov’s inequality we

Exponential
bound for SI have’

t
P( sup | bsdWs| > a)
o<t<T JO

t t
< P( sup / AbsdWs > Aa) + P( sup / (=A\)bsdWs > \a)
0 0

0<t<T 0<t<T
< @ MEgsuPo<i<T fot AbsdWs + e MagsUPo<i<T fot(f)\)bdes'

Consider each term separately and in the same manner.



Proof, ctd.

In the middle of the calculus we use Doob’s inequality:
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e~ Egsupoci<T Jo \bsdWs _ g-Aaf sup elo AbsdWs

o<t<T
i —A 1 [T(\bs)2ds —Xa+Ctx?
ikl = o *9E sup pi[Abletz oI < o E sup pe[\b]
o<t<T o<t<T

< g—Aa+Cty? /4EP27[)\b]

t 1/2
— 2 hatlt® (EpT[Z)\b] exp( / (Abs)zds)>
0

new C
< 260N (Eproab])/2 = 2exp(—Aa + CtA?).

Taking inf -, obtain with A\ = a/(2Ct) the bound

e aEg Posi<T Jo NsdWe < 2 eyin(— 22 /(4CH)).



Proof, ctd.
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Check yourself that the other term

e~ Magsupoci<T Jo(—A)bsdWs

Exponential
bound for SI

admits the same bound,
e g posi<T fo(-Ab)dWe < 2 yn(— 22 /(4CY)).

Overall, we obtain, as required,

t
P( sup | bdeS\ > a) < e M@EgstPosi<T Jo AbsdWs
0<t<T

+e_)\aGSUP0§I§T fo(_)‘ )bsdWs < 4exp(—az/(4Cl')).



Proof of Corollary

The idea is to use the bound with & = z > 0
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t t
P( sup | | bsdWs?> > @) = P( sup | | bsdWs| > a)
0<t<T JO 0<t<T JO

Exponential < 4 exp(—az/(4Ct))

bound for SI

Now integrate (in the middle by parts) with o < (4Ct) ™"

Eexp(a sup | bdes| )
0<t<T

:/ exp(az)d(—P( sup | bdes| > 7))
0<t<T

=1+ P ( sup | bde5|2 > z)d exp(az)
0<t<T

<1+ a/ 4exp(—z[(4Cl‘)*1 —a])dz < oco.
0
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