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Heat equation
Example 1

We start with a (d-dimensional) Wiener process Wt and with
a few simplest examples. The first one is about heat
equation and its relation to WP.

Example (1)

Let u(t , x) ∈ C1,2
b ([0,T ]× Rd ) be a solution of the heat

equation

ut (t , x) +
1
2

∆u(t , x) = 0, 0 ≤ t ≤ T ,

u(T , x) = g(x),

with g ∈ C2
b(Rd ). Then for any 0 ≤ t ≤ T the value u(t , x)

can be represented in the form

u(t , x) = Eg(x + WT−t ).
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Proof

For the proof, let us apply Ito’s formula to u(t0 + s, x + Ws)
for 0 ≤ t0 < T (since u(T , x) = g(x) ≡ Eg(x + W0) without
any calculus):

du(t0 + s, x + Ws) = ∇u(t0 + s, x + Ws)dWs

+[us(t0 + s, x + Ws) +
1
2

∆u(t0 + s, x + Ws)]ds.

In the integral form with t0 + s = T ,

u(T , x + WT−t0) = u(t0, x) +

∫ T−t0

0
∇u(t0 + s, x + Ws)dWs

+

∫ T−t0

0
[us(t0 + s, x) +

1
2

∆u(t0 + s, x + Ws)]ds.
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Example 1, Proof, ctd.

Let us now take expectations from both sides of this
equality:

Eu(T , x + WT−t0) = u(t0, x),

because

E
∫ T−t0

0
∇u(t0 + s, x + Ws)dWs = 0,

& [us(t0, x) +
1
2

∆u(t0 + s, x + Ws)] = 0.

Remark

The condition g ∈ C2
b(Rd ) follows automatically from

u(t , x) ∈ C1,2
b ([0,T ]× Rd ). Both of them can be relaxed.
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Relaxed Example 1

Example (2)

Let u(t , x) ∈ C1,2
b ((0,T )× Rd )

⋂
Cb([0,T ]× Rd ) be a

solution of the heat equation

ut (t , x) +
1
2

∆u(t , x) = 0, 0 ≤ t ≤ T ,

u(T , x) = g(x),

with g ∈ Cb(Rd ). Then for any 0 ≤ t ≤ T the value u(t , x)
can be represented in the form

u(t , x) = Eg(x + WT−t ).

The conditions of boundedness of g and u with its
derivatives may be further considerably relaxed, too.
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Proof of Example 2

Note that the differential form of Ito’s equation remains valid,

du(t0 + s, x + Ws) = ∇u(t0 + s, x + Ws)dWs

+[us(t0 + s, x + Ws) +
1
2

∆u(t0 + s, x + Ws)]ds.

Yet, now we cannot simply integrate it to T , because the
derivatives are assumed only on the open interval (0,T ).
Firstly let us consider t0 > 0. Denote Tn := T − 1

n . Then, for
n such that t0 < Tn we have,

u(Tn, x + WTn−t0) = u(t0, x) +

∫ Tn−t0

0
∇u(t0 + s, x + Ws)dWs

+

∫ Tn−t0

0
[us(t0 + s, x) +

1
2

∆u(t0 + s, x + Ws)]ds.
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Proof of Example 2, ctd.

u(Tn, x + WTn−t0) = u(t0, x) +

∫ Tn−t0

0
∇u(t0 + s, x + Ws)dWs

+

∫ Tn−t0

0
[us(t0 + s, x) +

1
2

∆u(t0 + s, x + Ws)]ds.

Let us take expectations here: since

[us(t0 + s, x) +
1
2

∆u(t0 + s, x + Ws)] = 0

and because

E
∫ Tn−t0

0
∇u(t0 + s, x + Ws)dWs = 0,

we get

Eu(Tn, x + WTn−t0) = u(t0, x).
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u(t0, x) = Eu(Tn, x + WTn−t0).

Here we can pass to the limit as Tn ↑ T in the r.h.s.: since
the function u is continuous and bounded up to T , and
because W is continuous in time, we get by Lebesgue’s
bounded convergence theorem that again

u(t0, x) = Eu(T , x + WT−t0) ≡ Eg(x + WT−t0),

as required. Moreover, in the latter equation we can again
pass to the limit as t0 ↓ 0, to get by the same reasoning

u(0, x) = Eg(x + WT ).
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Example 3
Non-zero right-hand side (rhs)

Now let us consider the equation with a non-zero r.h.s.

Example (3)

Let u(t , x) ∈ C1,2
b ([0,T ]× Rd ) be a solution of the heat

equation

ut (t , x) +
1
2

∆u(t , x) = −f (t , x), 0 ≤ t ≤ T ,

u(T , x) = g(x),

with g ∈ C2
b(Rd ), f (t , x) ∈ Cb([0,T ]× Rd ). Then for any

0 ≤ t ≤ T the value u(t , x) can be represented in the form

u(t , x) = E

[∫ T−t

0
f (t + s, x + Ws)ds + g(x + WT−t )

]
.
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Proof of Example 3

Recall Ito’s formula,

du(t0 + s, x + Ws) = ∇u(t0 + s, x + Ws)dWs

+[us(t0 + s, x + Ws) +
1
2

∆u(t0 + s, x + Ws)]ds.

Now it can be rewritten as follows,

du(t0 + s, x + Ws) = ∇u(t0 + s, x + Ws)dWs

−f (t0 + s, x + Ws)ds,

or, in the integral form,

u(T , x + WT−t0) = u(t0, x) +

∫ T−t0

0
∇u(t0 + s, x + Ws)dWs

−
∫ T−t0

0
f (t0 + s, x + Ws)ds.
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Proof of Example 3, ctd.

Taking expectations from both sides we get,

u(t0, x) = Eu(T , x + WT−t0) + E
∫ T−t0

0
f (t0 + s, x + Ws)ds

= Eg(x + WT−t0) + E
∫ T−t0

0
f (t0 + s, x + Ws)ds,

as required.

Remark

Conditions of the Example may also be relaxed, as earlier,
assuming derivatives only in the open cylinder ((0,T )× Rd )
along with continuity of u only in the closed cylinder
([0,T ]× Rd ). Yet, it is not all that may be relaxed here.

The issue is that for heat equations with a non-zero r.h.s. it
is not often that solutions are classical, that is, from C1,2

b .
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How to verify that solution u ∈ C1,2
b ?

In PDE theory often solutions are only with Sobolev derivatives!

However, in the case of the Laplacian there is a simple
approach to check it. Let us take the function

v(t , x) = E

[∫ T−t

0
f (t + s, x + Ws)ds + g(x + WT−t )

]
.

We do not know whether it is a classical solution of the heat
equation with the r.h.s. f and a terminal condition g; but
after the previous examples we guess that this is likely to be
a solution. Can we check that this function belongs to one of
the classes we considered in the previous Examples? In
other words, the task is as follows: how can we differentiate
the function v w.r.t. x and t? From the first sight this looks
doubtful because the trajectories of W are only Hölder
continuous but not differentiable.
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Differentiate v1

Nevertheless, if we write the expectation (for each summand
separately) in the form (change of variables z = y + x)

v1(t , x) = Eg(x + WT−t )

=

∫
g(x + y)

1
(2π(T − t))d/2 exp(− 1

2(T − t)
y2)dy

=

∫
g(z)

1
(2π(T − t))d/2 exp(− 1

2(T − t)
(x − z)2)dz,

it becomes clear that this expression, indeed, is
differentiable both in x and in t . It is a good exercise to
check that v1 ∈ C1,2

b here and that the equation holds true
without using WP,

v1
t +

1
2

∆v1 = 0, & v1(T , x) = g(x).
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Differentiate v2

For the other term (we use Fubini theorem & change of
variables t + s = r , so that s = r − t)

v2(t , x) =

∫ T−t

0
Ef (t + s, x + Ws)ds,

we can also use the density of WP, hence, rewriting it as

v2(t , x) =

∫ T

t
Ef (r , x + Wr−t )dr

=

∫ T

t
dr

∫
Rd

f (r , x + y)

(2π(r − t))d/2 exp(− y2

2(r − t)
)dy

=

∫ T

t
dr

∫
Rd

f (r , z)

(2π(r − t))d/2 exp(− 1
2(r − t)

(x − z)2)dz.

It is also a good exercise to differentiate this expression in t
and (twice) in x and to check the corresponding equation.
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Example 4
Homework! Here c is a constant, but it may be made variable.

Similarly a PDE "with a potential" can be considered.

Example (4)

Let u(t , x) ∈ C1,2
b ([0,T ]× Rd ) be a solution of the heat

equation with a potential

ut (t , x) +
1
2

∆u(t , x)− cu(t , x) = −f (t , x), 0 ≤ t ≤ T ,

u(T , x) = g(x),

with g ∈ C2
b(Rd ), f (t , x) ∈ Cb([0,T ]× Rd ). Then for any

0 ≤ t ≤ T the value u(t , x) can be represented in the form

u(t , x) = E
∫ T−t

0
e−csf (t + s, x + Ws)ds

+Ee−c(T−t)g(x + WT−t ).



SDEs
introduction

Heat equation

Laplace
equation

Poisson
equation

Example 5: Laplace equation
Probabilists like the multiplier 1/2; of course, in the equation it is redundant.

Let D be a bounded domain (by definition open one and
connected; condition to be connected can be dropped, it is
just for simplicity) in Rd . Consider the Laplace equation

1
2

∆u(x) = 0, x ∈ D, & u|Γ = φ(x),

where Γ = ∂D is the boundary of D. Denote Dc := Rd \ D.
Let

τ := inf(t ≥ 0 : x + Wt ∈ Dc).

Example (5)

Let u(x) ∈ C2
b(D̄) be a solution of the Laplace with

φ ∈ C(D̄). Then u(x) can be represented as

u(x) = Eφ(x + Wτ ), x ∈ D.
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Proof of Example 5
1
2 ∆u(x) = 0, x ∈ D, & u|Γ = φ(x)

Let us apply Ito’s formula to u(x + Wt ):

du(x + Wt ) = ∇u(x + Wt )dWt +
1
2

∆u(x + Wt )dt .

In the integral form we have (assuming u ∈ C2
b(Rd )),

u(x + Wt )− u(x) =

∫ t

0
∇u(x + Ws)dWs

+
1
2

∫ t

0
∆u(x + Ws)ds,

but it is not what we need, because, remember, we do not
know anything about u outside D̄, or, at most, outside some
its neighbourhood. So, we are to use stopping time τ .
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Proof of Example 5, ctd.

It is also true that left hand side (lhs) here equals right hand
side (rhs) if we integrate from 0 to t ∧ τ (for which u ∈ C2

b(D̄)
suffices):

u(x + Wt∧τ )− u(x) =

∫ t∧τ

0
∇u(x + Ws)dWs.

Take expectations:

Eu(x + Wt∧τ )− u(x) = E
∫ t∧τ

0
∇u(x + Ws)dWs = 0.

So,

u(x) = Eu(x + Wt∧τ ).

This is true for any t > 0 and we want now to let t →∞.
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Proof of Example 5, ctd.
An issue: why P(τ <∞) = 1, or even better,
E
∫∞

0 1(s < τ)|∇u(x + Ws)|2ds <∞?

If we knew that τ <∞ a.s., then in the limit we would have,
clearly,

u(x) = Eu(x + Wτ ).

And since x + Wτ ∈ Γ, and due to continuity of u, and
because of the boundary condition (called Dirichlet’s b.c.),
we would conclude that, indeed,

u(x) = Eφ(x + Wτ ),

as required. But why this property – or, equivalently, why
Eτ <∞ – holds? To resolve this difficulty, recall that x + Wt
is a Markov and strong Markov process (the material of the
autumn semester: a strong advice is to repeat this stuff).
Note that infx Px (x + W1 6∈ D) > 0.
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Lemma for Markov process (MP)
For any MP, infx Px (exit from D on [0, 1]) > 0 =⇒ supx Exτ <∞.

Lemma

Let for an MP Xt and a domain D exist q > 0 such that

Px (Xt exits from D on [0,1]) ≥ q.

Then supx Exτ <∞, where τ = inf(t ≥ 0 : Xt 6∈ D); in
particular, Px (τ <∞) = 1. More than that, ∃α > 0 such that

sup
x

Ex exp(ατ) <∞.

Proof. All these claims follow from the inductive estimate

Px (τ > n) = Ex1(τ > n − 1)EXn−11(τ > 1)

≤ Ex (1− q)1(τ > n − 1) ≤ . . . ≤ (1− q)n.
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Proof of Example 5, ctd.
Using the Lemma

Now we can complete the proof of this Example. We have,

Px (x + W1 6∈ D) =

∫
Rd\D

1
(2π)d/2 exp(−1

2
(y − x)2)dy

= 1−
∫

D

1
(2π)d/2 exp(−1

2
(y − x)2)dy ≥ q > 0.

[Consider the last inequality as a homework!]

Hence, by Lemma, P(τ > n) ≤ qn, and supx Exτ <∞, as
required. Therefore, the claim of the Example 5 follows,

u(x) = Eφ(x + Wτ ).
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Averaging properties of WP
|B(r)| = d-volume of B(r), |Γ(r)| = d − 1-area of the (d − 1)-surface Γ(r)

Before we start a new topic, Poisson equations, let us
discuss some interesting and useful corollary. Assume that
x ∈ D, and let Bx (r) denote the open ball of radius r with x
the center. Suppose r > 0 is small enough, so that
Bx (r) ⊂⊂ D. Denote also τ r := inf(t ≥ 0 : x + Wt 6∈ Bx (r)).

Corollary

We have,

u(x) = Eu(x + Wτ r ) =
1
|Γ(r)|

∫
Γx (r)

u(y)dy ,

and also

u(x) = Eu(x + Wτ r ) =
1
|B(r)|

∫
Bx (r)

u(z)dz.
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Proof of averaging properties

We show the first one, because the second one follows by
one more integration from it. Due to the strong Markov
property, we have, denoting Xt = x + Wt ,

u(x) = Eφ(x + Wτ ) = E(Eφ(x + Wτ )|Fτ r )

= E(Eφ(x + Wτ )|x + Wτ r ) = E(Eφ(Xτ )|Xτ r )

= Eu(Xτ r ) =
1
|Γ(r)|

∫
Γx (r)

u(y)dy ,

the last equality by the symmetry of W: for the WP starting
from x , to hit any area on Γx (r) at stopping time τ r is
proportional to the d − 1-dimensional volume of this area.
[Homework: Show that any Borel measurable bounded
function satisfying the two averaging properties above must
be continuous in x. (In fact, this property even implies the
Laplace equation in D for such a function.)]
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Example 6, Poisson equation
It is a "Laplace equation with a non-trivial rhs".

Let D be a bounded domain in Rd . Consider the Poisson
equation

1
2

∆u(x) = −ψ(x), x ∈ D, & u(x)|Γ = φ(x),

where Γ = ∂D is the boundary of D. Recall that
Dc := Rd \ D, τ := inf(t ≥ 0 : x + Wt ∈ Dc).

Example (6)

Let u(x) ∈ C2
b(D̄) be a solution of the Poisson equation with

φ ∈ C(Γ), ψ ∈ C(D̄). Then u(x) in D can be represented as

u(x) = E [

∫ τ

0
ψ(x + Ws)ds + φ(x + Wτ )].
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Proof

By Ito’s formula,

du(x + Wt ) = ∇u(x + Wt )dWt +
1
2

∆u(x + Wt )dt

= ∇u(x + Wt )dWt − ψ(x + Wt )dt .

So, in the integral form with a stopping time,

u(x + Wt∧τ )− u(x) =

∫ t∧τ

0
∇u(x + Ws)dWs

−
∫ t∧τ

0
ψ(x + Ws)ds.

Taking expectations, we get

Eu(x + Wt∧τ )− u(x) = −E
∫ t∧τ

0
ψ(x + Ws)ds.
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Proof of Example 6, ctd.

Recalling that supx Exτ <∞ and letting t →∞, we have
due to continuity of u, W and the integral wrt t and by virtue
of Lebesgue’s dominated convergence theorem,

Eu(x + Wτ )− u(x) = −E
∫ τ

0
ψ(x + Ws)ds,

or, equivalently,

u(x) = Eψ(x + Wτ ) + E
∫ τ

0
ψ(x + Ws)ds,

as required.



SDEs
introduction

Heat equation

Laplace
equation

Poisson
equation

Example 7
Poisson equation with a potential c(·)

Let D be a bounded domain in Rd . Consider the Poisson
equation with a (variable) potential 0 ≤ c(x) ∈ C(D̄)

1
2

∆u(x)− c(x)u(x) = −ψ(x), x ∈ D, & u(x)|Γ = φ(x).

Denote κ(t) :=
∫ t

0 c(x + Ws)ds. Recall that Dc := Rd \ D,
τ := inf(t ≥ 0 : x + Wt ∈ Dc).

Example (7)

Let u(x) ∈ C2
b(D̄) be a solution of the Poisson equation with

φ ∈ C(Γ), ψ ∈ C(D̄). Then u(x) in D can be represented as

u(x) = E [

∫ τ

0
e−κ(s)ψ(x + Ws)ds + e−κ(τ)φ(x + Wτ )].



SDEs
introduction

Heat equation

Laplace
equation

Poisson
equation

Proof of Example 7
κ(t) :=

∫ t
0 c(x + Ws)ds

By Ito’s formula,

de−κ(t)u(x + Wt ) = e−κ(t)∇u(x + Wt )dWt

+e−κ(t)[
1
2

∆u(x + Wt )− c(x + Wt )u(x + Wt )]dt

= e−κ(t)∇u(x + Wt )dWt − e−κ(t)ψ(x + Wt )dt .

So, in the integral form with a stopping time,

e−κ(t∧τ)u(x + Wt∧τ )− u(x) =

∫ t∧τ

0
e−κ(s)∇u(x + Ws)dWs

−
∫ t∧τ

0
e−κ(s)ψ(x + Ws)ds.

Taking expectations, we get

Ee−κ(t∧τ)u(x + Wt∧τ )− u(x) = −E
∫ t∧τ

0
e−κ(s)ψ(x + Ws)ds.
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Proof of Example 7, ctd.
κ(t) :=

∫ t
0 c(x + Ws)ds

From the equation

Ee−κ(t∧τ)u(x + Wt∧τ )− u(x) = −E
∫ t∧τ

0
e−κ(s)ψ(x + Ws)ds,

by letting t →∞, we obtain due to continuity of all terms in
t , because of supx Eτ <∞, and by virtue of the Lebesgue
dominated convergence theorem,

Ee−κ(τ)u(x + Wτ )− u(x) = −E
∫ τ

0
e−κ(s)ψ(x + Ws)ds,

or, equivalently,

u(x) = Ee−κ(τ)u(x + Wτ ) + E
∫ τ

0
e−κ(s)ψ(x + Ws)ds,

as required. Note that the condition c ≥ 0 was essential.
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Remark on the case d = 1

From the above it follows why it is useful to solve explicitly
one-dimensional second order ODEs (also known as 1D
"partial" elliptic differential equations of order 2, although,
there is no really partial derivatives in this case; however, for
1D parabolic equations the name "partial" is genuine):

u′′(x) + b(x)u′(x) = 0,

u′′(x) + b(x)u′(x) = −f (x),

u′′(x) + b(x)u′(x)− c(x)u(x) = 0,

with various boundary conditions. We will use some explicit
solutions for such 1D equations later in this course. Explicit
formulae (for the "elliptic" 1D case) can be found in many
sourses, e.g., in [I.I. Gikhman, A.V. Skorokhod, Stochastic
differential equations, Kiev, Naukova Dumka, 1968].
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Extensions?
From WP to SDE solutions; from ∆ to elliptic operators of the 2nd order.

After we establish Markov and strong Markov property of
solutions of SDEs, we will be able to extend this analysis to
more general operators of the second order, parabolic and
elliptic.

It is not the goal of this short course, but a similar analysis
may be extended also to (strong) Markov "diffusions with
jumps", which is the name used for solutions of SDEs driven
by WP and Lévy processes. They correspond to
integro-differential equations instead of PDEs; also there is
a link to fractional Laplacians.

Also there are differential operators with other boundary
conditions; this is a more difficult topic and not in the scope
of this course.
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