Introduction to stochastic differential equations

Alexander Veretennikov ${ }^{1}$ Spring 2020

April 10, 2020
${ }^{1}$ National Research University HSE, Moscow State University, Russia online mini-course

Abstract

strong solutions are wanted under Lipschitz condition

A stochastic differential equation in \mathbb{R}^{d} is considered

$$
\begin{equation*}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, t \geq 0, \quad X_{0}=x_{0} \tag{1}
\end{equation*}
$$

Or, equivalently in the integral form,

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \tag{2}
\end{equation*}
$$

Here $\left(W_{t}, \mathcal{F}_{t}\right)$ is a standard d-dimensional Wiener process, b and σ are vector and matrix Borel functions of corresponding dimensions d and $d \times d$. The initial value x_{0} may be non-random, or random but \mathcal{F}_{0}-measurable.

Ito isometry, 2D version

Reminder in 1D: $E\left(\int_{0}^{T} f_{t} d W_{t}\right)^{2}=E \int_{0}^{T} f_{t}^{2} d t$

SDEs introduction

Ito Theorem

Equivalently in 1D,

$$
E\left(\left(\int_{0}^{T} f_{t} d W_{t}\right) \times\left(\int_{0}^{T} g_{t} d W_{t}\right)\right)=E \int_{0}^{T} f_{t} g_{t} d t
$$

For two independent WP, W^{1} and W^{2},

$$
E\left(\left(\int_{0}^{T} f_{t} d W_{t}^{1}\right) \times\left(\int_{0}^{T} g_{t} d W_{t}^{2}\right)\right)=0 .
$$

Both identities can be written in a unified formula,

$$
E\left(\left(\int_{0}^{T} f_{t} d W_{t}^{i}\right) \times\left(\int_{0}^{T} g_{t} d W_{t}^{j}\right)\right)=\delta_{i j} E \int_{0}^{T} f_{t} g_{t} d t .
$$

Ito isometry, multidimensional version

Reminder: $E\left(\left(\int_{0}^{T} f_{t} d W_{t}^{i}\right) \times\left(\int_{0}^{T} g_{t} d W_{t}^{j}\right)\right)=\delta_{i j} E \int_{0}^{T} f_{t} g_{t} d t$.

SDEs introduction

For a $d \times d$ matrix-valued process $g_{t}=\left(g_{t}^{i j}\right)$ and a d-dimensional WP let us consider a SI $\lg =\int_{0}^{T} g_{t} d W_{t}$.

$$
\begin{array}{r}
E\left|\int_{0}^{T} g_{t} d W_{t}\right|^{2}=\sum_{i} E\left|\sum_{j} \int_{0}^{T} g_{t}^{i j} d W_{t}^{j}\right|^{2} \\
=\sum_{i} \sum_{j} E \int_{0}^{T}\left|g_{t}^{i j}\right|^{2} d t=E \int_{0}^{T} \sum_{i} \sum_{j}\left|g_{t}^{i j}\right|^{2} d t \\
=E \int_{0}^{T}\left\|g_{t}\right\|^{2} d t \stackrel{\text { also }}{=} E \int_{0}^{T} \operatorname{Tr}\left(g g_{t}^{*}\right) d t .
\end{array}
$$

Here g^{*} is a transposed matrix (adjoint operator) and $\|g\|$ is its "Euclidean norm",

$$
\|g\|=\sqrt{\sum_{i j}\left|g^{i j}\right|^{2}}
$$

Lipschitz coefficients, uniqueness

$$
\begin{equation*}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, t \geq 0, \quad X_{0}=x_{0} \tag{1}
\end{equation*}
$$

SDEs introduction

Ito Theorem

Theorem (Ito)

Assume that there exists $c>0$ such that for any t, x, x^{\prime},

$$
\begin{array}{ll}
\qquad\left|b(t, x)-b\left(t, x^{\prime}\right)\right|+\left\|\sigma(t, x)-\sigma\left(t, x^{\prime}\right)\right\| \leq C\left|x-x^{\prime}\right|, \\
\text { and } & |b(t, x)|+\|\sigma(t, x)\| \leq C(1+|x|) .
\end{array}
$$

Then there is no more than one solution of the equation (??).

Proof. Suppose there are two solutions X_{t} and Y_{t}. We have,

$$
\begin{aligned}
& \left|X_{t}-Y_{t}\right|^{2} \leq 2\left|\int_{0}^{t}\left(b\left(s, X_{s}\right)-b\left(s, Y_{s}\right)\right) d s\right|^{2} \\
& \quad+2\left|\int_{0}^{t}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, Y_{s}\right)\right) d W_{s}\right|^{2}
\end{aligned}
$$

$\left((a+b)^{2} \leq 2 a^{2}+2 b^{2}\right)$

Lipschitz uniqueness, proof $d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, t \geq 0, \quad X_{0}=x_{0} \quad(1) . \quad$ Hence,

$$
\begin{array}{r}
E\left|X_{t}-Y_{t}\right|^{2} \leq 2 E\left|\int_{0}^{t}\right| b\left(s, X_{s}\right)-b\left(s, Y_{s}\right)|d s|^{2} \\
+2 E \int_{0}^{t} \operatorname{Tr}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, Y_{s}\right)\right)\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, Y_{s}\right)\right)^{*} d s \\
\leq C E\left|\int_{0}^{t}\right| X_{s}-Y_{s}|d s|^{2} \\
+C E \int_{0}^{t} \operatorname{Tr}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, Y_{s}\right)\right)\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, Y_{s}\right)\right)^{*} d s \\
\leq(C+C t) \int_{0}^{t} E\left|X_{s}-Y_{s}\right|^{2} d s
\end{array}
$$

Since $\sup _{s \leq t} E\left|X_{s}-Y_{s}\right|^{2} \leq 2\left(\sup _{s \leq t} E\left(\left|X_{s}\right|^{2}+\left|Y_{s}\right|^{2}\right)\right)<\infty$, now Gronwall's (Grönwall's) inequality implies $E\left|X_{t}-Y_{t}\right|^{2}=0$, and $P\left(X_{t}=Y_{t}, \forall t \geq 0\right)=1$, as required.

Lipschitz coefficients, existence

 $d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, t \geq 0, \quad X_{0}=x_{0}$SDEs introduction

Ito Theorem

Theorem (Ito)

Assume that there exists $c>0$ such that for any t, x, x^{\prime},

$$
\begin{array}{ll}
\qquad\left|b(t, x)-b\left(t, x^{\prime}\right)\right|+\left\|\sigma(t, x)-\sigma\left(t, x^{\prime}\right)\right\| \leq C\left|x-x^{\prime}\right|, \\
\text { and } & |b(t, x)|+\|\sigma(t, x)\| \leq C(1+|x|) .
\end{array}
$$

Then there is a solution of the equation (??).
Proof. The proof will use successive approximations. Let $X_{t}^{0}:=x_{0}, t \geq 0$. Given $X_{t}^{n}, t \geq 0$, let

$$
X_{t}^{n+1}:=x_{0}+\int_{0}^{t} b\left(s, X_{s}^{n}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{n}\right) d W_{s}
$$

Let us consider the difference $X_{t}^{n+1}-X_{t}^{n}$. We have, similarly to the calculus in the uniqueness theorem,

Proofs

$$
(a+b)^{2} \leq 2 a^{2}+2 b^{2}
$$

$$
\begin{aligned}
\left|X_{t}^{n+1}-X_{t}^{n}\right|^{2} & \leq 2\left|\int_{0}^{t}\left(b\left(s, X_{s}^{n}\right)-b\left(s, X_{s}^{n-1}\right)\right) d s\right|^{2} \\
& +2\left|\int_{0}^{t}\left(\sigma\left(s, X_{s}^{n}\right)-\sigma\left(s, X_{s}^{n-1}\right)\right) d W_{s}\right|^{2}
\end{aligned}
$$

So, with some $C_{t}=C+C t$,

$$
\begin{array}{r}
E\left|X_{t}^{n+1}-X_{t}^{n}\right|^{2} \leq 2 E\left|\int_{0}^{t}\left(b\left(s, X_{s}^{n}\right)-b\left(s, X_{s}^{n-1}\right)\right) d s\right|^{2} \\
+2 E\left|\int_{0}^{t}\left(\sigma\left(s, X_{s}^{n}\right)-\sigma\left(s, X_{s}^{n-1}\right)\right) d W_{s}\right|^{2} \\
\quad \leq C_{t} E \int_{0}^{t}\left|X_{s}^{n}-X_{s}^{n-1}\right|^{2} d s
\end{array}
$$

SDEs introduction

Ito Theorem
Moreover, by using Doob's inequality for stochastic integrals we also have (with different constants $C_{T}>0$ on different lines)

$$
\begin{array}{r}
E \sup _{t \leq T}\left|X_{t}^{n+1}-X_{t}^{n}\right|^{2} \leq 2 E \sup _{t \leq T}\left|\int_{0}^{t}\left(b\left(s, X_{s}^{n}\right)-b\left(s, X_{s}^{n-1}\right)\right) d s\right|^{2} \\
+2 E \sup _{t \leq T}\left|\int_{0}^{t}\left(\sigma\left(s, X_{s}^{n}\right)-\sigma\left(s, X_{s}^{n-1}\right)\right) d W_{s}\right|^{2} \\
\leq C_{T} E \int_{0}^{T}\left|X_{s}^{n}-X_{s}^{n-1}\right|^{2} d s \stackrel{(<\infty)}{\leq} C_{T} \int_{0}^{T} E \sup _{t \leq s}\left|X_{t}^{n}-X_{t}^{n-1}\right|^{2} d s .
\end{array}
$$

Denoting $a_{T}^{n}:=E \sup _{t \leq T}\left|X_{t}^{n+1}-X_{t}^{n}\right|^{2}$, by induction we get,

$$
0 \leq a_{T}^{n} \leq \frac{C_{T}^{n} a_{T}^{0}}{n!}
$$

Clearly, the series $\sum_{n} a_{T}^{n}$ converges. Let us estimate the probability

$$
P\left(\sup _{t \leq T}\left|X_{t}^{n+1}-X_{t}^{n}\right| \geq 2^{-n}\right) \leq 4^{n} a_{T}^{n} \leq \frac{\left(4 C_{T}\right)^{n} a_{T}^{0}}{n!}
$$

So, by the Borel - Cantelli lemma, with probability one for all n starting with some $n_{0}(\omega)$,

$$
\sup _{t \leq T}\left|X_{t}^{n+1}-X_{t}^{n}\right|<2^{-n}
$$

This implies that the following object is well-defined in $L_{2}(\Omega \times[0, T], P \times \Lambda)$ and simultaneously in $C([0, T]$ a.s. in $\omega:$

$$
X_{t}:=X_{t}^{0}+\sum_{n \geq 0}\left(X_{t}^{n+1}-X_{t}^{n}\right)
$$

Moreover, there is a uniform in $t \in[0, T]$ convergence

$$
X_{t}^{n+1}=X_{t}^{0}+\sum_{k=0}^{n}\left(X_{t}^{k+1}-X_{t}^{k}\right) \rightrightarrows X_{t}, \quad n \rightarrow \infty
$$

We are now able to pass to the limit in the equation

$$
X_{t}^{n+1}:=x_{0}+\int_{0}^{t} b\left(s, X_{s}^{n}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{n}\right) d W_{s}
$$

which, of course, results in the limiting version of it,

$$
X_{t}:=x_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}
$$

as required.

SDEs

To justify this limiting equation, we firstly note that the process X_{t} is $\left(\mathcal{F}_{t}\right)$-adapted, along with all X^{n}. Now, in the right hand side we clearly have $X_{t}^{n+1} \rightarrow X_{t}$ a.s. (and even uniformly in $t \leq T$).
If the drift b is, actually, bounded, then we immediately obtain convergence a.s.

$$
\int_{0}^{t} b\left(s, X_{s}^{n}\right) d s \rightarrow \int_{0}^{t} b\left(s, X_{s}\right) d s, \quad n \rightarrow \infty
$$

from the Lebesgue's bounded convergence theorem. Under the more relaxed linear growth condition on b the same result for this Lebesgue integral follows from the a priori bounds (uniform in n, by induction, and for X_{t}, too)

$$
\sup _{t \leq T} E\left|X_{t}^{n}\right|^{2}<\infty
$$

This exercise is left as a homework to the readers.

SDEs

Finally, similarly, but now with the help of the Ito isometry we obtain convergence

$$
\int_{0}^{t} \sigma\left(s, X_{s}^{n}\right) d W_{s}-\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \rightarrow 0, \quad n \rightarrow \infty
$$

straightforwardly in the case of bounded σ. Indeed,

$$
\begin{array}{r}
E\left|\int_{0}^{t}\left(\sigma\left(s, X_{s}^{n}\right)-\sigma\left(s, X_{s}\right)\right) d W_{s}\right|^{2} \\
\left.=E \int_{0}^{t} \| \sigma\left(s, X_{s}^{n}\right)-\sigma\left(s, X_{s}\right)\right) \|^{2} d s \rightarrow 0, \quad n \rightarrow \infty
\end{array}
$$

For unbounded σ the same convergence of stochastic terms follows from similar a priori bounds for the fourth moment,

$$
\sup _{t \leq T} E\left|X_{t}^{n}\right|^{4}<\infty
$$

(also left as a homework). The existence theorem is proved.

A priori moment bounds

Second moment

SDEs introduction

Ito Theorem

The estimate $\sup _{t \leq T} E\left|X_{t}\right|^{2}<\exp (C T) E x_{0}^{2}$ with some C would follow easily from Gronwall's inequality, if we only knew already that $E\left|X_{t}\right|^{2}<\infty$. Indeed, we have,

$$
\begin{aligned}
E\left|X_{T}\right|^{2} \leq & 3 E x_{0}^{2}+3 E \sup _{t \leq T}\left|\int_{0}^{t} b\left(s, X_{s}\right) d s\right|^{2} \\
& +3 E \sup _{t \leq T}\left|\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}\right|^{2} \\
\leq & 3 E x_{0}^{2}+C_{T} \int_{0}^{T}\left(1+E\left|X_{t}\right|^{2}\right) d t
\end{aligned}
$$

It remains to apply Gronwall's inequality. However, while applying it, we also need to know that both sides of the inequality are finite. This can be tackled by stopping times. Similar a priori bounds for $3 E\left(X_{0}^{n}\right)^{2}$ can be obtained by induction (homework).

Gronwall's inequality

SDEs introduction

Ito Theorem

If for a nonrandom function $a(t)$ the following holds true,

$$
0 \leq a(t) \leq C_{1}+C_{2} \int_{0}^{t} a(s) d s, \quad \forall 0 \leq t \leq T
$$

and either $\sup _{s \leq t} a(s)<\infty$ for all $t>0$, or, $\int_{0}^{t} a(s) d s<\infty$ for all t, then,

$$
\begin{array}{r}
a(t) \leq C_{1} \exp \left(C_{2} t\right), \quad t \leq T \\
a(t) \leq C_{1}+C_{2} \int_{0}^{t} a(s) d s \\
\leq C_{1}+C_{2} \int_{0}^{t}\left(C_{1}+C_{2} \int_{0}^{s} a\left(s_{2}\right) d s_{2}\right) d s \\
\leq C_{1}+C_{1} C_{2} t+C_{1} c_{2}^{2} \frac{t^{2}}{2!}+\ldots+C_{2}^{n}\|a\| \frac{t^{n}}{n!}
\end{array}
$$

Solution X_{t} can be written as

$$
X_{t}^{0, x_{0}} ; X_{t}^{s, x}(t \geq s)
$$

