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Abstract
strong solutions are wanted under Lipschitz condition

A stochastic differential equation in Rd is considered

dXt = b(t ,Xt )dt + σ(t ,Xt )dWt , t ≥ 0, X0 = x0, (1)

Or, equivalently in the integral form,

Xt = x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs. (2)

Here (Wt ,Ft ) is a standard d-dimensional Wiener process,
b and σ are vector and matrix Borel functions of
corresponding dimensions d and d × d . The initial value x0
may be non-random, or random but F0-measurable.
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Ito isometry, 2D version
Reminder in 1D: E(

∫ T
0 ftdWt)

2 = E
∫ T

0 f 2
t dt

Equivalently in 1D,

E

(
(

∫ T

0
ftdWt )× (

∫ T

0
gtdWt )

)
= E

∫ T

0
ftgtdt .

For two independent WP, W 1 and W 2,

E

(
(

∫ T

0
ftdW 1

t )× (

∫ T

0
gtdW 2

t )

)
= 0.

Both identities can be written in a unified formula,

E

(
(

∫ T

0
ftdW i

t )× (

∫ T

0
gtdW j

t )

)
= δijE

∫ T

0
ftgtdt .
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Ito isometry, multidimensional version
Reminder: E

(
(
∫ T

0 ftdW i
t )× (

∫ T
0 gtdW j

t )
)
= δijE

∫ T
0 ftgtdt .

For a d × d matrix-valued process gt = (g ij
t ) and a

d-dimensional WP let us consider a SI Ig =
∫ T

0 gtdWt .

E

∣∣∣∣∣
∫ T

0
gtdWt

∣∣∣∣∣
2

=
∑

i

E

∣∣∣∣∣∣
∑

j

∫ T

0
g ij

t dW j
t

∣∣∣∣∣∣
2

=
∑

i

∑
j

E
∫ T

0
|g ij

t |
2dt = E

∫ T

0

∑
i

∑
j

|g ij
t |

2dt

= E
∫ T

0
‖gt‖2dt also

= E
∫ T

0
Tr(gg∗t )dt .

Here g∗ is a transposed matrix (adjoint operator) and ‖g‖ is
its "Euclidean norm",

‖g‖ =

√∑
ij

|g ij |2.
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Lipschitz coefficients, uniqueness
dXt = b(t ,Xt)dt + σ(t ,Xt)dWt , t ≥ 0, X0 = x0 (1)

Theorem (Ito)

Assume that there exists c > 0 such that for any t , x , x ′,

|b(t , x)− b(t , x ′)|+ ‖σ(t , x)− σ(t , x ′)‖ ≤ C|x − x ′|,
and |b(t , x)|+ ‖σ(t , x)‖ ≤ C(1 + |x |).

Then there is no more than one solution of the equation
(??).

Proof. Suppose there are two solutions Xt and Yt . We have,

|Xt − Yt |2 ≤ 2|
∫ t

0
(b(s,Xs)− b(s,Ys))ds|2

+2|
∫ t

0
(σ(s,Xs)− σ(s,Ys))dWs|2.

((a + b)2 ≤ 2a2 + 2b2)
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Lipschitz uniqueness, proof
dXt = b(t ,Xt)dt + σ(t ,Xt)dWt , t ≥ 0, X0 = x0 (1). Hence,

E |Xt − Yt |2 ≤ 2E |
∫ t

0
|b(s,Xs)− b(s,Ys)|ds|2

+2E
∫ t

0
Tr(σ(s,Xs)− σ(s,Ys))(σ(s,Xs)− σ(s,Ys))∗ds

≤ CE |
∫ t

0
|Xs − Ys|ds|2

+CE
∫ t

0
Tr(σ(s,Xs)− σ(s,Ys))(σ(s,Xs)− σ(s,Ys))∗ds

≤ (C + Ct)
∫ t

0
E |Xs − Ys|2ds.

Since sups≤t E |Xs − Ys|2 ≤ 2(sups≤t E(|Xs|2 + |Ys|2)) <∞,
now Gronwall’s (Grönwall’s) inequality implies
E |Xt − Yt |2 = 0, and P(Xt = Yt , ∀t ≥ 0) = 1, as required.
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Lipschitz coefficients, existence
dXt = b(t ,Xt)dt + σ(t ,Xt)dWt , t ≥ 0, X0 = x0 (1)

Theorem (Ito)

Assume that there exists c > 0 such that for any t , x , x ′,

|b(t , x)− b(t , x ′)|+ ‖σ(t , x)− σ(t , x ′)‖ ≤ C|x − x ′|,
and |b(t , x)|+ ‖σ(t , x)‖ ≤ C(1 + |x |).

Then there is a solution of the equation (??).

Proof. The proof will use successive approximations. Let
X 0

t := x0, t ≥ 0. Given X n
t , t ≥ 0, let

X n+1
t := x0 +

∫ t

0
b(s,X n

s )ds +

∫ t

0
σ(s,X n

s )dWs.

Let us consider the difference X n+1
t − X n

t . We have,
similarly to the calculus in the uniqueness theorem,
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Proofs
(a + b)2 ≤ 2a2 + 2b2

|X n+1
t − X n

t |2 ≤ 2|
∫ t

0
(b(s,X n

s )− b(s,X n−1
s ))ds|2

+2|
∫ t

0
(σ(s,X n

s )− σ(s,X n−1
s ))dWs|2.

So, with some Ct = C + Ct ,

E |X n+1
t − X n

t |2 ≤ 2E |
∫ t

0
(b(s,X n

s )− b(s,X n−1
s ))ds|2

+2E |
∫ t

0
(σ(s,X n

s )− σ(s,X n−1
s ))dWs|2

≤ CtE
∫ t

0
|X n

s − X n−1
s |2ds.
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Moreover, by using Doob’s inequality for stochastic integrals
we also have (with different constants CT > 0 on different
lines)

E sup
t≤T
|X n+1

t − X n
t |2 ≤ 2E sup

t≤T
|
∫ t

0
(b(s,X n

s )− b(s,X n−1
s ))ds|2

+2E sup
t≤T
|
∫ t

0
(σ(s,X n

s )− σ(s,X n−1
s ))dWs|2

≤ CT E
∫ T

0
|X n

s − X n−1
s |2ds

(<∞)

≤ CT

∫ T

0
E sup

t≤s
|X n

t − X n−1
t |2ds.

Denoting an
T := E supt≤T |X n+1

t − X n
t |2, by induction we get,

0 ≤ an
T ≤

Cn
T a0

T
n!

.
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Clearly, the series
∑

n an
T converges. Let us estimate the

probability

P(sup
t≤T
|X n+1

t − X n
t | ≥ 2−n) ≤ 4nan

T ≤
(4CT )na0

T
n!

.

So, by the Borel – Cantelli lemma, with probability one for all
n starting with some n0(ω),

sup
t≤T
|X n+1

t − X n
t | < 2−n.

This implies that the following object is well-defined in
L2(Ω× [0,T ],P×Λ) and simultaneously in C([0,T ] a.s. in ω:

Xt := X 0
t +

∑
n≥0

(X n+1
t − X n

t ).
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Moreover, there is a uniform in t ∈ [0,T ] convergence

X n+1
t = X 0

t +
n∑

k=0

(X k+1
t − X k

t ) ⇒ Xt , n→∞.

We are now able to pass to the limit in the equation

X n+1
t := x0 +

∫ t

0
b(s,X n

s )ds +

∫ t

0
σ(s,X n

s )dWs,

which, of course, results in the limiting version of it,

Xt := x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs,

as required.
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To justify this limiting equation, we firstly note that the
process Xt is (Ft )-adapted, along with all X n. Now, in the
right hand side we clearly have X n+1

t → Xt a.s. (and even
uniformly in t ≤ T ).
If the drift b is, actually, bounded, then we immediately
obtain convergence a.s.∫ t

0
b(s,X n

s )ds →
∫ t

0
b(s,Xs)ds, n→∞,

from the Lebesgue’s bounded convergence theorem. Under
the more relaxed linear growth condition on b the same
result for this Lebesgue integral follows from the a priori
bounds (uniform in n, by induction, and for Xt , too)

sup
t≤T

E |X n
t |2 <∞.

This exercise is left as a homework to the readers.
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Finally, similarly, but now with the help of the Ito isometry we
obtain convergence∫ t

0
σ(s,X n

s )dWs −
∫ t

0
σ(s,Xs)dWs → 0, n→∞.

straightforwardly in the case of bounded σ. Indeed,

E |
∫ t

0
(σ(s,X n

s )− σ(s,Xs))dWs|2

= E
∫ t

0
‖σ(s,X n

s )− σ(s,Xs))‖2ds → 0, n→∞.

For unbounded σ the same convergence of stochastic terms
follows from similar a priori bounds for the fourth moment,

sup
t≤T

E |X n
t |4 <∞

(also left as a homework). The existence theorem is proved.
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A priori moment bounds
Second moment

The estimate supt≤T E |Xt |2 < exp(CT )Ex2
0 with some C

would follow easily from Gronwall’s inequality, if we only
knew already that E |Xt |2 <∞. Indeed, we have,

E |XT |2 ≤ 3Ex2
0 + 3E sup

t≤T
|
∫ t

0
b(s,Xs)ds|2

+3E sup
t≤T
|
∫ t

0
σ(s,Xs)dWs|2

≤ 3Ex2
0 + CT

∫ T

0
(1 + E |Xt |2)dt .

It remains to apply Gronwall’s inequality. However, while
applying it, we also need to know that both sides of the
inequality are finite. This can be tackled by stopping times.
Similar a priori bounds for 3E(X n

0 )2 can be obtained by
induction (homework).
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Gronwall’s inequality

If for a nonrandom function a(t) the following holds true,

0 ≤ a(t) ≤ C1 + C2

∫ t

0
a(s)ds, ∀0 ≤ t ≤ T ,

and either sups≤t a(s) <∞ for all t > 0, or,
∫ t

0 a(s)ds <∞
for all t , then,

a(t) ≤ C1 exp(C2t), t ≤ T .

a(t) ≤ C1 + C2

∫ t

0
a(s)ds

≤ C1 + C2

∫ t

0
(C1 + C2

∫ s

0
a(s2)ds2)ds

≤ C1 + C1C2t + C1c2
2

t2

2!
+ ...+ Cn

2‖a‖
tn

n!
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Solution Xt can be written as

X 0,x0
t ; X s,x

t (t ≥ s)
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