
SDEs
introduction

Markov–
Dobrushin’s
condition via
Girsanov

Introduction to stochastic differential
equations – 9

Multidimensional ergodic SDEs

Alexander Veretennikov1

Spring 2020

May 19, 2020

1National Research University HSE, Moscow State University, Russia
online mini-course



SDEs
introduction

Markov–
Dobrushin’s
condition via
Girsanov

Introduction
Xt = x +

∫ t
0 b(Xs)ds +

∫ t
0 σ(Xs)dWs, t ≥ 0

If in the 1D case we have used intersections of two
independent solutions of the same SDE with different initial
values, but how could we arrange it in dimension d > 1? A
simple version of the method of coupling will be presented
below for this aim. In a more general situation such a
method can be based on a parabolic version of Harnack’s
inequality shown very briefly in the end of the lecture, but it
is a little beyond the scope of this course.

For simplicity, we restrict our study to the case σ ≡ I, a unit
diffusion matrix. In this case (as well as in the
nondegenerate case!) it turns out that we may use
Girsanov’s transformation instead of Harnack. An
alternative simplified way would be to use PDE results on
the transition densities satisfying Gaussian type lower and
upper bounds [Solonnikov, Eidelman, Friedman]; it will be
also mentioned briefly in the end.
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Stochastic exponential; Markov – Dobrushin
Xt = x +

∫ t
0 b(Xs)ds + Wt , t ≥ 0; b bounded (could be linear growing in x)

Let ρT :=exp

(
−
∫ T

0
b(t ,Xt ) dWt−

1
2

∫ T

0
|b(t ,Xt )|2 dt

)
.

Recall that ρT is a probability density for any T > 0. Denote
by µt the marginal distribution of Xt .

Theorem (Markov – Dobrushin’s condition)

For any T > 0 and R > 0

κ(R,T ) := inf
x0,x1∈BR

∫
BR

(
µx0

T (dy)

µx1
T (dy)

∧ 1

)
µx1

T (dy) > 0. (1)

This inequality suffices for applications to coupling and
convergence rates (given suitable recurrence estimates). If
desirable, a localised version of it may be established.



SDEs
introduction

Markov–
Dobrushin’s
condition via
Girsanov

Proof
Xt = x +

∫ t
0 b(Xs)ds + Wt , t ≥ 0

Note that µx
T (dy) << dy , and

µx
T (dy)

dy
> 0 a.e. (2)

Indeed, let us denote µx ,ρ
T (dy) := Eρx1(XT ∈ dy); then

µx
T (A) = Eρxρ−11(XT ∈ A) = Eρx1(XT ∈ A)Eρx (ρ−1|XT ); so,

µx
T (dy)

dy
!

=
Eρx1(XT∈dy)Eρx (ρ−1|XT )

dy
!

=
µx ,ρ

T (dy)

dy
Ex (ρ−1

T |XT )|XT=y

Here both µρT (x ; dy)/dy and E(ρ−1
T | XT )|XT =y are positive:

the second one a.s. since 0 < ρ−1 <∞, while the first one
because it is a nondegenerate Gaussian density. So, (1)
may be rewritten as

inf
x0,x1∈BR

∫
BR

(
µx0

T (dy)

dy
∧
µx1

T (dy)

dy

)
dy > 0. (3)
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Proof, ctd

Let L > 0, and consider the (sub-probability) density

µx0,L
T (dy)

dy
:=

Ex01(XT ∈ dy) 1(ρT > L)

dy
.

Here µx0,L
T (dy) is absolutely continuous wrt Lebesgue’s

measure dy since it is dominated by µx0
T (dy). The r.v. ρT is

a probability density. So, we can denote

µx0
T (dy)

dy
≡

Eρx0
ρ−11(XT ∈ dy)

dy
=: px0(y ; T ),

µρT ;x0
(dy)

dy
≡

Eρx0
1(XT ∈ dy)

dy
=: pρx0

(y ; T ),

µL
T ;x0

(dy)

dy
=

Eρx0
1(XT ∈ dy) 1(ρT > L)

dy
=: pL

x0
(y ; T ).
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Proof, ctd

Since ρ−1
T ≥ L−1 on the set (ρT ≤ L), we get

µx0
T (dy)

dy
=
Eρx0

ρ−1
T 1(XT ∈dy) 1(ρT ≤L)

dy

+
Eρx0

ρ−1
T 1(XT ∈dy) 1(ρT >L)

dy

≥
Eρx0

ρ−1
T 1(XT ∈dy) 1(ρT ≤L)

dy

=
Eρx0

ρ−1
T 1(XT ∈ dy) (1− 1(ρT > L))

dy
≥

≥ L−1 Eρx0
1(XT ∈ dy) (1− 1(ρT > L))

dy
≥

≥ L−1
(Eρx0

1(XT ∈ dy)

dy
−

Eρx0
1(XT ∈ dy) 1(ρT > L)

dy

)
.



SDEs
introduction

Markov–
Dobrushin’s
condition via
Girsanov

Proof, ctd
pρx0(y ;T ) =

1
(2πT )d/2 exp(− (x0 − y)2

2T
)

We estimate,

µx0
T (dy)

dy
≥L−1

(Eρx0
1(XT ∈ dy)

dy
−
Eρx0

1(XT ∈ dy) 1(ρT > L)

dy

)
= L−1

(
1

(2πT )d/2 exp(−(x0 − y)2

2T
)− pL

x0
(y ; T )

)
.

Using the elementary inequality with b,d ≥ 0

(a− b) ∧ (c − d) ≥ (a ∧ c)− b − d ,

((a−b)∧ (c−d) ≥ (a−b−d)∧ (c−b−d) = (a∧c)−b−d)
we obtain (on the next page),
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Proof, ctd
pρx0(y ;T ) =

1
(2πT )d/2 exp(− (x0 − y)2

2T
)

κ(R,T ) := inf
x0,x1∈BR

∫
BR

(
µx0

T (dy)

µx1
T (dy)

∧ 1

)
µx1

T (dy)

= inf
x0,x1∈BR

∫
BR

(
µx0

T (dy)

dy
∧
µx1

T (dy)

dy

)
dy

≡ inf
x0,x1∈BR

∫
BR

(px0(y ; T ) ∧ px1(y ; T )) dy

≥ inf
x0,x1∈BR

∫
BR

L−1 (pρx0
(y ; T ) ∧ pρx1

(y ; T )

−pL
x0

(y ; T )− pL
x1

(y ; T )
)

dy

≥ L−1

(
inf

x ,x ′∈BR
pρx (x ′; T ) |BR| − 2 sup

x∈BR

Pρx (ρT > L)

)
.

NB: clearly, inf
∫

BR
p ∧ p ≥ inf p |BR | is not a very precise bound.
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Proof, ctd L−1
(
infx,x ′∈BR pρx (x ′; T ) |BR | − 2 supx∈BR

Pρx (ρT > L)
)

Remark about M-D condition with and without a drift for σσ∗ nondegenerate

The latter bound inf
∫

BR
p ∧ p ≥ inf p |BR | was not very precise. In

fact, a bit more general statement holds true. Let

κ0(R,T ) := inf
x0,x1∈BR

∫
BR

(
µρT ,x0

(dy)

µρT ,x1
(dy)

∧ 1

)
µρT ,x1

(dy).

Remark (dXt = b(Xt )dt + σ(Xt )dWt )

Under the nondegeneracy of σσ∗, if κ0(R,T )>0, then κ(R,T )>0.

Indeed, from the last calculus repeated with σ and with the
reference measure µx0

T (dy) + µx1
T (dy) instead of Lebesgue’s one,

it follows,

κ(R,T ) ≥ L−1
(
κ0(R,T )− 2 sup

x∈BR

Pρx (ρT > L)

)
,

which may be made > 0 by choosing L large enough.
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Proof, ctd L−1
(
infx,x ′∈BR pρx (x ′; T ) |BR | − 2 supx∈BR

Pρx (ρT > L)
)

No "petite sets" condition for SDEs with irregular coefficients

The second term sup P(...) admits the upper bound

sup
x0∈BR

Pρx0
(ρT ≥ L) ≤

supx0∈BR
Eρx0

ρT

L
,

where the numerator in the right hand side is bounded and
the denominator can be made arbitrarily large. The value

inf
x ,x ′∈BR

pρx (x ′; T ) |BR| (in the last line on the previous slide)

does not depend on L. Hence, (1) holds, as required. QED

Note that a popular condition for an MC Xn coupling is a
+recurrence towards a so called "petite set" D with a probability
measure ν on it such that on this set D all transition kernels satisfy
P(x ,dy) ≥ c ν(dy) with c > 0. For SDEs this condition may only
be checked under the condition (4) on the next page, or under a
similar condition wrt some other reference measure Λ, but except
for Lebesgue’s one, sufficient conditions are not known to me.
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Other approaches to check condition (1)
Markov – Dobrushin’s condition via positive density & Harnack

The simplest way to verify the condition (1)

κ(R,T ) := inf
x0,x1∈BR

∫
BR

(
µx0

T (dy)

µx1
T (dy)

∧ 1

)
µx1

T (dy) > 0,

is if there is a property of the transition density of X :
∃R > 0 such that

0<a1≤ inf
x ,x ′∈BR

pt (x , x ′)≤ sup
x ,x ′∈BR

pt (x , x ′)≤a2<∞, (4)

for some t . It holds, e.g., if b and σ are bounded and
Hölder’s continuous in x uniformly wrt t and σσ∗ is
nondegenerate, as this implies Gaussian type lower
and upper bounds on pt . Similar bounds hold true also
for some degenerate σ under so called Hörmander’s
type non-degeneracy (hypo-ellipticity) conditions. Refs:
[Solonnikov; Eidelman; Friedman] (for σσ∗ non-denegerate).
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Parabolic Harnack inequality
implies some version of Markov – Dobrushin’s condition (simplified)

A more advanced tool is a parabolic Harnack inequality
(under the non-degeneracy of σσ∗ condition), which in
the probabilistic terms may be written as follows (with
some slight changes from [Krylov, Safonov, 1980]):

sup
|x1|≤1/4,|x2|≤1/2

P(X 0,x1
τ ∈ dγ)

P(X ε,x2
τ ∈ dγ)

|Γε ≤ N <∞, (5)

where Γε is the parabolic boundary of the cylinder
((t , x) : |x | ≤ 1; ε ≤ t ≤ 1), i.e. (Γε = Γ

(t=1)
ε ∪ Γ

(t<1)
ε ),

Γε = ((t , x) : (|x | = 1&ε ≤ t ≤ 1) ∪ (|x | ≤ 1&t = 1)). Let
µ1(dγ) = P(X 0,x1

τ ∈ dγ), µ2(dγ) = P(X ε,x2
τ ∈ dγ). Then

µ1(|x | = 1&t = 1) ∧ µ2(|x | = 1&t = 1) ≥ q > 0, so a
version of Markov-Dobrushin’s condition holds,

inf
|x1|≤1/4,|x2|≤1/2

∫
Γ

(t=1)
ε

(
µ1(dγ)

µ2(dγ)
∧ 1
)
µ2(dγ) ≥ q

N
> 0.
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Embedded Markov chain for SDE

Denote Zn := Xn. It is a Markov and strong Markov process,
and it is recurrent if Xt is. Suppose we are able to estimate

‖µZ
n − µZ‖TV ≤ φ(x ,n)→ 0, n→∞. (6)

Let us show what it means for the process (Xt , t ≥ 0).
Firstly, if we already know that there exists a unique
invariant measure for Xt , then it coincides with the one for
Xn = Zn. Hence,

µZ = µX =: µ.

Further, we shall show that for any t ≥ n,

‖µX
t − µX‖TV ≤ ‖µX

n − µX‖TV . (7)

So, whatever already established bound (6) for discrete time
MC Zn implies a very close bound for the continuous time
process Xt . It remains to notice that if X is recurrent, then Z
is also recurrent with very close recurrence properties.
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Proof of (7): ‖µX
t − µX‖TV ≤ ‖µX

n − µX‖TV .
Proof is based on the markovian property

Lemma

‖µX
t − µX‖TV ≤ ‖µX

n − µX‖TV , t ≥ n.

(Here µX is the invariant measure for the process X.)

Proof. By Markov’s property of X (or, more precisely due to
the Chapman – Kolmogorov’s equation),

1
2
‖µX

t − µX‖TV = sup
A

(Px (Xt ∈ A)− Pµ(Xt ∈ A))

= sup
A

∫
1(z ∈ A)(Px (Xn ∈ dy)− Pµ(Xt ∈ dy))Py (Xt−n ∈ dz)

≤ 1
2
‖µX

n − µX‖TV , as required. QED
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Convergence rate implied by Xn suffices
i.e., consider the process Xt only at integer times

Hence, with a very small discrepancy, to verify some rate of
convergence for Xt it suffices to establish this rate of
convergence for the process Xn, that is, only at integer
times. Indeed, if, say,

‖µX
x ,n − µX‖TV ≤ φ(x)ψ(n)→ 0, n→∞,

then it follows from the lemma that

‖µX
x ,t − µX‖TV ≤ φ(x)ψ([t ])→ 0, t →∞.

Usually, in such bounds ψ([t ]) and ψ(t) differ a little,
providing practically the same rate of convergence.
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Markov – Dobrushin’s condition
and "markovian coupling" leading to bounds for convergence rate

Now, instead of verifying convergence rate for Xt , we are
going to show how to establish it for Xn, that is, only at
integer times t = n, assuming that we may check Markov –
Dobrushin’s condition

κ(R,T ) := inf
x0,x1∈BR

∫
BR

(
µx0

T (dy)

µx1
T (dy)

∧ 1

)
µx1

T (dy) > 0,

combined with a "good recurrence": namely, we assume for
simplicity any polynomial moment

Exτ
m
R ≤ C(1 + |x |m)

for the hitting time τR := inf(t ≥ 0 : |Xt | ≤ R), where ∀k ≥ 1
∃C > 0,m > 0. The diffusion σσ∗ is assumed uniformly
nondegenerate, and both b and σ bounded. The unique
invariant measure µ exists; we want to estimate the rate.
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Markovian coupling

For simplicity in the sequel we assume that for all x0, x1 the
measures µx0

T (dy), µx1
T (dy) are not singular and not equal;

moreover (for simplicity!), that

0 < κ(R,T ) = inf
x0,x1∈BR

∫
BR

(
µx0

T (dy)

µx1
T (dy)

∧ 1

)
µx1

T (dy)

≤ sup
x0,x1∈BR

∫
BR

(
µx0

T (dy)

µx1
T (dy)

∧ 1

)
µx1

T (dy) < 1.

Then we may couple (or, try to couple) X0 and Y0 by using
the coupling lemma (see next two pages); at each further
step, if the processes are not yet coupled (and then one
joins the other forever), we try to couple them again if they
are both in BR chosen in advance. If both are on BR, then
coupling is always possible with a probability ≥ κ(T ; R).
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Reminder from lecture 8: Coupling lemma
(Lemma on two r.v.)

Lemma (“Of two random variables”)

Let X 1 and X 2 be two random variables on their (without
loss of generality different, which will be made independent
after we take their direct product) probability spaces
(Ω1,F1,P1) and (Ω2,F2,P2) and with densities p1 and p2

with respect to some reference measure Λ, correspondingly.
Then, if

1− p := q =

∫ (
p1(x) ∧ p2(x)

)
Λ(dx) > 0,

then there exists one more probability space (Ω,F ,P) and
two random variables on it X̃ 1, X̃ 2 such that

L(X̃ j)=L(X j), j =1,2, &
‖L(X 1)−L(X 2)‖TV

2
!

=P(X̃ 1 6= X̃ 2)=p.

This is a well-known technical tool in the coupling method.
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Reminder from lecture 8: Proof of Coupling Lemma
Assume q < 1, otherwise the Lemma is trivial

Let r.v. η1, η2, ξ, have the following densities:

pη1(t) = (1− q)−1
(

p1(t)− p1(t) ∧ p2(t)
)
,

pη2(t) = (1− q)−1
(

p2(t)− p1(t) ∧ p2(t)
)
,

pξ(t) = q−1
(

p1(t) ∧ p2(t)
)
.

Let ζ be a random variable independent of η1, η2 and ξ
taking values in {0,1} such that

P(ζ = 0) = q, P(ζ = 1) = 1− q.

Assume that q 6= 0 and q 6= 1 and let

X̃ 1 := η11(ζ = 1) + ξ1(ζ = 0),

X̃ 2 := η21(ζ = 1) + ξ1(ζ = 0).

Then X̃ 1 d
= X 1, X̃ 2 d

= X 2, and P(X̃ 1 = X̃ 2) = q, QED.
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Coupling, an easy example
time discrete

Let (ξn) be Bernoulli trials, P(ξn = 0) = p, P(ξn = 1) = q,
p + q = 1,0 < q < 1. Assume our MC (Xn) is, in fact, a
sequence of random variables X0 = 1,

Xn = Xn−11(ξn = 1), n ≥ 1.

This is a MC with a unique stationary distribution µ = δ0
(homework). Consider its stationary version Yn = 0,n ≥ 0.
We have,

‖µX
n − µ‖ = 2 sup

A
(P(Xn ∈ A)− P(Yn ∈ A))

Since the state space S = {0; 1} here, take A = {1}. Then

P(Xn = 1)− P(Yn = 1) = P(Xn = 1) = P(
⋂
k≤n

(ξk = 1))

=
∏
k≤n

P(ξk =1)=qn =⇒ ‖µX
n −µ‖TV =2qn→0,n→∞.
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Markovian coupling, ctd; assume T = 1
Now Xt is a solution of our SDE, consider it at integer times Xn; the idea

Assume there exists a stationary measure, and Yn is a
stationary version of our MC. If not coupled earlier, on each
step n 7→ n + 1 where both Xn,Yn ∈ BR, by applying the
coupling lemma we couple them on this transition with
probability at least κ(1; R). So, probability of no coupling
after n steps is at most

(1− κ(1; R))k ,

where k (random) is the number of integer times t = 0, . . .n
where both Xt ,Yt ∈ BR. Of course, we prefer to have a
deterministic bound; nevertheless, note that this random
number as a function of n is growing approximately linearly,
due to some version of a LLN (specified below). So, let us
use the LLN and appropriate bounds in its statement.
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LLN for recurrent process (Xt ,Yt)
Idea: P(no coupling after n steps)

<
≈ (1− κ(1;R))k ; what is known of k?

Let

T1 =τR =inf(t≥0 :Xt ,Yt ∈BR),Tn+1 :=inf(t>Tn : Xt ,Yt ∈BR).

Lemma (LLN for Tn)

Under the assumptions

ExτR <∞ & sup
|x |=R+1

ExτR <∞,

the following convergence holds true (µ is the invariant
measure),

Tn

n
P→ κ = Eµ(T2 − T1).

Clearly, κ ≥ 1 > 0. So, we may expect k ≈ n/κ.
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LLN bounds P(no coupling after n steps)
<
≈ (1− κ(1; R))k

k ≈ n/κ; but it may not lead to an exponential rate of convergence

In fact, we have now to split unit as

1 = 1(k < (κ−1 − δ)n) + 1(k ≥ (κ−1 − δ)n).

Then it follows (Y is an independent from X stationary
version of the process)

|Px (Xn ∈ A)− µ(A)| = |Ex1(Xn ∈ A)− Eµ(Yn ∈ A)|
≤ |Ex ,µ(1(Xn ∈ A)− 1(Yn ∈ A))1(k < (κ−1 − δ)n)|
+|Ex ,µ(1(Xn ∈ A)− 1(Yn ∈ A))1(k ≥ (κ−1 − δ)n)|

≤ (1− κ(1; R))(κ−1−δ)n

+|Ex ,µ(1(Xn ∈ A)− 1(Yn ∈ A))1(k < (κ−1 − δ)n)|

≤ (1− κ(1; R))(κ−1−δ)n + Ex ,µ1(k < (κ−1 − δ)n).

It remains to evaluate the last term as n→∞.
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Proof, ctd. here k = k(n)
It remains to evaluate the term Ex,µ1(k < (κ−1 − δ)n) as n→∞

The LLN for a MC [see, e.g., [AYV, Lecture notes on ergodic
MC]] only tells us that it goes to zero,

Ex ,µ1(
k
n
< (κ−1 − δ))→ 0.

Denote
m = m(n) := (κ−1 − δ)n.

By Bienaymé – Chebyshev – Markov’s inequality,

Ex ,µ1(k(n) < (κ−1 − δ)n) = Ex ,µ1(k(n) < m)

= Px ,µ(Tm − κm > n − κm) ≤ Ex ,µ
(Tm − κm)`

(n − κm)`

Now it remains to evaluate Ex ,µ(Tm − κm)`, under a
condition

Exτ
`
R ≤ C(x).
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Ctd: overall bound (1− q)n + C(x)n−`/2
Exτ

`
R ≤ C(x); Px,µ(Tm > n) ≤ Ex,µ(Tm − κm)`/(n − κm)`; ` = 2m (even)

We have, (Tm − κm)` = (
m∑

i=1

(Ti − Ti−1 − κ))`.

So, Px ,µ(Tm > n) = Px ,µ(Tm − κm > n − κm)

≤ Ex ,µ
(Tm − κm)`

(n − κm)`
=

Ex ,µ(
∑m

i=1(Ti − Ti−1 − κ))`

(n − κm)`

The trick is that (n− κ−1m)` ∼ n`(1− (κ−1 − δ)/κ−1)`, while
it may be proved that (a bit involved but well-known
Khasminsky’s bounds)

Ex ,µ(
m∑

i=1

(Ti − Ti−1 − κ))` ∼ Cm`/2 ∼ C1n`/2.

Therefore,

Px ,µ(Tm > n) ≤ C1n−`/2 ; in fact, C1 = C1(x).



SDEs
introduction

Markov–
Dobrushin’s
condition via
Girsanov

Exponential bounds
Polynomial bounds are known but involved; exponential ones are easier

Assume instead that an exponential bound is known for τR:

Ex exp(ατR) ≤ C(x).

Then we estimate (let n − κm ∼ cn, c = 1− δκ),

Px ,µ(Tm − κm > n − κm) ≤ exp(−λcn)Ex ,µ exp(λ(Tm − κm)).

The trick here is that

1
n

ln exp(−λcn) = −λc (of order λ),

while (as it may be proved)

1
n

ln Ex ,µ exp(λ(Tm − κm)) ∼ ln Eµ,µ exp(λ(T1 − κ))

∼ ln(1 +
λ2

2
Eµ,µ(T1 − κ)2) ∼ c1λ

2 (of order λ2).
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Exponential bounds, ctd
In the estimates we will have also the multiplier C(x)

Hence, choosing λ > 0 small enough (in any case, it must be
≤ α), we obtain a resulting exponential bound (I drop the precise
explanation how C(x) shows up here)

Px,µ(Tm − κm > n − κm) ≤ C(x) exp(−λcn + c1λ
2n)

≤ C(x) exp(−(λc − λ2c1)n) = C(x) exp(−λc3n).

In this case the overall bound for will be exponential:

|Px (Xn ∈ A)− µ(A)| ≤ (1− q)n + C(x) exp(−λc3n),

and, hence, a similar exponential bound holds true for Xt :

‖µx
t − µ‖ ≤ 2(1− q)[t] + 2C(x) exp(−λc3[t ]).

The next lecture on SDEs with Poisson random measures will be
delivered by Dr Dasha Loukianova, Université d’Evry, France.
Please, send your email addresses (just an email with a simple
greeting) to her address dloukianova@gmail.com

THE END OF THE "DIFFUSION" PART OF THE COURSE
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