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Molchanov (UNC at Charlote) and A. A. Grigor�yan (Bielefeld University)

The concept of the hierarchical Laplacian is going back to N. Bogolubov
and his school. This concept was used by F. J. Dyson in his construction of
the phase transition in 1D ferromagnetic model with long range interaction
- F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising

ferromagnet, Comm. Math. Phys., 12: 91-107, 1969.
- S. A. Molchanov, Hierarchical random matrices and operators, Appli-

cation to Anderson model, Proc. of 6th Lucacs Symposium (1996), 179-194.
The concept of hierarchical lattice and hierarchical Laplacian was devel-

oped to the high level of generality in the paper
- A. Bendikov, A. Grigoryan, C. Pittet, W. Woess, Isotropic Markov

semigroups on ultrametric spaces, Russian Math. Surv. 69:4, 589-680 (2014).

1 Dyson�s dyadic model

Let us consider (as a simplest example) the Dyson�s dyadic model which real-
izes the hierarchical Laplacian L as a self-adjoint operator acting in L2(0;1).
Let f�r : r 2 Zg be the family of partitians of the set X = [0;1[ each of
which is made of dyadic intervals Ir;i = [(i� 1)2r; i2r[. We call r the rank of
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the partitian �r (resp. the rank of the interval Ir;i). Any point x belongs to
exactly one interval of the rank r; we denote it Ir(x). For any x 6= y we set

n(x; y) = minfr : y 2 Ir(x)g:

The hierarchical distance d(x; y) is de�ned as follows:

d(x; y) =

�
0 if x = y

2n(x;y) if x 6= y
:

Observe that for all x; y; z in X;

d(x; y) � maxfd(x; z); d(z; y)g;

i.e. d(x; y) is an ultrametric on X:

� The couple (X; d) is a complete, locally compact, non-compact and
separable metric space. In this metric space the set of all open balls
coincides with the set of all dyadic intervals Ir;i; i.e. it is countable
whereas the space X = [0;1[ by itself is uncountale.

� Thanks to the ultrametric property each open ball in (X; d) is a closed
set, each point of a ball can be regarded as its center, any two balls
either do not intersect or one is a subset of another etc.

� It is remarckable that the Borel �-algebra in the metric space (X; d)
coinsides with the classical Borel �-algebra B(0;1) (generated by the
metric d(x; y) = jx� yj).

For a set A 2 B(0;1) we denote jAj its Lebesgues measure. The hier-
archical Laplacian L we introduce as a linear combination of "elementary
Laplacians" with coe¢ cients depending on the parameter { 2]0; 1[

(Lf)(x) =
+1X
r=�1

(1� {){r
�
f(x)� 1

jIr(x)j

Z
Ir(x)

f(y)dy

�
:

This operator is well de�ned on the set D of all functions which are locally
constant and have compact supports. Thanks to the ultrametric property the
set D belongs to the Banach spaces C1([0;1[; d) and Lp(0;1); 1 � p <1;
and is a dense subset there.
The operator (L;D) admits representation as a hypersingular integral

operator

(Lf)(x) =

Z 1

0

[f(x)� f(y)]J(x; y)dy
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where

J(x; y) =
2(1� {)
{(2� {)

1

d(x; y)1+2=s
and s =

2

log2 1={
:

On each interval Ir;i we can de�ne the Haar function

Xr;i(x) =

8<:
2�r=2 if x 2 [(i� 1)2r; (i� 1=2)2r[
�2�r=2 if x 2 [(i� 1=2)2r; i2r[
0 if x =2 Ir;i

:

Simple calculations show that fXr;ig is a complete orthonormal basis in
L2(0;1) and that

LXr;i = {rXr;i:
In particular, L is essentially self-adjoint non-negative de�nite operator, its
spectrum

Spec(L) = f{r : r 2 Zg [ f0g
is pure point and each eigenvalue �r = {r has in�nite multiplicity. In par-
ticular, the spectrum of L coincides with its essential part

Spec(L) = Specess(L):

The operator L generates a symmetric Markov semigroup (e�tL)t>0 that ad-
mits a continuous heat kernel p(t; x; y) (the fundamental solution of the "par-
abolic equation" @tp = Lp). The heat kernel p(t; x; y) can be estimated as
follows

p(t; x; y) � t

[ts=2 + d(x; y)]1+2=s
; s =

2

log2 1={
;

uniformly in t; x and y. In particular, uniformly in t and x,

p(t; x; x) � t�s=2:

Remark 1.1 It is remarkable but easy to prove that the hierarchical Lapla-
cian L introduced above is unitary equivalent to the Taibleson-Vladimirov
multiplier D�; � = log2 1={; acting in L2(Q2) where Q2 is the �eld of 2-adic
numbers. In particular, it follows that p(t; x; x) does not depend on x:
Notice that in contrary to the classical case the function t ! p(t; x; x)

does not vary regularly, namely

p(t; x; x) = t�s=2A( log2 t);

where A(�) is a continuous non-constant �-periodic function.
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2 The Schröding-type operator

Let V (x) be a measurable function. The operator H = L+V we understand
in the sense of quadratic forms, i.e. H is a densly de�ned self-adjoint operator
such that dom(H) � dom(Q) where

dom(Q) := fu 2 L2(0;1) :
Z
(jL1=2u(x)j2 + jV (x)jju(x)j2)dx <1g

and

Q(u; u) :=

Z
(jL1=2u(x)j2 + V (x)ju(x)j2)dx:

Theorem 2.1 Assume that V is locally bounded. Then the operator (H;D)
is essentially self-adjoint.

Remark 2.2 In the classical theory Theorem 2.1 does not hold in such a
great generality. Indeed, in the case of Schrödinger operator

H = � 00 + V �  ;  2 C1com(0;1);

with V (x) = �x
, 
 > 2, there is continuum of self-adjoint extensions of H:

Theorem 2.3 Assume that V (x)! 0 as x!1, then

Specess(H) = Specess(L):

In particular, Spec(H) is pure point and the negative part of the spectrum
consists of isolated eigenvalues of �nite multiplicity.

Remark 2.4 Notice that in our setting the set X = [0;1[ is equipped with
the topology de�ned by the ultrametric d(x; y), which di¤erent from the eu-
cledian metric d(x; y) = jx � yj(!) This di¤erence gives a number of results
which do not have their counterparts in the classical theory, e.g. in the case

H = � 00 + V �  ;  2 C1com(0;1);

with V (x)! 0 as x! +1 the set Spec(H) may contain non-trivial discrete,
absolutely continuous and singular continuous parts. Let us mention here the
typical result.

Theorem 2.5 (S. Kotani) Assume that V (x) has the folloving form

V (x) =

1X
n=1

n�
Xn1[n�1;n](x);

where Xn are i.i.d. random variables uniformly distributed in [�1; 1]. Then
a:s: the spectrum of the operator H = � 00 + V �  is:
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� absolutelly continuous, for 
 > 1=2;

� pure point singular, for 
 < 1=2;

� neither absolutely continuous nor pure point singular, for 
 = 1=2:

3 Splitting Lemma

Let Bi = B(ai) are open balls which all belong to the same horocycle T
(have the same diameter). Spectral theory of the operator H = L+ V with
potential V of the form

V = �
1X
i=1

�i1Bi

can be reduced to Spectral theory of the operator [H] = [L] + [V ] de�ned
on the discrete ultrametric space [X] = f0; 1; 2; :::g equipped with certain
ultrametric [d] (induced by the ultrametric d). Here [L] is a hierarchical
Laplacian acting on the ultrametric space ([X]; [d]) and [V ] is given by

[V ] = �
1X
i=1

�i1ai :

Since V (resp. [V ]) is a locally bounded function, the operator H (resp. [H])
de�ned on the set of test functions is essentially self-afjoint in L2(0;1) (resp.
in l2).
Let us explain this reduction H 7�! [H] in details. Consider the set of

dyadic partitians f�rg of the set [X] :

�0 = f0; 1; 2; :::; n; :::g - single points
�1 = f(0; 1); (2; 3); (4; 5); :::g
::::::::::::::::::::::::::::::::::

�m = f(0; :::; 2m � 1); (2m; :::; 2 � 2m � 1); :::g
::::::::::::::::::::::::::::::::::::

Put Im;i = f(i � 1)2m; :::; i2m � 1g and denote Im(x) the unique Im;i which
contains x. In the Hilbert space l2 let us de�ne the hierarchical Laplacian
[L] as follows

([L]f)(x) =

1X
r=1

(1� {){r
0@f(x)� 1

2r

X
y2Ir(x)

f(y)

1A :
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The operator [L] is a bounded symmetric operator having eigenvalues �r = {r;
r = 1; 2; :::: The corresponding eigenfunctions are discrete versions of the
Haar functions as explained above.
The following below Splitting Lemma explaines the relation of the opera-

tor H = L+V with V as above to the hierarchical Schrödinger-type operator
[H] = [L] + [V ]. We may assume, without loss generality, that each ball Bk
is of the form [k � 1; k[, i.e.

V = �
1X
k=1

�k1[k�1;k[:

Lemma 3.1 (Splitting Lemma) Let us de�ne two subspaces of L2(0;1) :
L2� = spanfXr;i(x) : r � 0; i � 1g and L2+ = spanf1Ir;i : r � 0; i � 1g: Then
1. L2(0;1) = L2� � L2+:
1. The spaces L2� and L

2
+ reduce the operator H = L+ V .

2. The Haar functions Xr;i(x) 2 L2� are the only eigenfunctions of H
restricted to L2� with eigenvalues �r;i = {r + �i.
3. The operator H restricted to L2+ can be identi�ed with the operator

[H] = [L] + [V ] with potential [V ] = �
P1

i=1 �i�i and with hierarchical Lapla-
cian [L].

Proof. The proof of this lemma can be derived by direct inspection.

Corollary 3.2 Assume that V as above tend to1 at1: Then the spectrum
of H = L+ V is pure point.

Proof. Let H� (resp. H+) be the restriction of the operator H to the space
L2� (resp. L

2
+), then Spec(H) = Spec(H�)[Spec(H+). By Splitting lemma,

Spec(H�) is pure point. Let us show that Spec(H+) is discrete. The operator
H+ is unitary equivalent to the operator [H] = [L] + [V ]. Observe that the
operator [L] is bounded, jj[L]jj = { < 1, and, since �i !1; the operator [V ]
has a compact resolvent ([V ]��)�1. For � big enough jj[L]([V ]��)�1jj < 1
whence the operator [H] has a compact resolvent

([H]� �)�1 = ([V ]� �)�1(1 + [L]([V ]� �)�1)�1:

It follows that Spec(H+) = Spec([H]) is discrete as desired.

4 Sparse potentials

We assume that the ultrametric mesure space (X; d;m) is countably in�nite
and homogeneous. Analysis of the �nite rank potentials V = �

Pn
i=1 �i�ai
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indicates that in the case of increasing distances between locations faig of
the bumps Vi = ��i�ai their contributions to the spectrum is close to the
union of the contributions of the individual bumps Vi (each bump contributes
one eigenvalue in each gap (�m+1; �m) of the spectrum of the operator L).
The development of this idea leads to consideration of the class of sparce

potentials

V = �
1X
i=1

�i�ai

where distances between locations fai : i = 1; 2; :::g form an increasing to
1 sequence. In the classical spectral theory this idea goes back to D. B.
Pearson, S. Molchanov, and A. Kiselev, J. Last, S. and B. Simon.
Throughtout this section we will assume that � < �i < � for all i and for

some �; � > 0. We use the following notation

� R(�; x; y) is the resolvent kernel of the operator L, i.e. solution of the
equation Lu� �u = �y. Notice that R(�; x; x) does not depend on x.

� �� is the set of limit points of the sequence f�ig:

� 1=�� := f1=�� : �� 2 ��g:

� R�1(1=��) := f� : R(�; a; a) 2 1=��g:

Theorem 4.1 Assume that the following condition holds

lim
n!1

sup
i�n

X
j: j 6=i and j�n

1

d(ai; aj)
= 0; (4.1)

then
Specess(H) = Spec(L) [R�1(1=��). (4.2)

5 Localization theorem

In this section we consider the Schrödinger-type operator

H! = L+ V !; ! 2 (
;F ; P ):

Here L, the deterministic part of H!, is the hierarchical Laplacian and

V ! = �
X
a2I

�(a; !)1B(a)

7



is a random potential de�ned by a family of open balls fB(a) : a 2 Ig and
a family f�(a; !) : a 2 Ig of i.i.d. random variables. . We assume that all
B(a) belong to the same horocycle T. Notice that the set of all open balls is
countably in�nite whence the set I of locations is at most countable.
Thanks to the Splitting Lemma the study of the set Specess(H!) reduces

to the case where the ultrametric measure space (X; d;m) is countably in�nite
and homogeneous and

V ! = �
X
a2I

�(a; !)�a:

When I = X the operator

H! = L�
X
a2X

�(a; !)�a

has a pure point spectrum for P�a.s. ! provided the distribution function
F�(�) = P (�(a; !) � �) satis�es certain regularity conditions. This state-
ment (localization theorem) appeared �rst in the paper of Molchanov (�(a; !)
are Cauchy random variables) and later in a more general form in two papers
of Kritchevski. The proof essentially uses self-similarity of H:
Sparsness destroyes the self-similarity property, the localization theorem

5.1 below complements Theorem 4.1. The proof of this theorem is based on
the abstract form of Simon-Wol¤ theorem for pure point spectrum, technique
of fractional moments, decoupling lemma of Molchanov and Borel-Cantelly
type arguments.

Theorem 5.1 Set I = faig; �i(!) := �(ai; !), and assume that the distrib-
ution function F�(x) = P (! : �i(!) � x) is absolutely continuous and has a
bounded density f�(�) supported by a �nite interval [�; �]. Then the operator
H! has a pure point spectrum for P�a.s. ! provided the following condition
holds: For some (whence for all) y 2 X the sequence d(ai; y) is eventually
increasing and

lim
M!1

sup
i�M

X
j: j�M; j 6=i

1

d(ai; aj)r
= 0 (5.3)

for some small enough r (say, 0 < r < 1=3). Moreover, since the set of limit
points of the sequence f�i(!)g coinsides for P�a.s. ! with the whole interval
[�; �], we obtain: for P � a:s: !

Specess(H
!) = Spec(L) [R�1([1=�; 1=�]):

8


	Dyson's dyadic model
	The Schröding-type operator
	Splitting Lemma
	Sparse potentials
	Localization theorem

