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Problem
Consider an ODE with a “bad” drift

dXt - b(Xt)dt, t 2 O,

or a PDE with a “bad” drift

Ju(t,x) lazu(t,x)
ot 2 0x?

+ b(u(t,x)), t=>0, xeR.

» If the drift is non smooth (e.g., b(s) = 24/]s|), then these
ODE & PDE might have multiple solutions.

» Will the ODE/PDE regularize if we add random noise? Will it
then have a unique solution?

» What about flow?

» Can we construct this solution numerically? Will the Euler
method work?



Outline

» Big picture: Regularization by noise for ODEs with different
type of noise

» Classical method: PDE approach of Zvonkin and Veretennikov
» New method: Stochastic sewing

» Further directions



Big picture



ODEs

» We begin with an ODE
dXt - b(Xt)dt, t 2 O

» If b is Lipschitz, then this ODE has a unique solution.
» If b e C?, v <1, then this ODE has a solution but it might

be non-unique (x = /|x|, x(0) = 0).
» If b is just bounded, then this ODE might have no solutions
(x = —signx, x(0) = 0, where sign(0) := 1).

3 solution 3! solution
| 1 >
0 1 Y




SDEs

» Now let us add noise and consider an SDE

dX; = b(X;)dt + dW,, t>0, x e R



SDEs

» Now let us add noise and consider an SDE

dX; = b(X;)dt + dW,, t>0, x e R

Theorem (A.K. Zvonkin, 1974; A.Yu. Veretennikov, 1981)

If the drift b is measurable and bounded, then this SDE has a
unique strong solution.



SDEs

» Now let us add noise and consider an SDE

dX; = b(X;)dt + dW,, t>0, x e R

Theorem (A.K. Zvonkin, 1974; A.Yu. Veretennikov, 1981)

If the drift b is measurable and bounded, then this SDE has a
unique strong solution.

» “Unique”’ means that if X! and X2 are two adapted solutions
to this SDE, then X!(w) = X?(w) a.s.

3! weak solution; 3! strong solution;
d=1: strong solution flow property
Zhang, Zhao 2017 Veretennikov Zvonkin 1970s
| Bass, Chen 2001 | Flandoli, Gubinelli, Priola, 2010
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SDEs driven by fBM

» For some applications it is more relevant to have an ODE
driven by a fractional Brownian motion WH, H € (0,1)

dX; = b(X;)dt + dW!, t>0, x e RY.
» Recall that W is a Gaussian process with mean 0 and
covariance EWHWH = 1(t2H 4 2 — |t — s|2H).

» For H=1/2 fBM is just BM; for H # 1/2 it is not a Markov
process nor a martingale.



SDEs driven by fBM

» For some applications it is more relevant to have an ODE
driven by a fractional Brownian motion WH, H € (0,1)

dX; = b(X;)dt + dW!, t>0, x e RY.
» Recall that W is a Gaussian process with mean 0 and
covariance EWHWH = 1(t2H 4 2 — |t — s|2H).

» For H=1/2 fBM is just BM; for H # 1/2 it is not a Markov
process nor a martingale.

3! weak solution; 3! strong solution

d=1: strong solution

7777 Catellier, Gubinelli 2016
| |
| | >
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SDEs driven by a-stable noise
» Another research area is SDEs driven by a-stable process L¢,
a€(0,2)
dX; = b(X¢)dt +dLY, t>0, x e RY.

» Recall that L% is a Levy process (= stationary, independent
increments) with jump measure
V(A) = EY i I(ALY € A) = co [, x| 71 dx.

> It is a pure jump Markov process and E(L$)? = oo but
E|LY| < oo for a > 1.



SDEs driven by a-stable noise
» Another research area is SDEs driven by a-stable process L¢,
a€(0,2)
dX; = b(X¢)dt +dLY, t>0, x e RY.

» Recall that L% is a Levy process (= stationary, independent
increments) with jump measure
V(A) = EY i I(ALY € A) = co [, x| 71 dx.

> It is a pure jump Markov process and E(L$)? = oo but
E|LY| < oo for a > 1.

! weak solution; 3! strong solution;
d=1: strong solution flow property
de Raynal, Menozzi, 2019 Priola 2013

Athreya, B., Mytnik, 2018
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Numerical methods
» The existence and uniqueness of solutions is a pure theoretical
result. But how can one construct the solutions on practice?

» Let n be a large integer; put k,(t) := [nt|/n. Consider the
standard Euler scheme

dX{ = b(X] (y)dt +dW/], >0, x e R

Theorem (B., Dareiotis, Gerencsér, 2019)

Let o € [0, 1] satisfy o > 1 — 1/(2H). Suppose that b € C*. Then
there exists a random variable K(w) such that for all n € N one has

1

sup |[X; — X{| < K(w)m'

t€[0,1]

» This result is optimal for fBM. For H = 1/2 the rate is
1/2 + /2 and do not go to zero as a — 0.



Naive approach



Naive approach

» To fix the ideas consider 1D SDE with “bad” drift b € C7,

v <1

> Let us try to prove strong uniqueness of solutions to this
equation. Let X and X be two solutions to this equation.
Denote Z := X — X. We have

1z = | /O [6(Xs) — b(Xs)]ds|
- | /0 [6(X: + Z2) — b(X.)]ds|

t
< / 12, ds.
0

> We would like to use the Gronwall inequality but cannot.
Thus, this method does not work for v < 1 :-(



Proof strategy 1:
classical PDE approach
(aka the Zvonkin transformation)



Zvonkin's transformation method
» We had SDE with “bad” drift be C?, v < 1. Let B = b.



Zvonkin's transformation method
» We had SDE with “bad” drift be C?, v < 1. Let B = b.

» Zvonkin—Veretennikov's idea: let f be arbitrary smooth
function. Let Y; := f(X¢). Then by Ito’s formula

dY: = df(X¢) = [%f”(Xt) + f'(Xe)b(Xp)]dt + f'(X¢)dW.



Zvonkin's transformation method
» We had SDE with “bad” drift be C?, v < 1. Let B = b.

» Zvonkin—Veretennikov's idea: let f be arbitrary smooth
function. Let Y; := f(X¢). Then by Ito’s formula

dY: = df(X¢) = [%f”(Xt) + f'(Xe)b(Xp)]dt + f'(X¢)dW.

> Choose f such that 3f” 4+ f'b = 0. Then the SDE for Y will
have no drift.



Zvonkin's transformation method
» We had SDE with “bad” drift be C?, v < 1. Let B = b.

» Zvonkin—Veretennikov's idea: let f be arbitrary smooth
function. Let Y; := f(X¢). Then by Ito’s formula

dY: = df(X¢) = [%f”(Xt) + f'(Xe)b(Xp)]dt + f'(X¢)dW.

> Choose f such that 3f” 4+ f'b = 0. Then the SDE for Y will
have no drift.
» One can take

f(x) ::/ e 2B gy,
0

» Then f’ > 0 everywhere, f is invertible and f € C7+2.
> We have
dY; = f' o F 1Y) dW,.



Zvonkin's transformation method

dY; = ' o F YY) dW,. ()

Ye=F(Xe): f(x) = / e=280) gy
0

» The function f' o f~1is in C¥*1. This SDE has a unique
strong solution whenever v+ 1 > 1/2 (in particular if b is
bounded).

> Thus if X and X solve (), then f(X;) and f()é) solve (xx).
By uniqueness, f(X;) = f(X¢), and thus X; = X;.

10



Zvonkin's method: summary
> We want to say something “nice” about SDE

de_— = b(Xt)dt + U(Xt)th.

» Zvonkin's idea: apply to (t, X:) a certain "nice” one-to-one
mapping (t, x) — f(t, x).

» We pick f such that the new process Y; := f(t, X;) has
“good" drift and diffusion

dY: = b(Yy)dt + 5(Ye)dW,.

» If this new SDE has uniqueness/flow property/etc then so
does the old SDE.
» The method is very robust but relies on a good Ito formula +
careful PDE estimates for f.
» Challenging, but possible if b is a distribution (see Athreya,
B., Mytnik, 2018).
» Does not work for SPDEs or SDEs driven by fBM.
11



Proof strategy 2:
new stochastic sewing approach

12



Naive approach: revisited
» We had 1D SDE with “bad” drift b e C?, v < 1.

and two solutions X and X. Z := X — X. Then we want to
show something like this

1Zelle, = || [ [6(Xs + Z5) — b(X))ds]|
0

12



Naive approach: revisited
» We had 1D SDE with “bad” drift b e C?, v < 1.

and two solutions X and X. Z := X — X. Then we want to
show something like this

1Zelw, = H/Ot[b(Xs +Z2) - b(Xo)]ds]|,

t
</ |Z,|"ds
0

12



Naive approach: revisited
» We had 1D SDE with “bad” drift b e C?, v < 1.

and two solutions X and X. Z := X — X. Then we want to
show something like this

1Zelw, = H/Ot[b(Xs T Z)— b(X)ds],

t
< |"ds

12



Naive approach: revisited
» We had 1D SDE with “"bad” drift b€ C7, v < 1.

and two solutions X and X. Z := X — X. Then we want to
show something like this

rztuL,,:H/O [(Xs + Z&) — b(X)lds |,

t

< |"ds
0

77

< Ct° sup || Z|.,
s€[0,t]

12



Naive approach: revisited
» We had 1D SDE with “"bad” drift b€ C7, v < 1.

and two solutions X and X. Z := X — X. Then we want to
show something like this

rztuL,,:H/O [(Xs + Z&) — b(X)lds |,

t

< |"ds
0

77

< Ct° sup || Z|.,
s€[0,t]

> At least we want to show that

H/O[b(vvs+z) b(Wo)lds]], < €z,

12



Sewing Lemma of Gubinelli
> Let f € C® g € CP. Then it is well-known that | fdg exists
and can be defined as a Riemann integral if o+ 5 > 1.
» This can be proved using sewing lemma.
> Fix T >0andlet A € R, 0 <s<t< T are given.
> For 0 <s<u<t< T define Asyr := Ast — Asy — Aut.

13



Sewing Lemma of Gubinelli

> Let f € C® g € CP. Then it is well-known that | fdg exists
and can be defined as a Riemann integral if o+ 5 > 1.

P> This can be proved using sewing lemma.

> Fix T >0andlet A € R, 0 <s<t< T are given.

> For 0 <s<u<t< T define Asyr := Ast — Asy — Aut.

Theorem (Gubinelli, 2004)

Suppose that there exists a constant [ > 0 such that for any
0<s<u<g<t< T onehas

16 Asue| < Tt — |+

Then there exists a unique process A: [0, T] — R such that
Ao =0 and

|A; — As — Aqt| < CT|t—s|**5, 0<s<t

N

T.

13



Sewing Lemma of Gubinelli

> Let f € C® g € CP. Then it is well-known that | fdg exists
and can be defined as a Riemann integral if o+ 5 > 1.

P> This can be proved using sewing lemma.

> Fix T >0andlet A € R, 0 <s<t< T are given.

> For 0 <s<u<t< T define Asyr := Ast — Asy — Aut.

Theorem (Gubinelli, 2004)

Suppose that there exists a constant [ > 0 such that for any
0<s<u<g<t< T onehas

16 Asue| < Tt — |+

Then there exists a unique process A: [0, T] — R such that
Ao =0 and

|A; — As — Aqt| < CT|t—s|**5, 0<s<t

N

T.

Furthermore, Ay = lim)_ Ay,

tip1-
13



Young integral

» Recall thatifforO0 <s<u<t
’5Asut| = ’Ast — Ay

then lim ) Ay, ¢, exists.

tiv1

<T

— Ayt <T|t —s|tFe,

14



Young integra

vVvYyyvyy

Recall that if for 0 <s<u <<t T
[6Asut] = |Ast — Asy — Aue| < Tt —s|MF,

then lim ) Ay, ¢, exists.

Let f € C*, g € CP. We want to define [ fdg.

Set Ast := f5(gt — &s)-

Then [0Auel = (5 — £)(& — g2)] < [IFlen s (t — )+,
Thus, by SL, if @+ 8 > 1, then [ fdg is well-defined.

Does not work for [ WsdWs.

14



Stochastic Sewing Lemma of Le
» Recall, SL needs |§Asy:| < T|t — s|**¢. This does not hold for
stochastic integrals.
» Fix now T >0, p > 2 and filtration (Fs)s<7. We will write
ES[...] := E[...|F4]
> Let A, 0<s<t< T, be an F; measurable random variable.

15



Stochastic Sewing Lemma of Le
» Recall, SL needs |§Asy:| < T|t — s|**¢. This does not hold for
stochastic integrals.
» Fix now T >0, p > 2 and filtration (Fs)s<7. We will write
ES[...] := E[...|F4]
> Let A, 0<s<t< T, be an F; measurable random variable.
Theorem (Le, 2018)
Suppose that there exist constants 1, > 0 such that for any
0<s<u<t<Tonehas

IE*6AsutllL, < Talt —s|**=;
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Stochastic Sewing Lemma of Le
» Recall, SL needs |§Asy:| < T|t — s|**¢. This does not hold for
stochastic integrals.
» Fix now T >0, p > 2 and filtration (Fs)s<7. We will write
ES[...] := E[...|F4]
> Let A, 0<s<t< T, be an F; measurable random variable.
Theorem (Le, 2018)
Suppose that there exist constants 1, > 0 such that for any
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IE*6Asutlli, < Talt = s|™*% [16Asulle, < Falt — s|"/2+.
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Stochastic Sewing Lemma of Le

» Recall, SL needs |§Asy:| < T|t — s|**¢. This does not hold for
stochastic integrals.
» Fix now T >0, p > 2 and filtration (Fs)s<7. We will write
E°[...] .= E[...|Fs].
> Let A, 0<s<t< T, be an F; measurable random variable.
Theorem (Le, 2018)
Suppose that there exist constants 1, > 0 such that for any
0<s<u<t<Tonehas
IE*0AsutllL, < Talt = s|"™%  [[6AsuellL, < Falt —s|/>F=.
Then there exists a unique process A: [0, T] — R such that
Ao =0, A; is F; measurable and
|ES[A: — As — Agt]|l, < CT|t —s|'Te,
[ Ae — As — Ase||L, < CTa|t — s|¥/2Fe,
Furthermore, Ay =lim)_ Ay,

tipg 1N LP'

15



lto integral

vVvYyyvyy

Recall that if
|E%6Adellz, < Talt = s[5 [|6Adlle, < Talt — s|/2+<.

then lim ) A 4., exists in L.

Let f € C*. We want to define [ f(W)dW.

Set Ag = F(Ws)(W, — WS).

Then 6Agye = (F(Ws) — F(Wy))(We — W,).

We have E*[§Asut] = 0; [|6Asue||e, < Cl|f[lev|t — s|¥/2+7/2.
Thus, by SSL, if ¥ > 0, then [ f(W)dW is well-defined.

16



Back to uniqueness for SDEs

» We want to proof that for b € C7

H/Ot[b(ws +2) = b(Wy)]as|), < Ctllz|

17



Back to uniqueness for SDEs

» We want to proof that for b € C7

H/Ot[b(Ws +2) = b(Wa)lds], < Ctllz|.

> Set Ay := ES[[I(b(W, + z) — b(W,))dr]. Then
5Asut

— Ef| / (b(W, + 2) — B(W,))dr] — E¥[ / (b(W; + 2) - B(W,))dr].

17



Back to uniqueness for SDEs

» We want to proof that for b € C7

H/Ot[b(Ws +2) = b(Wa)lds], < Ctllz|.

> Set Ay := ES[[I(b(W, + z) — b(W,))dr]. Then
5Asut ¢ ¢
— €[ (bW, +2) — B(W.))r] — EV( [ (b(W, + 2) — B(W,))or]

> We have E*[Au] = 0; Astlt, < Cllbller|2l]t — s]'/2+7/2

17



Back to uniqueness for SDEs

» We want to proof that for b € C7

H/Ot[b(Ws +2) = b(Wa)lds], < Ctllz|.

> Set Ay := ES[[I(b(W, + z) — b(W,))dr]. Then
5Asut ¢ ¢
— €[ (bW, +2) — B(W.))r] — EV( [ (b(W, + 2) — B(W,))or]

> We have E*[As] = 0; Astlt, < Cllbller|2l]t — s]'/2+7/2

> Thus, by SSL, if v > 0, then A, := [ [b(Ws + z) — b(W;)]ds
and

t
H/o [6(Ws +2) — B(We)lds]|, = Ae—Asll, < CEY2H772 2]

17



Back to uniqueness for SDEs

» In general, one has the following “Krylov-type” bound.

Theorem (Athreya, B., Le, Mytnik, 2019)
Let be C7, v > 0. Let ¢, p be a.s. Lipschitz functions. Then

|| / [(W; + ) — b(Ws + ¢, )]as]|,

< Cllbller sup (|9 = @rlli, [t = 5|27 4 ot — 5).

re(s,t]

18



Back to uniqueness for SDEs

H/ [6(W; + ) — B(Ws + )]s,

< Cllbller sup (|9 = @rlli, [t = 5|27 4 ot — 5).

re(s,t]

> Now we can finish the proof of uniqueness. Let X, X be
solutions to dXt = b(Xt)dt + th

> Put¢t —fo dS l/lt —fo

» Then X = W—H/J, X = W—i—z/J.

19



Back to uniqueness for SDEs

H/wmuwn—(W+¢4wh

< Cllbller sup (|9 = @rlli, [t = 5|27 4 ot — 5).

re(s,t]
> Now we can finish the proof of uniqueness. Let X, X be
solutions to dXt = b(Xt)dt + th
Put ¢; := fo S)ds, e = fo
» Then X = W+1/J, X = W—i—z/J.
> We get

v

H&—&mfwm—mm<cﬁﬂwgwm—mm.
r<

» By taking t small enough we get X = X.

19



Rate of convergence for Euler scheme

||/ [6(W, + 1) — (W, + o,)]ds],

< Clbllex sup ([ = @rlli, |t = s|Y2F7/% + ot - 5).

rels,t]

> Let X" solve dX{" = b(X

> Put ¢f := fo (X7)ds.
> Then X =W+, X"=W +¢" + o(n—1/2—v/2)_



Rate of convergence for Euler scheme

||/ [6(W, + 1) — (W, + o,)]ds],

< Clbllex sup ([ = @rlli, |t = s|Y2F7/% + ot - 5).

re(s,t]
Let X" solve dX] = b(X”n(t))dt + dW;.
Put ¢f = fo (X2) ds.
Then X = W + ¢, X" = W + 9" 4 O(n~/277/2).
We get

vvyVyVYyy

e = w¢lle, < /72 sup [y = |, + Cn /22
r<t

» This implies (B., Dareiotis, Gerencser, 2019)

[Xe = X{ |, < Cn= 2072,

20



Remarks

> We see that SSL approach is quite general. It does not rely on
a process being a semimartingale, or on careful PDE
estimates.

» However it is not very robust (yet!) For example, for H > 1/2
to get the rate in the Euler scheme, one has to develop a new
version of SSL (B., Dareiotis, Gerencser, 2019).

» Similar approach works for SPDEs (Athreya, B., Le, Mytnik,

2019) 2
du(t,x) 10°u(t,x) .
ot 2 8X2 +b(U(t,X))—|—W(t7X)7 t > 0, x€R

» One requires a new version SSL with propagators which is
inspired by SL with propagators of Gubinelli, Tindel, 2010.

» With this new SSL in hand one get uniqueness for b € C7,
~v > —1. Work in progress: d-function

» Work in progress with Sasha Shaposhnikov: Bass—Burdzy
conjecture on local time of BM along the non-smooth curves.



SDEs with distributional drift

22



Distributional drift

» Let's go back to the SDE

and to the standard concept of uniqueness (strong
uniqueness).

» Assume now that b is not a function, but just a distribution
from the Holder-Besov space C7, v < 0.

» Then this equation is not well-posed in the classical sense:
what is b(X;)?

22



Definition of a solution

t
Xt =X +/ b(Xs)dS + Wf7 t € [0, T] (*)
0

Definition (Bass, Chen, 2000; Athreya, B., Mytnik, 2018)

We say that X = (Xt)¢c[o, 7] solves SDE () if there exists a
continuous A = (A¢)¢co, 7] Such that:

1. Xt:X‘l—At"—Wt, tE[O,T],

23



Definition of a solution

t
Xt =X +/ b(Xs)dS + Wf7 t € [0, T] (*)
0

Definition (Bass, Chen, 2000; Athreya, B., Mytnik, 2018)

We say that X = (Xt)¢c[o, 7] solves SDE () if there exists a
continuous A = (A¢)¢co, 7] Such that:

1. Xt:X‘l—At"—Wt, tE[O,T],

2. For any approximating sequence (b,)nez, such that b, € C*
and ||b, — b||y — 0 we have

t
Al = / ba(Xs)ds — A¢, as n — oo
0

in probability uniformly over [0, T].
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Definition of a solution

t
Xt =X +/ b(Xs)dS + Wf7 t € [0, T] (*)
0

Definition (Bass, Chen, 2000; Athreya, B., Mytnik, 2018)
We say that X = (Xt)¢c[o, 7] solves SDE () if there exists a
continuous A = (A¢)¢co, 7] Such that:

1. Xt:X+At+ Wt, t e [0, T],

2. For any approximating sequence (b,)nez, such that b, € C*
and ||b, — b||y — 0 we have

t
Al = / ba(Xs)ds — A¢, as n — oo
0

in probability uniformly over [0, T].
3. Forany k < (14 2) A1 there exists C = C(T,x) > 0 such
that

E|A: — A < Clt —s]*, s, te]0,T].
23



Bass—Chen result

t
Xe = x+/ b(Xs)ds + W, tel0,T].
0

Theorem (Bass, Chen, 2000)

In case d =1 SDE () has a unique strong solution whenever
beC, v>-1)2.

» Work in progress (B., Mytnik): the constraint v > —1/2is
optimal.

(%)

24



Regularization for a-stable noise

» What if instead of W; we have a pure jump process L;? Will
we have any regularization?

» No improvement in regularity if L is the Poisson process: SDE
will already have multiple solutions while still “waiting” for
the first jump of L.

» [ should have “sufficiently many” small jumps.

» The bigger the intensity of the small jumps the rougher drift b
can be.

> We take L to be an a—stable process, a € (0, 2).

25



Regularization for a-stable noise

» Tanaka, Tsuchiya, Watanabe, 1975: there exists a unique
strong solution in d = 1 if b is measurable bounded and
a> 1.

» Priola, 2016: PBP uniqueness for v > 1 —«/2, d > 1.
> What if v < 07

26



Regularization for a-stable noise

» Tanaka, Tsuchiya, Watanabe, 1975: there exists a unique
strong solution in d = 1 if b is measurable bounded and
a> 1.

» Priola, 2016: PBP uniqueness for v > 1 —«/2, d > 1.
> What if v < 07
Theorem (Athreya, B., Mytnik)
In the case d = 1 this SDE has a unique solution if b € C7,
v>1/2—a)2.

» This extends the Bass—Chen result to the stable case.

26



Summary

>

>

>

Using classical PDE approach one can get results on
uniqueness of solutions of SDEs with bad drift.

Even when the drift is a distribution (and thus SDE is not a
semi-martingale).

Stochastic sewing is an alternative approach which does not
require a good lto formula.

Using SSL we got uniqueness of solutions to the stochastic
heat equation with bad drift.

We also obtained rate of convergence for the Euler scheme for
SDEs driven by fBM.

Work in progress. Rate of converegence for the Euler scheme
for SDEs driven by a-stable noise. We are planning to
improve Mikulevicius—Xu, 2016. for the stochasic heat
equation with distributional drift.

Big open question: Weak uniqueness for SDEs driven by fBM.

27
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