REGULARIZATION BY NOISE FOR SDES AND RELATED SYSTEMS: REVISITING THE ZVONKIN-VERETENNIKOV STRATEGY

Oleg Butkovsky

Based on joint works with Siva Athreya, Konstantinos Dareiotis, Máté Gerencsér, Khoa Le, Leonid Mytnik

Weierstrass Institute

03 December 2019

Problem

Consider an ODE with a "bad" drift

$$dX_t = b(X_t)dt, \quad t \ge 0,$$

or a PDE with a "bad" drift

$$\frac{\partial u(t,x)}{\partial t} = \frac{1}{2} \frac{\partial^2 u(t,x)}{\partial x^2} + b(u(t,x)), \quad t \ge 0, \ x \in \mathbb{R}.$$

- ► If the drift is non smooth (e.g., b(s) = 2√|s|), then these ODE & PDE might have multiple solutions.
- Will the ODE/PDE regularize if we add random noise? Will it then have a unique solution?
- What about flow?
- Can we construct this solution numerically? Will the Euler method work?

Outline

- Big picture: Regularization by noise for ODEs with different type of noise
- Classical method: PDE approach of Zvonkin and Veretennikov
- New method: Stochastic sewing
- Further directions

Big picture

ODEs

We begin with an ODE

$$dX_t = b(X_t)dt, \quad t \ge 0.$$

▶ If *b* is Lipschitz, then this ODE has a unique solution.

- If b ∈ C^γ, γ < 1, then this ODE has a solution but it might be non-unique (ẋ = √|x|, x(0) = 0).
- ▶ If b is just bounded, then this ODE might have no solutions $(\dot{x} = \operatorname{sign} x, x(0) = 0$, where $\operatorname{sign}(0) := 1$).

SDEs

Now let us add noise and consider an SDE

 $dX_t = b(X_t)dt + dW_t, \quad t \ge 0, \ x \in \mathbb{R}^d.$

SDEs

Now let us add noise and consider an SDE

 $dX_t = b(X_t)dt + dW_t, \quad t \ge 0, \ x \in \mathbb{R}^d.$

Theorem (A.K. Zvonkin, 1974; A.Yu. Veretennikov, 1981) *If the drift b is measurable and bounded, then this SDE has a unique strong solution.*

SDEs

Now let us add noise and consider an SDE

 $dX_t = b(X_t)dt + dW_t, \quad t \ge 0, \ x \in \mathbb{R}^d.$

Theorem (A.K. Zvonkin, 1974; A.Yu. Veretennikov, 1981) *If the drift b is measurable and bounded, then this SDE has a unique strong solution.*

 "Unique" means that if X¹ and X² are two adapted solutions to this SDE, then X¹(ω) = X²(ω) a.s.

∃! weak solution; d=1: strong solution	∃! strong solution; flow property
Zhang, Zhao 2017 Bass, Chen 2001	Veretennikov Zvonkin 1970s Flandoli, Gubinelli, Priola, 2010
-1/2	0 Υ

SDEs driven by fBM

For some applications it is more relevant to have an ODE driven by a fractional Brownian motion W^H, H ∈ (0,1)

$$dX_t = b(X_t)dt + dW_t^H, \quad t \ge 0, \ x \in \mathbb{R}^d$$

- ▶ Recall that W^H is a Gaussian process with mean 0 and covariance $EW_t^H W_s^H = \frac{1}{2}(t^{2H} + s^{2H} |t s|^{2H})$.
- For H = 1/2 fBM is just BM; for $H \neq 1/2$ it is not a Markov process nor a martingale.

SDEs driven by fBM

For some applications it is more relevant to have an ODE driven by a fractional Brownian motion W^H, H ∈ (0,1)

$$dX_t = b(X_t)dt + dW_t^H, \quad t \ge 0, \ x \in \mathbb{R}^d$$

- ▶ Recall that W^H is a Gaussian process with mean 0 and covariance $EW_t^H W_s^H = \frac{1}{2}(t^{2H} + s^{2H} |t s|^{2H}).$
- For H = 1/2 fBM is just BM; for H ≠ 1/2 it is not a Markov process nor a martingale.

SDEs driven by $\alpha\text{-stable}$ noise

Another research area is SDEs driven by α-stable process L^α, α ∈ (0,2)

$$dX_t = b(X_t)dt + dL_t^{\alpha}, \quad t \ge 0, \ x \in \mathbb{R}^d.$$

- Recall that L^α is a Levy process (= stationary, independent increments) with jump measure
 ν(A) := E Σ_{s≤1} 1(ΔL^α_s ∈ A) = c_α ∫_A |x|^{-1-α} dx.
- It is a pure jump Markov process and $E(L_t^{\alpha})^2 = \infty$ but $E|L_t^{\alpha}| < \infty$ for $\alpha > 1$.

SDEs driven by α -stable noise

Another research area is SDEs driven by α-stable process L^α, α ∈ (0,2)

$$dX_t = b(X_t)dt + dL_t^{\alpha}, \quad t \ge 0, \ x \in \mathbb{R}^d.$$

Recall that L^α is a Levy process (= stationary, independent increments) with jump measure ν(A) := E ∑_{s≤1} 1(ΔL^α_s ∈ A) = c_α ∫_A |x|^{-1-α} dx.
 It is a pure jump Markov process and E(L^α)² = so but

It is a pure jump Markov process and E(L^α_t)² = ∞ but E|L^α_t| < ∞ for α > 1.

Numerical methods

- The existence and uniqueness of solutions is a pure theoretical result. But how can one construct the solutions on practice?
- Let *n* be a large integer; put κ_n(t) := ⌊nt⌋/n. Consider the standard Euler scheme

$$dX_t^n = b(X_{\kappa_n(t)}^n)dt + dW_t^H, \quad t \ge 0, \ x \in \mathbb{R}^d.$$

Theorem (B., Dareiotis, Gerencsér, 2019)

Let $\alpha \in [0,1]$ satisfy $\alpha > 1 - 1/(2H)$. Suppose that $b \in C^{\alpha}$. Then there exists a random variable $K(\omega)$ such that for all $n \in \mathbb{N}$ one has

$$\sup_{t\in[0,1]}|X_t-X_t^n|\leqslant K(\omega)\frac{1}{n^{1/2+\alpha(H\wedge(1/2))}}$$

This result is optimal for fBM. For H = 1/2 the rate is $1/2 + \alpha/2$ and do not go to zero as $\alpha \to 0$.

Naive approach

Naive approach

► To fix the ideas consider 1D SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$.

$$dX_t = b(X_t)dt + dW_t.$$

► Let us try to prove strong uniqueness of solutions to this equation. Let X and X be two solutions to this equation. Denote Z := X - X. We have

$$egin{aligned} |Z_t| &= ig| \int_0^t [b(\widetilde{X}_s) - b(X_s)] ds ig| \ &= ig| \int_0^t [b(X_s + Z_s) - b(X_s)] ds \ &\leqslant \int_0^t |Z_s|^\gamma ds. \end{aligned}$$

• We would like to use the Gronwall inequality but cannot. Thus, this method does not work for $\gamma < 1$:-(

Proof strategy 1: classical PDE approach (aka the Zvonkin transformation)

• We had SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$. Let B' = b.

 $dX_t = b(X_t)dt + dW_t.$

• We had SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$. Let B' = b.

$$dX_t = b(X_t)dt + dW_t.$$

► Zvonkin–Veretennikov's idea: let f be arbitrary smooth function. Let $Y_t := f(X_t)$. Then by Ito's formula

$$dY_t = df(X_t) = [\frac{1}{2}f''(X_t) + f'(X_t)b(X_t)]dt + f'(X_t)dW_t.$$

• We had SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$. Let B' = b.

$$dX_t = b(X_t)dt + dW_t.$$

► Zvonkin–Veretennikov's idea: let f be arbitrary smooth function. Let $Y_t := f(X_t)$. Then by Ito's formula

$$dY_t = df(X_t) = [\frac{1}{2}f''(X_t) + f'(X_t)b(X_t)]dt + f'(X_t)dW_t.$$

Choose f such that $\frac{1}{2}f'' + f'b = 0$. Then the SDE for Y will have no drift.

• We had SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$. Let B' = b.

$$dX_t = b(X_t)dt + dW_t.$$

► Zvonkin–Veretennikov's idea: let f be arbitrary smooth function. Let $Y_t := f(X_t)$. Then by Ito's formula

$$dY_t = df(X_t) = [\frac{1}{2}f''(X_t) + f'(X_t)b(X_t)]dt + f'(X_t)dW_t.$$

- Choose f such that $\frac{1}{2}f'' + f'b = 0$. Then the SDE for Y will have no drift.
- One can take

$$f(x):=\int_0^x e^{-2B(y)}\,dy.$$

Then f' > 0 everywhere, f is invertible and f ∈ C^{γ+2}.
 We have

$$dY_t = f' \circ f^{-1}(Y_t) dW_t.$$

$$dX_t = b(X_t)dt + dW_t. \tag{*}$$

$$dY_t = f' \circ f^{-1}(Y_t) dW_t. \tag{**}$$

$$Y_t = f(X_t); \quad f(x) := \int_0^x e^{-2B(y)} dy.$$

- ► The function f' ∘ f⁻¹ is in C^{γ+1}. This SDE has a unique strong solution whenever γ + 1 > 1/2 (in particular if b is bounded).
- ▶ Thus if X and \widetilde{X} solve (*), then $f(X_t)$ and $f(\widetilde{X}_t)$ solve (**). By uniqueness, $f(X_t) = f(\widetilde{X}_t)$, and thus $X_t = \widetilde{X}_t$.

Zvonkin's method: summary

We want to say something "nice" about SDE

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t.$$

- Zvonkin's idea: apply to (t, X_t) a certain "nice" one-to-one mapping (t, x) → f(t, x).
- We pick f such that the new process Y_t := f(t, X_t) has "good" drift and diffusion

$$dY_t = \widetilde{b}(Y_t)dt + \widetilde{\sigma}(Y_t)dW_t.$$

- If this new SDE has uniqueness/flow property/etc then so does the old SDE.
- The method is very robust but relies on a good Ito formula + careful PDE estimates for f.
- Challenging, but possible if b is a distribution (see Athreya, B., Mytnik, 2018).
- Does not work for SPDEs or SDEs driven by fBM.

Proof strategy 2: new stochastic sewing approach

• We had 1D SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$.

$$dX_t = b(X_t)dt + dW_t.$$

$$\|Z_t\|_{L_{\rho}} = \left\|\int_0^t [b(X_s + Z_s) - b(X_s)]ds\right\|_{L_{\rho}}$$

• We had 1D SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$.

$$dX_t = b(X_t)dt + dW_t.$$

$$\begin{aligned} \|Z_t\|_{L_p} &= \left\|\int_0^t [b(X_s+Z_s)-b(X_s)]ds\right\|_{L_p} \\ &\leqslant \int_0^t |Z_s|^\gamma ds \end{aligned}$$

• We had 1D SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$.

$$dX_t = b(X_t)dt + dW_t$$

$$\|Z_t\|_{L_p} = \left\|\int_0^t [b(X_s + Z_s) - b(X_s)]ds\right\|_{L_p}$$

• We had 1D SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$.

$$dX_t = b(X_t)dt + dW_t.$$

$$\|Z_t\|_{L_p} = \left\|\int_0^t [b(X_s + Z_s) - b(X_s)]ds\right\|_{L_p}$$

$$\leqslant \int_0^t |Z_s|^{\gamma} ds$$

$$\stackrel{???}{\leqslant} Ct^{\delta} \sup_{s \in [0,t]} \|Z_s\|_{L_p}$$

• We had 1D SDE with "bad" drift $b \in C^{\gamma}$, $\gamma < 1$.

$$dX_t = b(X_t)dt + dW_t.$$

and two solutions X and \widetilde{X} . $Z := \widetilde{X} - X$. Then we want to show something like this

$$\|Z_t\|_{L_p} = \left\|\int_0^t [b(X_s + Z_s) - b(X_s)]ds\right\|_{L_p}$$

$$\leq \int_0^t |Z_s|^{\gamma} ds$$

$$\stackrel{???}{\leq} Ct^{\delta} \sup_{s \in [0,t]} \|Z_s\|_{L_p}$$

At least we want to show that

$$\left\|\int_0^t [b(W_s+z)-b(W_s)]ds\right\|_{L_p} \leqslant Ct^{\delta}|z|.$$

Sewing Lemma of Gubinelli

- ▶ Let $f \in C^{\alpha}$, $g \in C^{\beta}$. Then it is well–known that $\int fdg$ exists and can be defined as a Riemann integral if $\alpha + \beta > 1$.
- This can be proved using sewing lemma.
- ▶ Fix T > 0 and let $A_{st} \in \mathbb{R}$, $0 \leq s \leq t \leq T$ are given.
- ► For $0 \leq s \leq u \leq t \leq T$ define $\delta A_{sut} := A_{st} A_{su} A_{ut}$.

Sewing Lemma of Gubinelli

- ▶ Let $f \in C^{\alpha}$, $g \in C^{\beta}$. Then it is well–known that $\int fdg$ exists and can be defined as a Riemann integral if $\alpha + \beta > 1$.
- This can be proved using sewing lemma.
- Fix T > 0 and let $A_{st} \in \mathbb{R}$, $0 \leq s \leq t \leq T$ are given.
- ► For $0 \leq s \leq u \leq t \leq T$ define $\delta A_{sut} := A_{st} A_{su} A_{ut}$.

Theorem (Gubinelli, 2004)

Suppose that there exists a constant $\Gamma>0$ such that for any $0\leqslant s\leqslant u\leqslant t\leqslant T$ one has

$$|\delta A_{sut}| \leqslant \Gamma |t-s|^{1+\varepsilon}.$$

Then there exists a unique process $\mathcal{A}\colon [0,T]\to \mathbb{R}$ such that $\mathcal{A}_0=0$ and

$$|\mathcal{A}_t - \mathcal{A}_s - \mathcal{A}_{st}| \leqslant C\Gamma |t-s|^{1+\varepsilon}, \quad 0 \leqslant s \leqslant t \leqslant T.$$

Sewing Lemma of Gubinelli

- ▶ Let $f \in C^{\alpha}$, $g \in C^{\beta}$. Then it is well–known that $\int fdg$ exists and can be defined as a Riemann integral if $\alpha + \beta > 1$.
- This can be proved using sewing lemma.
- Fix T > 0 and let $A_{st} \in \mathbb{R}$, $0 \leq s \leq t \leq T$ are given.
- ► For $0 \leq s \leq u \leq t \leq T$ define $\delta A_{sut} := A_{st} A_{su} A_{ut}$.

Theorem (Gubinelli, 2004)

Suppose that there exists a constant $\Gamma>0$ such that for any $0\leqslant s\leqslant u\leqslant t\leqslant T$ one has

$$|\delta A_{sut}| \leqslant \Gamma |t-s|^{1+\varepsilon}.$$

Then there exists a unique process $\mathcal{A}\colon [0,T]\to \mathbb{R}$ such that $\mathcal{A}_0=0$ and

$$|\mathcal{A}_t - \mathcal{A}_s - \mathcal{A}_{st}| \leqslant C \Gamma |t-s|^{1+\varepsilon}, \quad 0 \leqslant s \leqslant t \leqslant T.$$

Furthermore, $A_t = \lim \sum A_{t_i, t_{i+1}}$.

Young integral

• Recall that if for
$$0 \leqslant s \leqslant u \leqslant t \leqslant T$$

$$|\delta A_{sut}| = |A_{st} - A_{su} - A_{ut}| \leqslant \Gamma |t - s|^{1+\varepsilon},$$

then $\lim \sum A_{t_i,t_{i+1}}$ exists.

Young integral

• Recall that if for $0 \leq s \leq u \leq t \leq T$

$$|\delta A_{sut}| = |A_{st} - A_{su} - A_{ut}| \leqslant \Gamma |t - s|^{1+\varepsilon},$$

then $\lim \sum A_{t_i, t_{i+1}}$ exists. • Let $f \in C^{\alpha}$, $g \in C^{\beta}$. We want to define $\int f dg$. • Set $A_{st} := f_s(g_t - g_s)$. • Then $|\delta A_{sut}| = |(f_s - f_u)(g_t - g_u)| \leq ||f||_{C^{\alpha}} ||g||_{C^{\beta}} (t - s)^{\alpha + \beta}$. • Thus, by SL, if $\alpha + \beta > 1$, then $\int f dg$ is well-defined.

▶ Does not work for $\int W_s dW_s$.

- Recall, SL needs |δA_{sut}| ≤ Γ|t − s|^{1+ε}. This does not hold for stochastic integrals.
- Fix now T > 0, $p \ge 2$ and filtration $(\mathcal{F}_s)_{s \le T}$. We will write $\mathsf{E}^s[\ldots] := \mathsf{E}[\ldots |\mathcal{F}_s]$.
- ▶ Let A_{st} , $0 \leq s \leq t \leq T$, be an \mathcal{F}_t measurable random variable.

- Recall, SL needs |δA_{sut}| ≤ Γ|t − s|^{1+ε}. This does not hold for stochastic integrals.
- Fix now T > 0, $p \ge 2$ and filtration $(\mathcal{F}_s)_{s \le T}$. We will write $\mathsf{E}^s[\ldots] := \mathsf{E}[\ldots |\mathcal{F}_s]$.
- ▶ Let A_{st} , $0 \leq s \leq t \leq T$, be an \mathcal{F}_t measurable random variable.

Theorem (Le, 2018)

Suppose that there exist constants $\Gamma_1,\Gamma_2>0$ such that for any $0\leqslant s\leqslant u\leqslant t\leqslant T$ one has

 $\|\mathsf{E}^{s}\delta A_{sut}\|_{L_{p}} \leqslant \Gamma_{1}|t-s|^{1+\varepsilon};$

- Recall, SL needs |δA_{sut}| ≤ Γ|t − s|^{1+ε}. This does not hold for stochastic integrals.
- Fix now T > 0, $p \ge 2$ and filtration $(\mathcal{F}_s)_{s \le T}$. We will write $\mathsf{E}^s[\ldots] := \mathsf{E}[\ldots |\mathcal{F}_s]$.
- ▶ Let A_{st} , $0 \leq s \leq t \leq T$, be an \mathcal{F}_t measurable random variable.

Theorem (Le, 2018)

Suppose that there exist constants $\Gamma_1,\Gamma_2>0$ such that for any $0\leqslant s\leqslant u\leqslant t\leqslant T$ one has

 $\|\mathsf{E}^{\mathsf{s}}\delta A_{sut}\|_{L_p} \leqslant \Gamma_1 |t-s|^{1+\varepsilon}; \quad \|\delta A_{sut}\|_{L_p} \leqslant \Gamma_2 |t-s|^{1/2+\varepsilon}.$

- Recall, SL needs |δA_{sut}| ≤ Γ|t − s|^{1+ε}. This does not hold for stochastic integrals.
- Fix now T > 0, $p \ge 2$ and filtration $(\mathcal{F}_s)_{s \le T}$. We will write $\mathsf{E}^s[\ldots] := \mathsf{E}[\ldots |\mathcal{F}_s]$.
- ▶ Let A_{st} , $0 \leq s \leq t \leq T$, be an \mathcal{F}_t measurable random variable.

Theorem (Le, 2018)

Suppose that there exist constants $\Gamma_1,\Gamma_2>0$ such that for any $0\leqslant s\leqslant u\leqslant t\leqslant T$ one has

$$\|\mathsf{E}^{\mathsf{s}}\delta A_{\mathsf{sut}}\|_{L_p}\leqslant \mathsf{\Gamma}_1|t-\mathsf{s}|^{1+\varepsilon};\quad \|\delta A_{\mathsf{sut}}\|_{L_p}\leqslant \mathsf{\Gamma}_2|t-\mathsf{s}|^{1/2+\varepsilon}$$

Then there exists a unique process $\mathcal{A} \colon [0, T] \to \mathbb{R}$ such that $\mathcal{A}_0 = 0, \ \mathcal{A}_t$ is \mathcal{F}_t measurable and

$$\begin{aligned} \|\mathsf{E}^{s}[\mathcal{A}_{t}-\mathcal{A}_{s}-\mathcal{A}_{st}]\|_{L_{p}} \leqslant C\Gamma_{1}|t-s|^{1+\varepsilon} \\ \|\mathcal{A}_{t}-\mathcal{A}_{s}-\mathcal{A}_{st}\|_{L_{p}} \leqslant C\Gamma_{2}|t-s|^{1/2+\varepsilon}. \end{aligned}$$

Furthermore, $A_t = \lim \sum A_{t_i, t_{i+1}}$ in L_p .

Ito integral

Recall that if

 $\|\mathsf{E}^{\mathsf{s}}\delta A_{\mathsf{sut}}\|_{L_p} \leqslant \Gamma_1 |t-s|^{1+\varepsilon}; \quad \|\delta A_{\mathsf{sut}}\|_{L_p} \leqslant \Gamma_2 |t-s|^{1/2+\varepsilon}.$

then $\lim \sum A_{t_i,t_{i+1}}$ exists in L_p . • Let $f \in C^{\alpha}$. We want to define $\int f(W)dW$. • Set $A_{st} := f(W_s)(W_t - W_s)$. • Then $\delta A_{sut} = (f(W_s) - f(W_u))(W_t - W_u)$. • We have $\mathsf{E}^s[\delta A_{sut}] = 0$; $\|\delta A_{sut}\|_{L_p} \leq C \|f\|_{C^{\gamma}} |t - s|^{1/2 + \gamma/2}$.

▶ Thus, by SSL, if $\gamma > 0$, then $\int f(W) dW$ is well-defined.

 $\blacktriangleright \ \ \, {\rm We \ want \ to \ proof \ that \ for \ } b \in \mathcal{C}^\gamma$

$$\left\|\int_0^t [b(W_s+z)-b(W_s)]ds\right\|_{L_p} \leqslant Ct^{\delta}|z|.$$

We want to proof that for
$$b \in \mathcal{C}^{\gamma}$$
$$\big\| \int_0^t [b(W_s + z) - b(W_s)] ds \big\|_{L_p} \leqslant C t^{\delta} |z|.$$

• Set
$$A_{st} := \mathsf{E}^{s}[\int_{s}^{t} (b(W_{r}+z) - b(W_{r}))dr]$$
. Then

$\delta A_{sut} = \mathsf{E}^{s} \left[\int_{u}^{t} (b(W_{r}+z) - b(W_{r}))dr \right] - \mathsf{E}^{u} \left[\int_{u}^{t} (b(W_{r}+z) - b(W_{r}))dr \right].$

We want to proof that for
$$b \in C^{\gamma}$$

 $\left\| \int_{0}^{t} [b(W_{s} + z) - b(W_{s})] ds \right\|_{L_{p}} \leq Ct^{\delta} |z|.$

• Set
$$A_{st} := \mathsf{E}^{s}[\int_{s}^{t} (b(W_{r}+z) - b(W_{r}))dr]$$
. Then

$\delta A_{sut} = \mathsf{E}^{s} [\int_{u}^{t} (b(W_{r} + z) - b(W_{r}))dr] - \mathsf{E}^{u} [\int_{u}^{t} (b(W_{r} + z) - b(W_{r}))dr].$

• We have
$$\mathsf{E}^{s}[\delta A_{sut}] = 0$$
; $\|A_{st}\|_{L_{p}} \leq C \|b\|_{\mathcal{C}^{\gamma}} |z| |t-s|^{1/2+\gamma/2}$.

We want to proof that for
$$b \in C^{\gamma}$$

 $\left\| \int_{0}^{t} [b(W_{s} + z) - b(W_{s})] ds \right\|_{L_{p}} \leq Ct^{\delta} |z|.$

• Set
$$A_{st} := \mathsf{E}^{s}[\int_{s}^{t} (b(W_{r}+z) - b(W_{r}))dr]$$
. Then

$\delta A_{sut} = \mathsf{E}^{s} \left[\int_{u}^{t} (b(W_{r}+z) - b(W_{r}))dr \right] - \mathsf{E}^{u} \left[\int_{u}^{t} (b(W_{r}+z) - b(W_{r}))dr \right].$

- We have $\mathsf{E}^{s}[\delta A_{sut}] = 0$; $\|A_{st}\|_{L_{p}} \leq C \|b\|_{\mathcal{C}^{\gamma}}|z||t-s|^{1/2+\gamma/2}$.
- Thus, by SSL, if $\gamma > 0$, then $\mathcal{A}_t := \int_0^t [b(W_s + z) b(W_s)] ds$ and

$$\left\|\int_{0}^{t} [b(W_{s}+z)-b(W_{s})]ds\right\|_{L_{p}} = \|\mathcal{A}_{t}-\mathcal{A}_{s}\|_{L_{p}} \leq Ct^{1/2+\gamma/2}|z|.$$

In general, one has the following "Krylov-type" bound. Theorem (Athreya, B., Le, Mytnik, 2019) Let $b \in C^{\gamma}$, $\gamma > 0$. Let ψ, φ be a.s. Lipschitz functions. Then

$$\begin{split} \left\|\int_{s}^{t} [b(W_{r}+\psi_{r})-b(W_{r}+\varphi_{r})]ds\right\|_{L_{p}} \\ \leqslant C\|b\|_{\mathcal{C}^{\gamma}}\sup_{r\in[s,t]}\|\psi_{r}-\varphi_{r}\|_{L_{p}}|t-s|^{1/2+\gamma/2}+o(t-s). \end{split}$$

$$\begin{split} \left\|\int_{s}^{t} [b(W_{r}+\psi_{r})-b(W_{r}+\varphi_{r})]ds\right\|_{L_{p}} \\ \leqslant C\|b\|_{\mathcal{C}^{\gamma}}\sup_{r\in[s,t]}\|\psi_{r}-\varphi_{r}\|_{L_{p}}|t-s|^{1/2+\gamma/2}+o(t-s). \end{split}$$

Now we can finish the proof of uniqueness. Let X, \widetilde{X} be solutions to $dX_t = b(X_t)dt + dW_t$.

• Put
$$\psi_t := \int_0^t b(X_s) \, ds$$
, $\widetilde{\psi}_t := \int_0^t b(\widetilde{X}_s) \, ds$.

• Then
$$X = W + \psi$$
, $X = W + \psi$.

$$\begin{split} \left\|\int_{s}^{t} [b(W_{r}+\psi_{r})-b(W_{r}+\varphi_{r})]ds\right\|_{L_{\rho}} \\ \leqslant C\|b\|_{\mathcal{C}^{\gamma}}\sup_{r\in[s,t]}\|\psi_{r}-\varphi_{r}\|_{L_{\rho}}|t-s|^{1/2+\gamma/2}+o(t-s). \end{split}$$

Now we can finish the proof of uniqueness. Let X, X be solutions to dX_t = b(X_t)dt + dW_t.

• Put
$$\psi_t := \int_0^t b(X_s) ds$$
, $\widetilde{\psi}_t := \int_0^t b(\widetilde{X}_s) ds$.

• Then
$$X = W + \psi$$
, $\widetilde{X} = W + \widetilde{\psi}$.

We get

$$\|X_t - \widetilde{X}_t\|_{L_p} = \|\psi_t - \widetilde{\psi}_t\|_{L_p} \leq Ct^{1/2+\gamma/2} \sup_{r \leq t} \|\psi_r - \widetilde{\psi}_r\|_{L_p}.$$

• By taking t small enough we get $X = \widetilde{X}$.

Rate of convergence for Euler scheme

$$\begin{split} \left\| \int_{s}^{t} \left[b(W_{r} + \psi_{r}) - b(W_{r} + \varphi_{r}) \right] ds \right\|_{L_{p}} \\ &\leqslant C \|b\|_{\mathcal{C}^{\gamma}} \sup_{r \in [s,t]} \|\psi_{r} - \varphi_{r}\|_{L_{p}} |t - s|^{1/2 + \gamma/2} + o(t - s). \\ & \text{Let } X^{n} \text{ solve } dX_{t}^{n} = b(X_{\kappa_{n}(t)}^{n}) dt + dW_{t}. \\ & \text{Put } \psi_{t}^{n} := \int_{0}^{t} b(X_{s}^{n}) ds. \\ & \text{Then } X = W + \psi, \ X^{n} = W + \psi^{n} + O(n^{-1/2 - \gamma/2}). \end{split}$$

Rate of convergence for Euler scheme

$$\begin{split} \left\| \int_{s}^{t} [b(W_{r} + \psi_{r}) - b(W_{r} + \varphi_{r})] ds \right\|_{L_{p}} \\ &\leq C \|b\|_{\mathcal{C}^{\gamma}} \sup_{r \in [s,t]} \|\psi_{r} - \varphi_{r}\|_{L_{p}} |t - s|^{1/2 + \gamma/2} + o(t - s). \end{split}$$
Let X^{n} solve $dX_{t}^{n} = b(X_{\kappa_{n}(t)}^{n}) dt + dW_{t}.$
Put $\psi_{t}^{n} := \int_{0}^{t} b(X_{s}^{n}) ds.$
Then $X = W + \psi, X^{n} = W + \psi^{n} + O(n^{-1/2 - \gamma/2}).$
We get

$$\|\psi_t - \psi_t^n\|_{L_p} \leq Ct^{1/2 + \gamma/2} \sup_{r \leq t} \|\psi_r - \psi_r\|_{L_p} + Cn^{-1/2 - \gamma/2}$$

► This implies (B., Dareiotis, Gerencser, 2019)

$$\|X_t - X_t^n\|_{L_p} \leqslant Cn^{-1/2 - \gamma/2}$$

Remarks

- We see that SSL approach is quite general. It does not rely on a process being a semimartingale, or on careful PDE estimates.
- However it is not very robust (yet!) For example, for H > 1/2 to get the rate in the Euler scheme, one has to develop a new version of SSL (B., Dareiotis, Gerencser, 2019).
- Similar approach works for SPDEs (Athreya, B., Le, Mytnik, 2019) $\frac{\partial u(t,x)}{\partial t} = \frac{1}{2} \frac{\partial^2 u(t,x)}{\partial x^2} + b(u(t,x)) + \dot{W}(t,x), \quad t \ge 0, \ x \in \mathbb{R}.$
- One requires a new version SSL with propagators which is inspired by SL with propagators of Gubinelli, Tindel, 2010.
- With this new SSL in hand one get uniqueness for b ∈ C^γ, γ > −1. Work in progress: δ-function
- Work in progress with Sasha Shaposhnikov: Bass-Burdzy conjecture on local time of BM along the non-smooth curves.

SDEs with distributional drift

Distributional drift

Let's go back to the SDE

$$dX_t = b(X_t)dt + dW_t$$

and to the standard concept of uniqueness (strong uniqueness).

- Assume now that b is not a function, but just a distribution from the Hölder-Besov space C^γ, γ < 0.</p>
- Then this equation is not well-posed in the classical sense: what is b(X_t)?

Definition of a solution

$$X_t = x + \int_0^t b(X_s) ds + W_t, \quad t \in [0, T].$$
 (*)

Definition (Bass, Chen, 2000; Athreya, B., Mytnik, 2018) We say that $X = (X_t)_{t \in [0, T]}$ solves SDE (*) if there exists a continuous $A = (A_t)_{t \in [0, T]}$ such that:

1. $X_t = x + A_t + W_t$, $t \in [0, T]$;

Definition of a solution

$$X_t = x + \int_0^t b(X_s) ds + W_t, \quad t \in [0, T].$$
 (*)

Definition (Bass, Chen, 2000; Athreya, B., Mytnik, 2018) We say that $X = (X_t)_{t \in [0,T]}$ solves SDE (*) if there exists a continuous $A = (A_t)_{t \in [0,T]}$ such that:

- 1. $X_t = x + A_t + W_t$, $t \in [0, T]$;
- 2. For any approximating sequence $(b_n)_{n \in \mathbb{Z}_+}$ such that $b_n \in \mathcal{C}^{\infty}$ and $||b_n - b||_{\gamma} \to 0$ we have $A_t^n := \int_0^t b_n(X_s) \, ds \to A_t$, as $n \to \infty$

in probability uniformly over [0, T].

Definition of a solution

$$X_t = x + \int_0^t b(X_s) ds + W_t, \quad t \in [0, T].$$
 (*)

Definition (Bass, Chen, 2000; Athreya, B., Mytnik, 2018) We say that $X = (X_t)_{t \in [0,T]}$ solves SDE (*) if there exists a continuous $A = (A_t)_{t \in [0,T]}$ such that:

- 1. $X_t = x + A_t + W_t$, $t \in [0, T]$;
- 2. For any approximating sequence $(b_n)_{n \in \mathbb{Z}_+}$ such that $b_n \in \mathcal{C}^{\infty}$ and $||b_n - b||_{\gamma} \to 0$ we have $A_t^n := \int_0^t b_n(X_s) \, ds \to A_t$, as $n \to \infty$

in probability uniformly over [0, T].

3. For any $\kappa < (1 + \frac{\gamma}{2}) \land 1$ there exists $C = C(T, \kappa) > 0$ such that

$$\mathsf{E}|A_t - A_s|^2 \leqslant C|t - s|^{2\kappa}, \quad s,t \in [0,T].$$

Bass-Chen result

$$X_t = x + \int_0^t b(X_s) ds + W_t, \quad t \in [0, T].$$
 (*)

Theorem (Bass, Chen, 2000) In case d = 1 SDE (*) has a unique strong solution whenever $b \in C^{\gamma}$, $\gamma > -1/2$.

► Work in progress (B., Mytnik): the constraint γ > −1/2 is optimal.

Regularization for α -stable noise

What if instead of W_t we have a pure jump process L_t? Will we have any regularization?

$$dX_t = b(X_t)dt + dL_t$$

- No improvement in regularity if L is the Poisson process: SDE will already have multiple solutions while still "waiting" for the first jump of L.
- L should have "sufficiently many" small jumps.
- The bigger the intensity of the small jumps the rougher drift b can be.
- We take *L* to be an α -stable process, $\alpha \in (0, 2)$.

Regularization for α -stable noise

$$dX_t = b(X_t)dt + dL_t$$

- Tanaka, Tsuchiya, Watanabe, 1975: there exists a unique strong solution in d = 1 if b is measurable bounded and α > 1.
- ▶ Priola, 2016: PBP uniqueness for $\gamma > 1 \alpha/2$, $d \ge 1$.
- What if $\gamma < 0$?

Regularization for α -stable noise

$$dX_t = b(X_t)dt + dL_t$$

- Tanaka, Tsuchiya, Watanabe, 1975: there exists a unique strong solution in d = 1 if b is measurable bounded and α > 1.
- ▶ Priola, 2016: PBP uniqueness for $\gamma > 1 \alpha/2$, $d \ge 1$.
- ► What if *γ* < 0?</p>

Theorem (Athreya, B., Mytnik)

In the case d = 1 this SDE has a unique solution if $b \in C^{\gamma}$, $\gamma > 1/2 - \alpha/2$.

This extends the Bass-Chen result to the stable case.

Summary

- Using classical PDE approach one can get results on uniqueness of solutions of SDEs with bad drift.
- Even when the drift is a distribution (and thus SDE is not a semi-martingale).
- Stochastic sewing is an alternative approach which does not require a good Ito formula.
- Using SSL we got uniqueness of solutions to the stochastic heat equation with bad drift.
- We also obtained rate of convergence for the Euler scheme for SDEs driven by fBM.
- Work in progress. Rate of convergence for the Euler scheme for SDEs driven by α-stable noise. We are planning to improve Mikulevicius–Xu, 2016. for the stochasic heat equation with distributional drift.
- Big open question: Weak uniqueness for SDEs driven by fBM.

O. BUTKOVSKY, L. MYTNIK (2019). Regularization by noise and flows of solutions for a stochastic heat equation.

Annals of Probability, 47, 165-212.

S. ATHREYA, O. BUTKOVSKY, L. MYTNIK (2018). Strong existence and uniqueness for stable stochastic differential equations with distributional drift.

To appear in Annals of Probability, arXiv:1801.03473.

O. BUTKOVSKY, K. DAREIOTIS, M. GERENCSÉR (2019). Approximation of SDEs – a stochastic sewing approach. arXiv:1909.07961.

Third Haifa Probability School

for PhD students and postdocs

- 24 February 28 February 2020.
- Courses by:
 - Ivan Corwin (Columbia University)
 - Grégory Miermont (ENS Lyon)
 - Kostya Khanin (U. of Toronto)
 - Christina Goldschmidt (Oxford)
- Travel support available!
- Details: hps3.net.technion.ac.il