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Dareiotis, Máté Gerencsér, Khoa Le, Leonid Mytnik

Weierstrass Institute

03 December 2019



Problem
Consider an ODE with a “bad” drift

dXt = b(Xt)dt, t > 0,

or a PDE with a “bad” drift

∂u(t, x)

∂t
=

1

2

∂2u(t, x)

∂x2
+ b(u(t, x)), t > 0, x ∈ R.

I If the drift is non smooth (e.g., b(s) = 2
√
|s|), then these

ODE & PDE might have multiple solutions.

I Will the ODE/PDE regularize if we add random noise? Will it
then have a unique solution?

I What about flow?

I Can we construct this solution numerically? Will the Euler
method work?
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Outline

I Big picture: Regularization by noise for ODEs with different
type of noise

I Classical method: PDE approach of Zvonkin and Veretennikov

I New method: Stochastic sewing

I Further directions
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Big picture
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ODEs

I We begin with an ODE

dXt = b(Xt)dt, t > 0.

I If b is Lipschitz, then this ODE has a unique solution.

I If b ∈ Cγ , γ < 1, then this ODE has a solution but it might
be non-unique (ẋ =

√
|x |, x(0) = 0).

I If b is just bounded, then this ODE might have no solutions
(ẋ = − sign x , x(0) = 0, where sign(0) := 1).
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SDEs
I Now let us add noise and consider an SDE

dXt = b(Xt)dt + dWt , t > 0, x ∈ Rd .

Theorem (A.K. Zvonkin, 1974; A.Yu. Veretennikov, 1981)

If the drift b is measurable and bounded, then this SDE has a
unique strong solution.

I “Unique” means that if X 1 and X 2 are two adapted solutions
to this SDE, then X 1(ω) = X 2(ω) a.s.
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SDEs driven by fBM
I For some applications it is more relevant to have an ODE

driven by a fractional Brownian motion WH , H ∈ (0, 1)

dXt = b(Xt)dt + dWH
t , t > 0, x ∈ Rd .

I Recall that WH is a Gaussian process with mean 0 and
covariance EWH

t WH
s = 1

2(t2H + s2H − |t − s|2H).

I For H = 1/2 fBM is just BM; for H 6= 1/2 it is not a Markov
process nor a martingale.
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SDEs driven by α-stable noise
I Another research area is SDEs driven by α-stable process Lα,
α ∈ (0, 2)

dXt = b(Xt)dt + dLαt , t > 0, x ∈ Rd .

I Recall that Lα is a Levy process (= stationary, independent
increments) with jump measure
ν(A) := E

∑
s61 1(∆Lαs ∈ A) = cα

∫
A |x |

−1−α dx .
I It is a pure jump Markov process and E(Lαt )2 =∞ but

E|Lαt | <∞ for α > 1.
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Numerical methods
I The existence and uniqueness of solutions is a pure theoretical

result. But how can one construct the solutions on practice?
I Let n be a large integer; put κn(t) := bntc/n. Consider the

standard Euler scheme

dX n
t = b(X n

κn(t)
)dt + dWH

t , t > 0, x ∈ Rd .

Theorem (B., Dareiotis, Gerencsér, 2019)

Let α ∈ [0, 1] satisfy α > 1− 1/(2H). Suppose that b ∈ Cα. Then
there exists a random variable K (ω) such that for all n ∈ N one has

sup
t∈[0,1]

|Xt − X n
t | 6 K (ω)

1

n1/2+α(H∧(1/2))
.

I This result is optimal for fBM. For H = 1/2 the rate is
1/2 + α/2 and do not go to zero as α→ 0.
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Naive approach
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Naive approach
I To fix the ideas consider 1D SDE with “bad” drift b ∈ Cγ ,
γ < 1.

dXt = b(Xt)dt + dWt .

I Let us try to prove strong uniqueness of solutions to this
equation. Let X and X̃ be two solutions to this equation.
Denote Z := X̃ − X . We have

|Zt | =
∣∣∫ t

0
[b(X̃s)− b(Xs)]ds

∣∣
=
∣∣∫ t

0
[b(Xs + Zs)− b(Xs)]ds

∣∣
6
∫ t

0
|Zs |γds.

I We would like to use the Gronwall inequality but cannot.
Thus, this method does not work for γ < 1 :-(
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Proof strategy 1:
classical PDE approach

(aka the Zvonkin transformation)
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Zvonkin’s transformation method
I We had SDE with “bad” drift b ∈ Cγ , γ < 1. Let B ′ = b.

dXt = b(Xt)dt + dWt .

I Zvonkin–Veretennikov’s idea: let f be arbitrary smooth
function. Let Yt := f (Xt). Then by Ito’s formula

dYt = df (Xt) = [
1

2
f ′′(Xt) + f ′(Xt)b(Xt)]dt + f ′(Xt)dWt .

I Choose f such that 1
2 f
′′ + f ′b = 0. Then the SDE for Y will

have no drift.
I One can take

f (x) :=

∫ x

0
e−2B(y) dy .

I Then f ′ > 0 everywhere, f is invertible and f ∈ Cγ+2.
I We have

dYt = f ′ ◦ f −1(Yt)dWt .
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Zvonkin’s transformation method

dXt = b(Xt)dt + dWt . (∗)
dYt = f ′ ◦ f −1(Yt)dWt . (∗∗)

Yt = f (Xt); f (x) :=

∫ x

0
e−2B(y) dy .

I The function f ′ ◦ f −1 is in Cγ+1. This SDE has a unique
strong solution whenever γ + 1 > 1/2 (in particular if b is
bounded).

I Thus if X and X̃ solve (∗), then f (Xt) and f (X̃t) solve (∗∗).
By uniqueness, f (Xt) = f (X̃t), and thus Xt = X̃t .
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Zvonkin’s method: summary
I We want to say something “nice” about SDE

dXt = b(Xt)dt + σ(Xt)dWt .

I Zvonkin’s idea: apply to (t,Xt) a certain “nice” one-to-one
mapping (t, x) 7→ f (t, x).

I We pick f such that the new process Yt := f (t,Xt) has
“good” drift and diffusion

dYt = b̃(Yt)dt + σ̃(Yt)dWt .

I If this new SDE has uniqueness/flow property/etc then so
does the old SDE.

I The method is very robust but relies on a good Ito formula +
careful PDE estimates for f .

I Challenging, but possible if b is a distribution (see Athreya,
B., Mytnik, 2018).

I Does not work for SPDEs or SDEs driven by fBM.
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Proof strategy 2:
new stochastic sewing approach
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Naive approach: revisited
I We had 1D SDE with “bad” drift b ∈ Cγ , γ < 1.

dXt = b(Xt)dt + dWt .

and two solutions X and X̃ . Z := X̃ − X . Then we want to
show something like this

‖Zt‖Lp =
∥∥∫ t

0
[b(Xs + Zs)− b(Xs)]ds

∥∥
Lp

I At least we want to show that∥∥∫ t

0
[b(Ws + z)− b(Ws)]ds

∥∥
Lp

6 Ctδ|z |.
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Sewing Lemma of Gubinelli
I Let f ∈ Cα, g ∈ Cβ. Then it is well–known that

∫
fdg exists

and can be defined as a Riemann integral if α + β > 1.

I This can be proved using sewing lemma.

I Fix T > 0 and let Ast ∈ R, 0 6 s 6 t 6 T are given.

I For 0 6 s 6 u 6 t 6 T define δAsut := Ast − Asu − Aut .

Theorem (Gubinelli, 2004)

Suppose that there exists a constant Γ > 0 such that for any
0 6 s 6 u 6 t 6 T one has

|δAsut | 6 Γ|t − s|1+ε.
Then there exists a unique process A : [0,T ]→ R such that
A0 = 0 and

|At −As − Ast | 6 CΓ|t − s|1+ε, 0 6 s 6 t 6 T .

Furthermore, At = lim
∑

Ati ,ti+1 .
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Young integral

I Recall that if for 0 6 s 6 u 6 t 6 T

|δAsut | = |Ast − Asu − Aut | 6 Γ|t − s|1+ε,

then lim
∑

Ati ,ti+1 exists.

I Let f ∈ Cα, g ∈ Cβ. We want to define
∫
fdg .

I Set Ast := fs(gt − gs).

I Then |δAsut | = |(fs − fu)(gt − gu)| 6 ‖f ‖Cα‖g‖Cβ (t − s)α+β.

I Thus, by SL, if α + β > 1, then
∫
fdg is well–defined.

I Does not work for
∫
WsdWs .
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Stochastic Sewing Lemma of Le
I Recall, SL needs |δAsut | 6 Γ|t − s|1+ε. This does not hold for

stochastic integrals.
I Fix now T > 0, p > 2 and filtration (Fs)s6T . We will write

Es [. . .] := E[. . . |Fs ].
I Let Ast , 06s6 t6 T , be an Ft measurable random variable.

Theorem (Le, 2018)

Suppose that there exist constants Γ1, Γ2 > 0 such that for any
0 6 s 6 u 6 t 6 T one has

‖EsδAsut‖Lp 6 Γ1|t − s|1+ε;

‖δAsut‖Lp 6 Γ2|t − s|1/2+ε.
Then there exists a unique process A : [0,T ]→ R such that
A0 = 0, At is Ft measurable and

‖Es [At −As − Ast ]‖Lp 6 CΓ1|t − s|1+ε,
‖At −As − Ast‖Lp 6 CΓ2|t − s|1/2+ε.

Furthermore, At = lim
∑

Ati ,ti+1 in Lp.
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Ito integral

I Recall that if

‖EsδAsut‖Lp 6 Γ1|t − s|1+ε; ‖δAsut‖Lp 6 Γ2|t − s|1/2+ε.

then lim
∑

Ati ,ti+1 exists in Lp.

I Let f ∈ Cα. We want to define
∫
f (W )dW .

I Set Ast := f (Ws)(Wt −Ws).

I Then δAsut = (f (Ws)− f (Wu))(Wt −Wu).

I We have Es [δAsut ] = 0; ‖δAsut‖Lp 6 C‖f ‖Cγ |t − s|1/2+γ/2.

I Thus, by SSL, if γ > 0, then
∫
f (W )dW is well–defined.
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Back to uniqueness for SDEs

I We want to proof that for b ∈ Cγ∥∥∫ t

0
[b(Ws + z)− b(Ws)]ds

∥∥
Lp

6 Ctδ|z |.

I Set Ast := Es [
∫ t
s (b(Wr + z)− b(Wr ))dr ]. Then

δAsut

= Es [

∫ t

u
(b(Wr + z)− b(Wr ))dr ]− Eu[

∫ t

u
(b(Wr + z)− b(Wr ))dr ].

I We have Es [δAsut ] = 0; ‖Ast‖Lp 6 C‖b‖Cγ |z ||t − s|1/2+γ/2.

I Thus, by SSL, if γ > 0, then At :=
∫ t
0 [b(Ws + z)− b(Ws)]ds

and∥∥∫ t

0
[b(Ws +z)−b(Ws)]ds

∥∥
Lp

= ‖At−As‖Lp 6 Ct1/2+γ/2|z |.
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∥∥
Lp

= ‖At−As‖Lp 6 Ct1/2+γ/2|z |.
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Back to uniqueness for SDEs

I In general, one has the following “Krylov-type” bound.

Theorem (Athreya, B., Le, Mytnik, 2019)

Let b ∈ Cγ , γ > 0. Let ψ,ϕ be a.s. Lipschitz functions. Then

∥∥∫ t

s
[b(Wr + ψr )− b(Wr + ϕr )]ds

∥∥
Lp

6 C‖b‖Cγ sup
r∈[s,t]

‖ψr − ϕr‖Lp |t − s|1/2+γ/2 + o(t − s).
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Back to uniqueness for SDEs

∥∥∫ t

s
[b(Wr + ψr )− b(Wr + ϕr )]ds

∥∥
Lp

6 C‖b‖Cγ sup
r∈[s,t]

‖ψr − ϕr‖Lp |t − s|1/2+γ/2 + o(t − s).

I Now we can finish the proof of uniqueness. Let X , X̃ be
solutions to dXt = b(Xt)dt + dWt .

I Put ψt :=
∫ t
0 b(Xs) ds, ψ̃t :=

∫ t
0 b(X̃s) ds.

I Then X = W + ψ, X̃ = W + ψ̃.

I We get

‖Xt − X̃t‖Lp = ‖ψt − ψ̃t‖Lp 6 Ct1/2+γ/2 sup
r6t
‖ψr − ψ̃r‖Lp .

I By taking t small enough we get X = X̃ .
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Rate of convergence for Euler scheme

∥∥∫ t

s
[b(Wr + ψr )− b(Wr + ϕr )]ds

∥∥
Lp

6 C‖b‖Cγ sup
r∈[s,t]

‖ψr − ϕr‖Lp |t − s|1/2+γ/2 + o(t − s).

I Let X n solve dX n
t = b(X n

κn(t)
)dt + dWt .

I Put ψn
t :=

∫ t
0 b(X n

s ) ds.

I Then X = W + ψ, X n = W + ψn + O(n−1/2−γ/2).

I We get

‖ψt − ψn
t ‖Lp 6 Ct1/2+γ/2 sup

r6t
‖ψr − ψ̃r‖Lp + Cn−1/2−γ/2.

I This implies (B., Dareiotis, Gerencser, 2019)

‖Xt − X n
t ‖Lp 6 Cn−1/2−γ/2.
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Remarks
I We see that SSL approach is quite general. It does not rely on

a process being a semimartingale, or on careful PDE
estimates.

I However it is not very robust (yet!) For example, for H > 1/2
to get the rate in the Euler scheme, one has to develop a new
version of SSL (B., Dareiotis, Gerencser, 2019).

I Similar approach works for SPDEs (Athreya, B., Le, Mytnik,
2019)
∂u(t, x)

∂t
=

1

2

∂2u(t, x)

∂x2
+b(u(t, x))+Ẇ (t, x), t > 0, x ∈ R.

I One requires a new version SSL with propagators which is
inspired by SL with propagators of Gubinelli, Tindel, 2010.

I With this new SSL in hand one get uniqueness for b ∈ Cγ ,
γ > −1. Work in progress: δ-function

I Work in progress with Sasha Shaposhnikov: Bass–Burdzy
conjecture on local time of BM along the non-smooth curves.

21



SDEs with distributional drift
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Distributional drift

I Let’s go back to the SDE

dXt = b(Xt)dt + dWt

and to the standard concept of uniqueness (strong
uniqueness).

I Assume now that b is not a function, but just a distribution
from the Hölder-Besov space Cγ , γ < 0.

I Then this equation is not well–posed in the classical sense:
what is b(Xt)?
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Definition of a solution

Xt = x +

∫ t

0
b(Xs)ds + Wt , t ∈ [0,T ]. (∗)

Definition (Bass, Chen, 2000; Athreya, B., Mytnik, 2018)

We say that X = (Xt)t∈[0,T ] solves SDE (∗) if there exists a
continuous A = (At)t∈[0,T ] such that:

1. Xt = x + At + Wt , t ∈ [0,T ];

2. For any approximating sequence (bn)n∈Z+ such that bn ∈ C∞
and ‖bn − b‖γ → 0 we have

An
t :=

∫ t

0
bn(Xs) ds → At , as n→∞

in probability uniformly over [0,T ].

3. For any κ < (1 + γ
2 ) ∧ 1 there exists C = C (T , κ) > 0 such

that
E|At − As |2 6 C |t − s|2κ, s, t ∈ [0,T ].
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Bass–Chen result

Xt = x +

∫ t

0
b(Xs)ds + Wt , t ∈ [0,T ]. (∗)

Theorem (Bass, Chen, 2000)

In case d = 1 SDE (∗) has a unique strong solution whenever
b ∈ Cγ , γ > −1/2.

I Work in progress (B., Mytnik): the constraint γ > −1/2 is
optimal.
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Regularization for α-stable noise

I What if instead of Wt we have a pure jump process Lt? Will
we have any regularization?

dXt = b(Xt)dt + dLt

I No improvement in regularity if L is the Poisson process: SDE
will already have multiple solutions while still “waiting” for
the first jump of L.

I L should have “sufficiently many” small jumps.

I The bigger the intensity of the small jumps the rougher drift b
can be.

I We take L to be an α–stable process, α ∈ (0, 2).
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Regularization for α-stable noise

dXt = b(Xt)dt + dLt

I Tanaka, Tsuchiya, Watanabe, 1975: there exists a unique
strong solution in d = 1 if b is measurable bounded and
α > 1.

I Priola, 2016: PBP uniqueness for γ > 1− α/2, d > 1.

I What if γ < 0?

Theorem (Athreya, B., Mytnik)

In the case d = 1 this SDE has a unique solution if b ∈ Cγ ,
γ > 1/2− α/2.

I This extends the Bass–Chen result to the stable case.
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Summary
I Using classical PDE approach one can get results on

uniqueness of solutions of SDEs with bad drift.

I Even when the drift is a distribution (and thus SDE is not a
semi-martingale).

I Stochastic sewing is an alternative approach which does not
require a good Ito formula.

I Using SSL we got uniqueness of solutions to the stochastic
heat equation with bad drift.

I We also obtained rate of convergence for the Euler scheme for
SDEs driven by fBM.

I Work in progress. Rate of converegence for the Euler scheme
for SDEs driven by α-stable noise. We are planning to
improve Mikulevicius–Xu, 2016. for the stochasic heat
equation with distributional drift.

I Big open question: Weak uniqueness for SDEs driven by fBM.

27



O. Butkovsky, L. Mytnik (2019).
Regularization by noise and flows of solutions for a stochastic
heat equation.
Annals of Probability, 47, 165-212.

S. Athreya, O. Butkovsky, L. Mytnik (2018).
Strong existence and uniqueness for stable stochastic
differential equations with distributional drift.
To appear in Annals of Probability, arXiv:1801.03473.

O. Butkovsky, K. Dareiotis, M. Gerencsér (2019).
Approximation of SDEs – a stochastic sewing approach.
arXiv:1909.07961.

28





Third Haifa Probability School
for PhD students and postdocs

I 24 February – 28 February 2020.
I Courses by:

I Ivan Corwin (Columbia University)
I Grégory Miermont (ENS Lyon)
I Kostya Khanin (U. of Toronto)
I Christina Goldschmidt (Oxford)

I Travel support available!

I Details: hps3.net.technion.ac.il

30


