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Motivation

I Let d > 2. Consider the following stochastic differential equation :
;

dX

t

= A(X
t

)dB

t

+ b(X
t

)dt,

X0 = x œ Rd

(1.1)

where B

t

= (B1
t

, ..., B

d

t

) is a d-dimensional standard Brownian motion, b :
Rd æ Rd is a measurable function, and A : Rd æ Rd ¢ Rd is a d ◊ d matrix-
valued measurable function and satisfies

(H) A œ C(Rd) and for some c0 > 0, it holds that

| det A(x)| > c0, x œ Rd

.

I Under the above assumption and b is bounded, it is well known that for each x œ
Rd, SDE (1.1) admits a unique weak solution X

t

(x)(see [1]) . Furthermore, if A

and b have more regularities it admits a density p

t

(x, y) enjoying the following
estimates(see [2]): for any T > 0, there are constants c

i

> 0 such that for all
0 < t < T and x, y œ Rd

c1t

≠d/2
e

≠c2|x≠y|2
/t 6 p

t

(x, y) 6 c3t

≠d/2
e

≠c4|x≠y|2
/t

.

[1] Bass, R.F., Diffusions and Elliptic Operators. Springer-Verlag, New York, 1997
[2] Z.-Q. Chen, E. Hu, L. Xie, and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps.J.
Differential Equations, 263 (2017), 6576-6634.
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I Notice that B

i

t

in B

t

= (B1
t

, ..., B

d

t

) are i.i.d. 1-dimensional standard Brownian
motions.

I Naturally, we consider the standard cylindrical –-stable process L

t

= (L1
t

, ..., L

d

t

)
and the following SDE

;
dX

t

= A(X
t≠)dL

t

+ b(X
t

)dt,

X0 = x œ Rd

,

(1.2)

where L

i

t

are i.i.d. 1-dimensional standard –-stable processes.
I In fact, L

t

admits a density p

t

(x) enjoying the following estimates :
For any T > 0, there are constants c1, c2 > 0 such that for all 0 < s < t < T

and x œ Rd

c1�d

i=1
t

(
Ô

t + |x
i

|)–+1
6 p

t

(x) 6 c2�d

i=1
t

(
Ô

t + |x
i

|)–+1
.

I However, there is no result for the density estimate for X

t

. Actually, the exis-
tence of the solution X

t

and the density of X

t

are not easy questions.



Introduction Main Results Sketch of the proof

I More generality, we consider the following SDE driven by the cylindrical –-
stable process L

t

,
;

dX

x

t

=
´
Rd ‡(X

t≠, z)N(dt, dz) + b(X
t

)dt,

X

x

0 = x œ Rd

,

(1.3)

where ‡ = (‡
i

)d

i=1 : Rd ◊ Rd æ Rd is a measurable function, and N(dt, dz)
is the Poisson random measure of L

–

t

defined as follow

N((s, t], E) :=
ÿ

s<u6t

1(Lu≠Lu≠)œE

.

I Define ‹(E) := EN([0, 1], E). For simplify, we assume that for all x œ Rd and
0 < r < R < +Œ ˆ

r6|z|6R

‡(x, z)‹(dz) = 0.

Questions:

I In what condition of ‡ and b, there is a weak(or strong) solution of SDE (1.3)?
I If there is a weak solution, does the solution have a density?
I If there is a density, can we get some precise estimates for it?
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I When L

t

is a d-dimensional standard –-stable process, the infinitesimal genera-
tor of X

x

t

has the following form

L f(x) = p.v.

ˆ
Rd

f(x + ‡(x, z)) ≠ f(x)
|z|d+–

dz

= p.v.

ˆ
Rd

f(x + z) ≠ f(x)
|z|d+–

Ÿ(x, z)dz,

(1.4)

where

Ÿ(x, z) = |z|d+–

|‡≠1(x, z)|d+–

| det Ò
z

‡

≠1(x, z)|.

I When L

t

is a d-dimensional cylindrical –-stable process, which is our case, the
infinitesimal generator of X

x

t

has the following form

L f(x) =
dÿ

i=1

p.v.

ˆ
R

f(x + ‡(x, ze

i

)) ≠ f(x)
|z|1+–

dz,

where e

i

= (0, .., 1(i-th), .., 0).
I Notice that, it is impossible to find such a Ÿ in (1.4) this time.
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I Let F be the Fourier transform. The infinitesimal generator of d-dimensional
cylindrical –-stable process is

q
d

i=1(ˆ
i

ˆ

i

) –
2 with

F (
dÿ

i=1

(ˆ
i

ˆ

i

)
–
2

f)(›) = c

dÿ

i=1

|›
i

|–F (f)(›) := Â1(›)F (f)(›),

where Â1 œ C

Œ(Rd \ (fid

i=1Ri

)), where

R
i

:= {x œ Rd; x

i

= 0}.

I The infinitesimal generator of d-dimensional standard –-stable process is � –
2

with

F (�
–
2

f)(›) = c|›|–F (f)(›) := Â2(›)F (f)(›),

where Â2 œ C

Œ(Rd \ 0).
I Therefore, compared with standard –-stable process, the cylindrical one is more

difficult to be dealed with.
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Assumptions

(A‡) ‡(x, z) = A(x)z for some matrix value map A = (a
i,j

) : Rd æ Rd ¢Rd, there
is a positive number c0 such that for any x, y, › œ Rd and all i, j = 1, ..., d

c

≠1
0 |›| 6 |A(x)›| 6 c0|›|, (1.5)

|a
i,j

(x) ≠ a

i,j

(y)| 6 c0|x ≠ y|. (1.6)

(Ab

—

) For — œ [0, 1],

ÎbÎC— := sup
xœRd

|b(x)| + sup
|x≠y|”=0

|b(x) ≠ b(y)|
|x ≠ y|— < Œ. (1.7)

I If there is a solution X

x

t

of SDE (1.3), we define

P

‡,b

t

„(x) = E(„(Xx

t

)), P

‡

t

:= P

‡,0
t

.
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Well-known results

2006 (Bass-Chen)
There is a weak solution X

x

t

of (1.3) when ‡(x, z) = ‡(x)z is continuous in
variable x and b © 0.

2010 (Bass-Chen)
Assume ‡(x, z) = ‡(x)z is continuous in variable x and b © 0. For any
bounded domain D µ Rd, define ·

D

:= inf{t > 0, X

x

t

/œ D}. If any bounded
function h satisfies

h(x) = E[h(Xx

·D
)] for every x œ D,

then h is Hölder continuous in D.
2012 (Debussche-Fournier )

Assume that ‡(·, z) = ‡(·)z œ C◊1 and (Ab

—

) with some conditions of ◊1 and
◊2, the solution admits a density, and density is in some Besov space(we will
introduce below).

2017 (Chen-Zhang-Zhao)
Under the conditions (A‡) and (Ab

—

) with — œ (1≠ –

2 , 1), there is a unique strong
solution of (1.3).
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2018 (Kulczycki-Ryznar-Sztonyk)
Assume b © 0 and – œ (0, 1). Under the condition (A‡), for any “ œ (0, –),
T > 0, there is a constant C such that for all t œ (0, T ], x, y œ Rd and f œ
L

Œ(Rd)

|P ‡

t

f(x) ≠ P

‡

t

f(y)| 6 C|x ≠ y|“t

≠ “
– ÎfÎ

L

Œ
. (1.8)

For any “ œ (0,

–

d

), T > 0, there is a constant C such that for all t œ (0, T ],
x œ Rd and f œ L

Œ(Rd) fl L

1(Rd)

|P ‡

t

f(x)| 6 Ct

≠ “d
– ÎfÎ1≠“

L

Œ ÎfÎ“

L

1 . (1.9)

I Notice that they can not deal the case – œ [1, 2).
I Hölder index “ can not be 1.
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Part 2: Our main results
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Littlewood-Paley decomposition and Besov space

I Let „0 be a radial C

Œ-function on Rd with
„0(›) = 1 for › œ B1 and „0(›) = 0 for › /œ B2.

I For › = (›1, · · · , ›

n

) œ Rd and j œ N, define

„

j

(›) := „0(2≠j

›) ≠ „0(2≠(j≠1)
›).

I It is easy to see that for j œ N, „

j

(›) = „1(2≠(j≠1)
›) > 0 and

supp„

j

µ B2j+1 \ B2j≠1 ,

kÿ

j=0

„

j

(›) = „0(2≠k

›) æ 1, k æ Œ.

I Notice that {„

j

}
jœN0 is a partition of unity of

Rd = B2 fi
1

fi
jœN (B2j+1 \ B2j≠1 )

2
.
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I For given j œ N0, the block operator �
j

is defined on S Õ by

�
j

f(x) := F ≠1(„
j

F (f))(x) = F ≠1(„
j

) ú f(x)

= 2·m(j≠1)
ˆ
Rd

F ≠1(„1)(2(j≠1)(x ≠ y))f(y)dy.

I For j œ N0, by definition it is easy to see that

�
j

= �
j

Â�
j

, where Â�
j

:= �
j≠1 + �

j

+ �
j+1 with �≠1 © 0, (2.1)

and �
j

is symmetric in the sense that

È�
j

f, gÍ = Èf, �
j

gÍ.

I The cut-off low frequency operator S

k

is defined by

S

k

f :=
k≠1ÿ

j=0

�
j

f = 2dk

ˆ
Rd

„̌0(2k(x ≠ y))f(y)dy æ f. (2.2)

I We rewrite (2.2) as

f =
Œÿ

j=0

�
j

f,

which is called the Littlewood-Paley decomposition.
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�
j

= �
j

Â�
j

, where Â�
j

:= �
j≠1 + �

j

+ �
j+1 with �≠1 © 0, (2.1)

and �
j

is symmetric in the sense that

È�
j

f, gÍ = Èf, �
j

gÍ.

I The cut-off low frequency operator S

k

is defined by

S

k

f :=
k≠1ÿ

j=0

�
j

f = 2dk

ˆ
Rd

„̌0(2k(x ≠ y))f(y)dy æ f. (2.2)

I We rewrite (2.2) as

f =
Œÿ

j=0

�
j

f,

which is called the Littlewood-Paley decomposition.
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Definition 1 (Besov space)
For any s œ R, the Besov space Bs

Œ,Œ is defined by

Bs

Œ,Œ(Rd) :=
Ó

f œ S Õ(Rd) : ÎfÎBs
p,Œ := sup

j>0

!
2sjÎ�

j

fÎ
L

Œ
"

< Œ
Ô

.

Proposition 2
For any s > 0 with s /œ N,

Cs(Rd) = Bs

Œ,Œ(Rd),

where Cs2 (Rd) is the Hölder space.
Moreover, for any n œ N,

Cn(Rd) µ Bn

Œ,Œ(Rd).
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Our assumption for ‡

(H‡) There is a constant c0 > 1 such that for all x, y, z œ Rd and all ⁄ > 0

inf
ÊœSd≠1

inf
⁄>0

⁄

dÿ

i=1

|Ê · ‡(x,

e

i

⁄

)| > c

≠1
0 , (2.3)

|‡(x, z) ≠ ‡(y, z)| 6 c0|x ≠ y||z|.

c

≠1
0 |z| 6 |‡(x, z)| 6 c0|z|.

Remark 3

I Notice that condition A‡ implies condition H‡ here.

I ‡(x, z) = (2 + sinz1)z satisfies condition H‡ but not satisfies condition A‡ .
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Main Results

Theorem 4

Let – œ (0, 2) and — œ [0, 1] with – + — > 1. Assume (H‡) and one of the following
conditions holds:

(i) b = 0, — = 1;

(ii) – œ ( 1
2 , 2) and b œ C— .

Let X

t

(x) be the unique solution of SDE (1.3) and define

P

‡,b

t

Ï(x) := EÏ(X
t

(x)).
Let “ œ [0, – + – · —) and ÷ œ (≠((– + — ≠ 1) · 1), “]. For any T > 0, there is a
constant C > 0 such that for all 0 < t 6 T ,

ÎP

‡,b

t

ÏÎB“
Œ,Œ

6 C(t)
÷≠“

– ÎÏÎB÷
Œ,Œ

. (2.4)

I Notice that (2.4) reduced the restriction of the “ in (1.8)
from (0, –) to (0, – + – · —) by taking ÷ = 0. In particular, we have gradient
estimate. Moreover, we can deal with the case – > 1.

I By a way of interpolation, we also get (1.9).
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Main Results

Corollary 5

(A) Let Ï œ fi
÷<(–+—≠1)·1B≠÷

Œ,Œ. For any 0 < t, P

‡,b

t

Ï œ fl
“<–+–·—

B“

Œ,Œ
solves the following backward Kolmogorov equation: for all x œ Rd,

P

‡,b

t≠t0 Ï(x) = P

‡,b

t≠t1 Ï(x) +
ˆ

t1

t0

L ‡,b

P

‡,b

t≠s

Ï(x)ds, 0 6 t0 < t1 < t, (2.5)

where L ‡,b

u(x) := p.v.

´
(u(x + ‡(x, z)) ≠ u(x))‹(dz) + b · Òu(x).

(B) For – œ ( 1
2 , 2), the following gradient estimate holds: for 0 < t 6 T ,

ÎÒP

‡,b

t

ÏÎŒ 6 C

T

t

≠ 1
– ÎÏÎŒ. (2.6)

(C) For each t > 0, the random variable X

t

(x) admits a density p

X

t

(x, ·) with

p

X

t

(x, ·) œ fl
÷<(–+—≠1)·1B÷

1,1. (2.7)

I When ‡ is Lipschitz, (2.7) here is better the result in Debussche-Fournier’s.
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Part 3: Proof
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PDE related to SDE

I Naturally we consider the following PDE,
;

ˆ

t

u(t, x) = L –

‡

u(t, x) + b(x) · Òu(t, x),
u(0, x) = Ï(x),

(3.1)

where Ï œ CŒ
b

(Rd) and

L –

‡

u(t, x) =
dÿ

i=1

p.v.

ˆ
R

1
u(t, x + ‡(x, z)) ≠ u(t, x)

2
‹(dz).

Definition 6

We call a function u(t, x) œ C([0, +Œ); C–+Á(Rd) fl C

1(Rd)) for some Á > 0 be a
classical solution of PDE (3.1) in [0, T ] if for all t œ [0, Œ) and x œ Rd

u(t, x) =
ˆ

t

0
L –

‡

u(s, x) + b(x) · Òu(s, x)ds + „(x).
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I Is there a classical solution of PDE (3.1)?

I Fortunately, we have a priori estimate: under the condition (H‡) and (Ab

—

) with — œ
((1 ≠ –) ‚ 0, –), for any T > 0 and Á œ (0, — · –), there is a constant C such that
for all t œ [0, T ], Ï œ CŒ

b

and classical solutions u

Îu(t)ÎC–+Á 6 CÎÏÎC–+Á . (3.2)

I Let u be a classical solution. By Itô formula, s æ u(t ≠ s, X

x

s

) is a martingale
for s œ [0, t]. Then

P

‡,b

t

Ï(x) = E(Ï(Xx

t

)) = E(u(t ≠ s, X

x

s

)) = E(u(t, x)) = u(t, x).

I The equality above tell us that if we want to establish any estimate of P

‡,b

t

Ï(x),
it is enough to establish the estimate of classical solution u.

I Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equiva-
lent to the uniqueness of classical solution of PDE (3.1).
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x

s

) is a martingale
for s œ [0, t]. Then

P

‡,b

t

Ï(x) = E(Ï(Xx

t

)) = E(u(t ≠ s, X

x

s

)) = E(u(t, x)) = u(t, x).

I The equality above tell us that if we want to establish any estimate of P

‡,b

t

Ï(x),
it is enough to establish the estimate of classical solution u.

I Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equiva-
lent to the uniqueness of classical solution of PDE (3.1).



Introduction Main Results Sketch of the proof

I Is there a classical solution of PDE (3.1)?
I Fortunately, we have a priori estimate: under the condition (H‡) and (Ab

—

) with — œ
((1 ≠ –) ‚ 0, –), for any T > 0 and Á œ (0, — · –), there is a constant C such that
for all t œ [0, T ], Ï œ CŒ

b

and classical solutions u

Îu(t)ÎC–+Á 6 CÎÏÎC–+Á . (3.2)

I Let u be a classical solution. By Itô formula, s æ u(t ≠ s, X
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Crucial lemma

I Let ◊ : R+ æ Rd be a measurable function and p

s,t

be the transition probability
of process

Z

s,t

:=
ˆ

t

s

ˆ
Rd

‡(◊(r), z)Ñ(dz, dr).

Lemma 7 (Crucial Lemma)

For any — œ [0, –), “ œ [0, +Œ) and T > 0, there is a constants C such that for
m œ N0 all j > 0, f œ L

1
loc

(R+) and t œ (0, T ] s œ [0, t),ˆ
t

0

ˆ
Rd

|x|— |Òm�
j

p

s,t

(x)||f(s)|dxds

6 C2(m≠“≠—)j

ˆ
t

0
(t ≠ s)≠ “

– |f(s)|ds.
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The key point of proof

I For simplify, we assume ‡(x, z) = A(x)z for some matrix value map A : Rd æ
Rd ¢ Rd and a(t) := A(◊(t)). Recall that p

s,t

is the transition probability of

Z

s,t

=
ˆ

t

s

a(r)dL

–

t

with ⁄

1
–

L

–

⁄t

(d)= L

–

t

.

Therefore using the change of variable and the scaling property, we haveˆ
t

s

a(r)dL

–

r

=
ˆ

t≠s

0
a(r + s)d

1
L

–

r+s

≠ L

–

s

2

(d)= (t ≠ s)≠ 1
–

ˆ 1

0
a(r(t ≠ s) + s)dL

–

r

.

We denote by p̄0,1 the density of
´ 1

0 a(r(t ≠ s) + s)dL

–

r

, then

p

s,t

(x) = (t ≠ s)≠ d
–

p̄0,1((t ≠ s)≠ 1
–

x).

I inf
ÊœSd≠1 inf

⁄>0 ⁄

q
d

i=1 |Ê · ‡(x,

ei
⁄

)| > c

≠1
0 guarantee that for any n œ N0

and — œ [0, –), there is a constant C such thatˆ
Rd

|x|— |Òn

p̄0,1(x)|dx 6 C.
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Our approach

I Firstly, we introduce the characteristic line ◊

y

t

, which is a solution of following
ODE

◊

y

t

= y ≠
ˆ

t

0
b(◊y

s

)ds,

and get a new equation(for simplification we drop the initial y in some places):
;

ˆ

t

ũ(t, x) = L –

‡̃

ũ(t, x) + b̃(x) · Òũ(t, x),
ũ(0, x) = Ï(x + y),

(3.3)

where ũ(t, x) = u(t, x + ◊

t

),‡̃(x, z) = ‡(x + ◊

t

, z) and b̃(x) = b(x + ◊

t

) ≠
b(◊

t

). Notice that |b̃(x)| . |x|— which releases the regularity of spatial x.

I Then let ‡̃0(z) = ‡̃(0, z) = ‡(◊
t

, z) and we have the following presentation

ũ(t, x) =
ˆ

t

0
P

s,t

1
L –

‡̃

≠ L –

‡̃0

2
ũ(s, x)ds +

ˆ
t

0
P

s,t

(b̃ · Òũ)(s, x)ds

+ P0,t

Ï(x + y),

where L –

‡̃0 is the infinitesimal generator of some process Z

s,t

introduced in the
crucial lemma and P

s,t

f(x) := Ef(x + Z

s,t

).
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I Next step is a highlight point. We take the block operator �
j

on both sides and
only look at the point zero:

�
j

ũ(t, 0) =
ˆ

t

0
�

j

P

s,t

1
L –

‡̃

≠ L –

‡̃0

2
ũ(s, 0)ds +

ˆ
t

0
�

j

P

s,t

(b̃ · Òũ)(s, 0)ds

+ �
j

P0,t

Ï(y).

I This time, we turn the convolution P

s,t

f into an inner product Èp
s,t

, fÍ. There-
fore, we can use our crucial lemma and get the regularity of the space.

I Notice that �
j

u(t, ◊

t

) = �
j

ũ(t, 0). We take the supremum of the initial point
of the ◊

t

and get the estimate of Î�
j

u(t)ÎŒ. Then by taking supremum of j,
we obtain that for any “ œ [0, –), ” > (– ≠ 1) ‚ (1 ≠ —) and÷ 6 “, there is a
Ë > ≠1 such that :

Îu(t)Î
B

“
Œ,Œ

.
ˆ

t

0
(t ≠ s)ËÎu(s)Î

B

”
Œ,Œ

ds + t

≠ 1
– (“≠÷)ÎÏÎ

B

÷
Œ,Œ

.
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Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)
Assume A > 0. For any ◊, Ë > ≠1 and T > 0, there exists a constant C =
C(A, ◊, Ë, T ) > 0 such that if locally integrable functions f : R+ æ R+ satisfy

f(t) 6 A

ˆ
t

0
(t ≠ s)◊

f(s)ds + At

Ë

, t œ (0, T ],

then
f(t) 6 Ct

Ë

, t œ (0, T ].

I By this type Gronwall inequality, we obtain the main result for “ œ [0, –) and
÷ œ (≠(– + — ≠ 1) · 1, “].

I To lift the limitation of “ from [0, –) to [0, – + – · —), we need a lift lemma and
the semigroup property of Feller process.

I The proof can be found in [1].
[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation.
J.Funct. Anal., 258 (2010), 1361-1425.
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Lift lemma

Lemma 9
Assume one of the following conditions holds,

I – œ (0, 2), b © 0 and let — = 1.

I – œ ( 1
2 , 2) and condition (Ab

—

) holds with — œ ((1 ≠ –) ‚ 0, – · 1).

Under condition (H‡), for any

“ œ (–, – + – · —), ” œ [0, –),

there is a constant C

T

such that for all „ œ C

Œ
0 (Rd) and all t œ (0, T ],

ÎP

‡,b

t

„Î
B

“
Œ,Œ

6 C

T

t

≠ ”
– Î„Î

B

“≠”
Œ,Œ

. (3.4)

I Notice that P

‡,b

t

„ = P

‡,b

t
2

P

‡,b

t
2

„ and (–, – + – · —) ≠ – µ (0, –), by this C-K
property, we obtain the main result.
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Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)
For — œ (0, 1) and ◊ œ (≠—, 0], there is a constant C such that

Î[�
j

, f ]gÎŒ 6 C2≠j(—+◊)ÎfÎ
C

— ÎgÎ
B

◊
Œ

,

where [�
j

, f ]g := �
j

fg ≠ f�
j

g.

Sketch of the proof:
I Step 1: prove it when ◊ = 0. By definition of block operator, it is easy.
I Step 2: make the Bony decomposition:

fg =
ÿ

i,jœN0

�
i

f�
j

g =
ÿ

i>j+1

�
i

f�
j

g +
ÿ

j>i+1

�
i

f�
j

g +
ÿ

|i≠j|61

�
i

f�
j

g

:= f > g + f ¶ g + f > g.

I Step 3:

[�
j

, f ]g =
1

�
j

f < g≠f < �
j

g

2
+

1
�

j

f¶g≠f¶�
j

g+�
j

f > g≠f > �
j

g

2
,

the estimate of the first one from step 1 and the second part has a higher regular-
ity.
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I To estimate
´

t

0 �
j

P

s,t

1
L –

‡̃

≠ L –

‡̃0

2
ũ(s, 0)ds, we define

Dy

z

f(x) = f(x + ‡(x + ◊

y

t

, z)) ≠ f(x + ‡(◊y

t

, z)) ≠
–>1‡̃(x, z) · Òf(x),

I and

µ

◊

(h) :=
ˆ
Rd

(1 · |x|)◊|h(x)|dx , Èf, gÍ :=
ˆ
Rd

f(x)g(x)dx.

Lemma 11

For any ◊ œ [0, 1], there exists a constant C = C(d, ◊) > 0 such that for all |z| 6
1

2c0
, f œ C

◊ and g œ C

2

|ÈDy

z

f, gÍ| 6 C|z|◊ÎfÎŒ
#
µ0(|g|) + µ

◊

(|Òg|)◊

µ

◊

(|g|)1≠◊

$

when – < 1 and

|ÈDy

z

f, gÍ| 6 C|z|1+◊ÎfÎC◊

#
µ0(|g|) + µ1(|Òg|) + µ1+◊

(|Ò2
g|)◊

µ1+◊

(|Òg|)1≠◊

$

when – > 1.
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The key point of the proof

I For simplicity, we assume – < 1 and „

z

(x) = ‡(x + ◊

y

t

, z). Rewrite

D
z

f(x) := Dy

z

f(x) = f(x + „

z

(x)) ≠ f(x + „

z

(0)).

I We can let f̄(x) = f(x + „

z

(0)). Their C

◊ norms are the same. Therefore we
assume that „

z

(0) = 0 and there is a constant such that |„
z

(x)| 6 C(|x|·1)|z|.

I Let �
z

(x) = x + „

z

(x). By change of variable, we have

ÈD
z

f, gÍ = Èf, Dú
z

gÍ,

where

Dú
z

g(x) = det(Ò
x

�≠1
z

(x))g(�≠1
z

(x)) ≠ g(x).

I Noticing that

| det(Ò
x

�≠1
z

(x)) ≠ 1| 6 |z|, and |�≠1
z

(x) ≠ x| 6 C

2(|x| · 1)|z|,

we complete the proof.
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Thanks!
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