▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Gradient estimate for SDEs driven by cylindrical Lévy processes

Zimo Hao¹

Based on a joint work with Zhen-Qing Chen^{2,3} and Xicheng Zhang¹

¹Wuhan University ²University of Washington ³Beijing Institute of Technology

LSA winter meeting-2019

National Research University Higher School of Economics

Moscow · Dec 05, 2019.

Main Results

Sketch of the proof

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Introduction	Main Results
0000000	000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Part 1 : Introduction

Introduction	Main Results
0000000	000000

Motivation

• Let $d \ge 2$. Consider the following stochastic differential equation :

$$\begin{cases} dX_t = A(X_t) dB_t + b(X_t) dt, \\ X_0 = x \in \mathbb{R}^d \end{cases}$$
(1.1)

where $B_t = (B_t^1, ..., B_t^d)$ is a *d*-dimensional standard Brownian motion, $b : \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function, and $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ is a $d \times d$ matrix-valued measurable function and satisfies

(H) $A \in C(\mathbb{R}^d)$ and for some $c_0 \ge 0$, it holds that

$$|\det A(x)| \ge c_0, \quad x \in \mathbb{R}^d.$$

Introduction	Main Results	5
●0000000	000000	(

Motivation

• Let $d \ge 2$. Consider the following stochastic differential equation :

$$\begin{cases} dX_t = A(X_t)dB_t + b(X_t)dt, \\ X_0 = x \in \mathbb{R}^d \end{cases}$$
(1.1)

Sketch of the proof

where $B_t = (B_t^1, ..., B_t^d)$ is a *d*-dimensional standard Brownian motion, $b : \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function, and $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ is a $d \times d$ matrix-valued measurable function and satisfies

(H) $A \in C(\mathbb{R}^d)$ and for some $c_0 \ge 0$, it holds that

$$|\det A(x)| \ge c_0, \quad x \in \mathbb{R}^d.$$

▶ Under the above assumption and *b* is bounded, it is well known that for each $x \in \mathbb{R}^d$, SDE (1.1) admits a unique weak solution $X_t(x)$ (see [1]). Furthermore, if *A* and *b* have more regularities it admits a density $p_t(x, y)$ enjoying the following estimates(see [2]): for any T > 0, there are constants $c_i > 0$ such that for all 0 < t < T and $x, y \in \mathbb{R}^d$

$$c_1 t^{-d/2} e^{-c_2 |x-y|^2/t} \leq p_t(x,y) \leq c_3 t^{-d/2} e^{-c_4 |x-y|^2/t}$$

 Bass, R.F., Diffusions and Elliptic Operators. Springer-Verlag, New York, 1997
 Z.-Q. Chen, E. Hu, L. Xie, and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps. J. Differential Equations, 263 (2017), 6576-6634. Main Results

Introduction

00000000

- Notice that B_t^i in $B_t = (B_t^1, ..., B_t^d)$ are i.i.d. 1-dimensional standard Brownian motions.
- Naturally, we consider the standard cylindrical α -stable process $L_t = (L_t^1, ..., L_t^d)$ and the following SDE

$$\begin{cases} dX_t = A(X_{t-})dL_t + b(X_t)dt, \\ X_0 = x \in \mathbb{R}^d, \end{cases}$$
(1.2)

where L_t^i are i.i.d. 1-dimensional standard α -stable processes.

In fact, Lt admits a density pt(x) enjoying the following estimates : For any T > 0, there are constants c1, c2 > 0 such that for all 0 < s < t < T and x ∈ ℝ^d

$$c_1 \prod_{i=1}^d \frac{t}{(\sqrt{t} + |x_i|)^{\alpha+1}} \leq p_t(x) \leq c_2 \prod_{i=1}^d \frac{t}{(\sqrt{t} + |x_i|)^{\alpha+1}}.$$

▶ However, there is no result for the density estimate for X_t. Actually, the existence of the solution X_t and the density of X_t are not easy questions.

• More generality, we consider the following SDE driven by the cylindrical α -stable process L_t ,

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) N(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x \in \mathbb{R}^d, \end{cases}$$
(1.3)

where $\sigma = (\sigma_i)_{i=1}^d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function, and N(dt, dz) is the Poisson random measure of L_t^{α} defined as follow

$$N((s,t],E) := \sum_{s < u \leq t} \mathbf{1}_{(L_u - L_{u-}) \in E}.$$

▶ Define $\nu(E) := \mathbb{E}N([0,1], E)$. For simplify, we assume that for all $x \in \mathbb{R}^d$ and $0 < r < R < +\infty$

$$\int_{r \leq |z| \leq R} \sigma(x, z) \nu(\mathrm{d}z) = 0.$$

• More generality, we consider the following SDE driven by the cylindrical α -stable process L_t ,

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) N(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x \in \mathbb{R}^d, \end{cases}$$
(1.3)

where $\sigma = (\sigma_i)_{i=1}^d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function, and N(dt, dz) is the Poisson random measure of L_t^{α} defined as follow

$$N((s,t],E) := \sum_{s < u \leq t} \mathbf{1}_{(L_u - L_{u-}) \in E}.$$

▶ Define $\nu(E) := \mathbb{E}N([0,1], E)$. For simplify, we assume that for all $x \in \mathbb{R}^d$ and $0 < r < R < +\infty$

$$\int_{r \leq |z| \leq R} \sigma(x, z) \nu(\mathrm{d}z) = 0.$$

Questions:

- In what condition of σ and b, there is a weak(or strong) solution of SDE (1.3)?
- ▶ If there is a weak solution, does the solution have a density?
- ► If there is a density, can we get some precise estimates for it?

Main Results

Introduction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

► When L_t is a *d*-dimensional standard α -stable process, the infinitesimal generator of X_t^x has the following form

$$\mathcal{L}f(x) = \text{p.v.} \int_{\mathbb{R}^d} \frac{f(x + \sigma(x, z)) - f(x)}{|z|^{d + \alpha}} dz$$

= p.v.
$$\int_{\mathbb{R}^d} \frac{f(x + z) - f(x)}{|z|^{d + \alpha}} \kappa(x, z) dz,$$
 (1.4)

where

$$\kappa(x,z) = \frac{|z|^{d+\alpha}}{|\sigma^{-1}(x,z)|^{d+\alpha}} |\det \nabla_z \sigma^{-1}(x,z)|.$$

Main Results

00000000

Introduction

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \blacktriangleright When L_t is a d-dimensional standard α -stable process, the infinitesimal generator of X_t^x has the following form

$$\mathcal{L}f(x) = \text{p.v.} \int_{\mathbb{R}^d} \frac{f(x + \sigma(x, z)) - f(x)}{|z|^{d+\alpha}} dz$$

= p.v.
$$\int_{\mathbb{R}^d} \frac{f(x + z) - f(x)}{|z|^{d+\alpha}} \kappa(x, z) dz,$$
 (1.4)

where

$$\kappa(x,z) = \frac{|z|^{d+\alpha}}{|\sigma^{-1}(x,z)|^{d+\alpha}} |\det \nabla_z \sigma^{-1}(x,z)|.$$

 \triangleright When L_t is a d-dimensional cylindrical α -stable process, which is our case, the infinitesimal generator of X_t^x has the following form

$$\mathscr{L}f(x) = \sum_{i=1}^{d} \text{p.v.} \int_{\mathbb{R}} \frac{f(x + \sigma(x, ze_i)) - f(x)}{|z|^{1+\alpha}} dz,$$

where $e_i = (0, ..., 1(i-th), ..., 0)$.

Notice that, it is impossible to find such a κ in (1.4) this time.

► Let \mathscr{F} be the Fourier transform. The infinitesimal generator of *d*-dimensional cylindrical α -stable process is $\sum_{i=1}^{d} (\partial_i \partial_i)^{\frac{\alpha}{2}}$ with

$$\mathscr{F}(\sum_{i=1}^{d} (\partial_i \partial_i)^{\frac{\alpha}{2}} f)(\xi) = c \sum_{i=1}^{d} |\xi_i|^{\alpha} \mathscr{F}(f)(\xi) := \psi_1(\xi) \mathscr{F}(f)(\xi),$$

where $\psi_1 \in C^{\infty}(\mathbb{R}^d \setminus (\cup_{i=1}^d \mathbb{R}_i))$, where

$$\mathbb{R}_i := \{ x \in \mathbb{R}^d ; x_i = 0 \}.$$

► The infinitesimal generator of *d*-dimensional standard α -stable process is $\Delta^{\frac{\alpha}{2}}$ with

$$\mathscr{F}(\Delta^{\frac{\alpha}{2}}f)(\xi) = c|\xi|^{\alpha} \mathscr{F}(f)(\xi) := \psi_2(\xi) \mathscr{F}(f)(\xi),$$

where $\psi_2 \in C^{\infty}(\mathbb{R}^d \setminus 0)$.

> Therefore, compared with standard α -stable process, the cylindrical one is more difficult to be dealed with.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Main Results	Sketch of the proof
00000000	000000	00000000000
Assumptions		

 $\begin{array}{l} (\mathbf{A}^{\sigma}) \ \ \sigma(x,z) = A(x)z \text{ for some matrix value map } A = (a_{i,j}) : \mathbb{R}^d \rightarrow \mathbb{R}^d \otimes \mathbb{R}^d, \text{ there} \\ \text{ is a positive number } c_0 \text{ such that for any } x, y, \xi \in \mathbb{R}^d \text{ and all } i, j = 1, ..., d \end{array}$

$$c_0^{-1}|\xi| \leqslant |A(x)\xi| \leqslant c_0|\xi|, \tag{1.5}$$

$$|a_{i,j}(x) - a_{i,j}(y)| \leq c_0 |x - y|.$$
(1.6)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Main Results	Sketch of the proof
00000000	000000	0000000000
Assumptions		

(A^{σ}) $\sigma(x,z) = A(x)z$ for some matrix value map $A = (a_{i,j}) : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$, there is a positive number c_0 such that for any $x, y, \xi \in \mathbb{R}^d$ and all i, j = 1, ..., d

$$c_0^{-1}|\xi| \leqslant |A(x)\xi| \leqslant c_0|\xi|, \tag{1.5}$$

$$|a_{i,j}(x) - a_{i,j}(y)| \leq c_0 |x - y|.$$
(1.6)

 (\mathbf{A}_{β}^{b}) For $\beta \in [0, 1]$,

$$\|b\|_{\mathbf{C}^{\beta}} := \sup_{x \in \mathbb{R}^d} |b(x)| + \sup_{|x-y| \neq 0} \frac{|b(x) - b(y)|}{|x-y|^{\beta}} < \infty.$$
(1.7)

▶ If there is a solution X_t^x of SDE (1.3), we define

$$P_t^{\sigma,b}\phi(x) = \mathbb{E}(\phi(X_t^x)), \qquad P_t^{\sigma} := P_t^{\sigma,0}$$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Introduction	Main Results	Sketch of the proof
0000000	000000	000000000000
Well-known results		

2006 (Bass-Chen)

There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	Main Results	Sketch of the proof
00000000	000000	000000000
Well-known results		

2006 (Bass-Chen) There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$. For any bounded domain $D \subset \mathbb{R}^d$, define $\tau_D := \inf\{t > 0, X_t^x \notin D\}$. If any bounded function h satisfies

$$h(x) = \mathbb{E}[h(X_{\tau_D}^x)]$$
 for every $x \in D$,

▲□▶▲□▶▲□▶▲□▶ □ のQで

then h is Hölder continuous in D.

Introduction	Main Results	Sk
00000000	000000	0

Well-known results

2006 (Bass-Chen)

There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

ketch of the proof

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$. For any bounded domain $D \subset \mathbb{R}^d$, define $\tau_D := \inf\{t > 0, X_t^x \notin D\}$. If any bounded function h satisfies

$$h(x) = \mathbb{E}[h(X_{\tau_D}^x)]$$
 for every $x \in D$,

then h is Hölder continuous in D.

2012 (Debussche-Fournier)

Assume that $\sigma(\cdot, z) = \sigma(\cdot)z \in \mathbf{C}^{\theta_1}$ and (\mathbf{A}^b_β) with some conditions of θ_1 and θ_2 , the solution admits a density, and density is in some Besov space(we will introduce below).

Introduction	Main Results	
0000000	000000	

Well-known results

2006 (Bass-Chen)

There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

Sketch of the proof

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$. For any bounded domain $D \subset \mathbb{R}^d$, define $\tau_D := \inf\{t > 0, X_t^x \notin D\}$. If any bounded function h satisfies

$$h(x) = \mathbb{E}[h(X_{\tau_D}^x)]$$
 for every $x \in D$,

then h is Hölder continuous in D.

- **2012** (Debussche-Fournier) Assume that $\sigma(\cdot, z) = \sigma(\cdot)z \in \mathbf{C}^{\theta_1}$ and (\mathbf{A}^b_β) with some conditions of θ_1 and θ_2 , the solution admits a density, and density is in some Besov space(we will introduce below).
- **2017** (Chen-Zhang-Zhao) Under the conditions (\mathbf{A}^{σ}) and (\mathbf{A}^{b}_{β}) with $\beta \in (1 - \frac{\alpha}{2}, 1)$, there is a unique strong solution of (1.3).

Introduction	Main Results	Sketch of the proof
0000000	000000	00000000000000000

2018 (Kulczycki-Ryznar-Sztonyk)

Assume $b \equiv 0$ and $\alpha \in (0, 1)$. Under the condition (\mathbf{A}^{σ}) , for any $\gamma \in (0, \alpha)$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x, y \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d)$

$$|P_t^{\sigma}f(x) - P_t^{\sigma}f(y)| \leqslant C|x - y|^{\gamma}t^{-\frac{\gamma}{\alpha}}||f||_{L^{\infty}}.$$
(1.8)

For any $\gamma \in (0, \frac{\alpha}{d})$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$

$$|P_t^{\sigma} f(x)| \leq C t^{-\frac{\gamma d}{\alpha}} \|f\|_{L^{\infty}}^{1-\gamma} \|f\|_{L^1}^{\gamma}.$$
 (1.9)

Introduction	Main Results	Sketch of the proof
0000000	000000	00000000000000000

2018 (Kulczycki-Ryznar-Sztonyk)

Assume $b \equiv 0$ and $\alpha \in (0, 1)$. Under the condition (\mathbf{A}^{σ}) , for any $\gamma \in (0, \alpha)$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x, y \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d)$

$$|P_t^{\sigma}f(x) - P_t^{\sigma}f(y)| \leq C|x - y|^{\gamma}t^{-\frac{1}{\alpha}}||f||_{L^{\infty}}.$$
(1.8)

For any $\gamma \in (0, \frac{\alpha}{d})$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$

$$|P_t^{\sigma} f(x)| \leqslant C t^{-\frac{\gamma d}{\alpha}} ||f||_{L^{\infty}}^{1-\gamma} ||f||_{L^1}^{\gamma}.$$
 (1.9)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Notice that they can **not** deal the case $\alpha \in [1, 2)$.

 $\blacktriangleright \text{ Hölder index } \gamma \text{ can not be 1.}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Part 2: Our main results

I	nti	roc	lu	ct	io	n	
C)C	0	0	0	0	0	0

Main Results

Sketch of the proof

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Littlewood-Paley decomposition and Besov space

• Let ϕ_0 be a radial C^{∞} -function on \mathbb{R}^d with

 $\phi_0(\xi) = 1$ for $\xi \in B_1$ and $\phi_0(\xi) = 0$ for $\xi \notin B_2$.

Main Results

Sketch of the proof

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Littlewood-Paley decomposition and Besov space

Main Results

Sketch of the proof

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Littlewood-Paley decomposition and Besov space

Main Results

Sketch of the proof

Littlewood-Paley decomposition and Besov space

▶ Notice that $\{\phi_j\}_{j \in \mathbb{N}_0}$ is a partition of unity of

$$\mathbb{R}^{d} = B_{2} \cup \bigg(\cup_{j \in \mathbb{N}} (B_{2^{j+1}} \setminus B_{2^{j-1}}) \bigg).$$

・ロト・日本・日本・日本・日本・日本

Introduction	Main Results
0000000	00000

For given $j \in \mathbb{N}_0$, the block operator Δ_j is defined on \mathscr{S}' by

$$\begin{aligned} \Delta_j f(x) &:= \mathscr{F}^{-1}(\phi_j \mathscr{F}(f))(x) = \mathscr{F}^{-1}(\phi_j) * f(x) \\ &= 2^{\cdot m(j-1)} \int_{\mathbb{R}^d} \mathscr{F}^{-1}(\phi_1) (2^{(j-1)}(x-y)) f(y) \mathrm{d}y \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1	ro	luc	tio	n	
0	00	00	0	00	

Ir

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

For given $j \in \mathbb{N}_0$, the block operator Δ_j is defined on \mathscr{S}' by

$$\begin{split} \Delta_j f(x) &:= \mathscr{F}^{-1}(\phi_j \mathscr{F}(f))(x) = \mathscr{F}^{-1}(\phi_j) * f(x) \\ &= 2^{\cdot m(j-1)} \int_{\mathbb{R}^d} \mathscr{F}^{-1}(\phi_1) (2^{(j-1)}(x-y)) f(y) \mathrm{d}y \end{split}$$

For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j = \Delta_j \widetilde{\Delta}_j, \text{ where } \widetilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1} \text{ with } \Delta_{-1} \equiv 0, \quad (2.1)$$

and Δ_j is symmetric in the sense that

$$\langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ For given $j \in \mathbb{N}_0$, the block operator Δ_j is defined on \mathscr{S}' by

$$\begin{split} \Delta_j f(x) &:= \mathscr{F}^{-1}(\phi_j \mathscr{F}(f))(x) = \mathscr{F}^{-1}(\phi_j) * f(x) \\ &= 2^{\cdot m(j-1)} \int_{\mathbb{R}^d} \mathscr{F}^{-1}(\phi_1) (2^{(j-1)}(x-y)) f(y) \mathrm{d}y \end{split}$$

▶ For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j = \Delta_j \widetilde{\Delta}_j, \text{ where } \widetilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1} \text{ with } \Delta_{-1} \equiv 0, \quad (2.1)$$

and Δ_j is symmetric in the sense that

$$\langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.$$

 \blacktriangleright The cut-off low frequency operator S_k is defined by

$$S_k f := \sum_{j=0}^{k-1} \Delta_j f = 2^{dk} \int_{\mathbb{R}^d} \check{\phi}_0(2^k(x-y)) f(y) \mathrm{d}y \to f.$$
(2.2)

For given $j \in \mathbb{N}_0$, the block operator Δ_j is defined on \mathscr{S}' by

$$\begin{aligned} \Delta_j f(x) &:= \mathscr{F}^{-1}(\phi_j \mathscr{F}(f))(x) = \mathscr{F}^{-1}(\phi_j) * f(x) \\ &= 2^{\cdot m(j-1)} \int_{\mathbb{R}^d} \mathscr{F}^{-1}(\phi_1) (2^{(j-1)}(x-y)) f(y) \mathrm{d}y \end{aligned}$$

▶ For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j = \Delta_j \widetilde{\Delta}_j, \text{ where } \widetilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1} \text{ with } \Delta_{-1} \equiv 0, \quad (2.1)$$

and Δ_j is symmetric in the sense that

$$\langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.$$

 \blacktriangleright The cut-off low frequency operator S_k is defined by

$$S_k f := \sum_{j=0}^{k-1} \Delta_j f = 2^{dk} \int_{\mathbb{R}^d} \check{\phi}_0(2^k(x-y)) f(y) \mathrm{d}y \to f.$$
(2.2)

We rewrite (2.2) as

$$f = \sum_{j=0}^{\infty} \Delta_j f,$$

which is called the Littlewood-Paley decomposition.

Introduction	Main Results	Sketch of the proof
0000000	00000	000000000000

Definition 1 (Besov space)

For any $s \in \mathbb{R}$, the Besov space $\mathbf{B}_{\infty,\infty}^s$ is defined by

$$\mathbf{B}^s_{\infty,\infty}(\mathbb{R}^d):=igg\{f\in\mathscr{S}'(\mathbb{R}^d):\|f\|_{\mathbf{B}^s_{p,\infty}}:=\sup_{j\geqslant 0}igg(2^{sj}\|\Delta_jf\|_{L^\infty}igg)<\inftyigg\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	Main Results	Sketch of the proof
0000000	00000	000000000000

Definition 1 (Besov space)

For any $s \in \mathbb{R}$, the Besov space $\mathbf{B}_{\infty,\infty}^s$ is defined by

$$\mathbf{B}_{\infty,\infty}^{s}(\mathbb{R}^{d}) := \left\{ f \in \mathscr{S}'(\mathbb{R}^{d}) : \|f\|_{\mathbf{B}_{p,\infty}^{s}} := \sup_{j \ge 0} \left(2^{sj} \|\Delta_{j}f\|_{L^{\infty}} \right) < \infty \right\}.$$

Proposition 2

For any $s \ge 0$ *with* $s \notin \mathbb{N}$ *,*

$$\mathbf{C}^{s}(\mathbb{R}^{d}) = \mathbf{B}^{s}_{\infty,\infty}(\mathbb{R}^{d}),$$

where $\mathbf{C}^{s_2}(\mathbb{R}^d)$ is the Hölder space. Moreover, for any $n \in \mathbb{N}$,

 $\mathbf{C}^{n}(\mathbb{R}^{d}) \subset \mathbf{B}^{n}_{\infty,\infty}(\mathbb{R}^{d}).$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Main Results	Sketch of the proof
0000000	000000	00000000000000000

Our assumption for σ

(\mathbf{H}^{σ}) There is a constant $c_0 > 1$ such that for all $x, y, z \in \mathbb{R}^d$ and all $\lambda > 0$

$$\inf_{\omega \in \mathbb{S}^{d-1}} \inf_{\lambda > 0} \lambda \sum_{i=1}^{d} |\omega \cdot \sigma(x, \frac{e_i}{\lambda})| \ge c_0^{-1},$$
(2.3)

$$|\sigma(x,z) - \sigma(y,z)| \leq c_0 |x-y||z|$$

$$c_0^{-1}|z| \leq |\sigma(x,z)| \leq c_0|z|.$$

Remark 3

• Notice that condition \mathbf{A}^{σ} implies condition \mathbf{H}^{σ} here.

• $\sigma(x, z) = (2 + sinz_1)z$ satisfies condition \mathbf{H}^{σ} but not satisfies condition \mathbf{A}^{σ} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Main Results	Sketch of the proof
0000000	000000	000000000000
Main Results		

Theorem 4

Let $\alpha \in (0, 2)$ and $\beta \in [0, 1]$ with $\alpha + \beta > 1$. Assume (\mathbf{H}^{σ}) and one of the following conditions holds: (i) $b = 0, \beta = 1$; (ii) $\alpha \in (\frac{1}{2}, 2)$ and $b \in \mathbf{C}^{\beta}$. Let $X_t(x)$ be the unique solution of SDE (1.3) and define $P_t^{\sigma,b}\varphi(x) := \mathbb{E}\varphi(X_t(x)).$ Let $\gamma \in [0, \alpha + \alpha \land \beta)$ and $\eta \in (-((\alpha + \beta - 1) \land 1), \gamma]$. For any T > 0, there is a constant C > 0 such that for all $0 < t \leq T$, $\||P^{\sigma,b}\varphi|\|_{=\gamma} \leq C(t)^{\frac{\eta - \gamma}{\alpha}} \||\varphi\|_{=\eta}$ (2.4)

$$\|P_t^{\sigma,b}\varphi\|_{\mathbf{B}^{\gamma}_{\infty,\infty}} \leqslant C(t)^{\frac{\eta-\gamma}{\alpha}} \|\varphi\|_{\mathbf{B}^{\eta}_{\infty,\infty}}.$$
(2.4)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Main Results ○○○○●○	Sketch of the proof
Main Results		

Theorem 4

Let $\alpha \in (0,2)$ and $\beta \in [0,1]$ with $\alpha + \beta > 1$. Assume (\mathbf{H}^{σ}) and one of the following conditions holds:

- (i) $b = 0, \beta = 1;$
- (ii) $\alpha \in (\frac{1}{2}, 2)$ and $b \in \mathbf{C}^{\beta}$.

Let $X_t(x)$ be the unique solution of SDE (1.3) and define

$$P_t^{\sigma,b}\varphi(x) := \mathbb{E}\varphi(X_t(x)).$$

Let $\gamma \in [0, \alpha + \alpha \land \beta)$ and $\eta \in (-((\alpha + \beta - 1) \land 1), \gamma]$. For any T > 0, there is a constant C > 0 such that for all $0 < t \leq T$,

$$\|P_t^{\sigma,b}\varphi\|_{\mathbf{B}^{\gamma}_{\infty,\infty}} \leqslant C(t)^{\frac{\eta-\gamma}{\alpha}} \|\varphi\|_{\mathbf{B}^{\eta}_{\infty,\infty}}.$$
(2.4)

▶ Notice that (2.4) reduced the restriction of the γ in (1.8) from $(0, \alpha)$ to $(0, \alpha + \alpha \land \beta)$ by taking $\eta = 0$. In particular, we have gradient estimate. Moreover, we can deal with the case $\alpha \ge 1$.

▶ By a way of interpolation, we also get (1.9).

Introduction 00000000	Main Results ○○○○○●	Sketch of the proof
Main Results		

Corollary 5

(A) Let $\varphi \in \bigcup_{\eta < (\alpha+\beta-1)\wedge 1} \mathbf{B}_{\infty,\infty}^{-\eta}$. For any 0 < t, $P_t^{\sigma,b}\varphi \in \bigcap_{\gamma < \alpha+\alpha\wedge\beta} \mathbf{B}_{\infty,\infty}^{\gamma}$ solves the following backward Kolmogorov equation: for all $x \in \mathbb{R}^d$,

$$P_{t-t_0}^{\sigma,b}\varphi(x) = P_{t-t_1}^{\sigma,b}\varphi(x) + \int_{t_0}^{t_1} \mathscr{L}^{\sigma,b} P_{t-s}^{\sigma,b}\varphi(x) \mathrm{d}s, \ 0 \le t_0 < t_1 < t, \ (2.5)$$

where
$$\mathscr{L}^{\sigma,b}u(x) := \text{p.v.} \int (u(x + \sigma(x, z)) - u(x))\nu(\mathrm{d}z) + b \cdot \nabla u(x).$$

(B) For $\alpha \in (\frac{1}{2}, 2)$, the following gradient estimate holds: for $0 < t \leq T$,

$$\|\nabla P_t^{\sigma,b}\varphi\|_{\infty} \leqslant C_T t^{-\frac{1}{\alpha}} \|\varphi\|_{\infty}.$$
(2.6)

(C) For each t > 0, the random variable $X_t(x)$ admits a density $p_t^X(x, \cdot)$ with

$$p_t^X(x,\cdot) \in \cap_{\eta < (\alpha + \beta - 1) \land 1} \mathbf{B}_{1,1}^{\eta}.$$

$$(2.7)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction 00000000	Main Results ○○○○○●	Sketch of the proof
Main Results		

Corollary 5

(A) Let $\varphi \in \bigcup_{\eta < (\alpha+\beta-1)\wedge 1} \mathbf{B}_{\infty,\infty}^{-\eta}$. For any 0 < t, $P_t^{\sigma,b}\varphi \in \bigcap_{\gamma < \alpha+\alpha\wedge\beta} \mathbf{B}_{\infty,\infty}^{\gamma}$ solves the following backward Kolmogorov equation: for all $x \in \mathbb{R}^d$,

$$P_{t-t_0}^{\sigma,b}\varphi(x) = P_{t-t_1}^{\sigma,b}\varphi(x) + \int_{t_0}^{t_1} \mathscr{L}^{\sigma,b} P_{t-s}^{\sigma,b}\varphi(x) \mathrm{d}s, \ 0 \le t_0 < t_1 < t, \ (2.5)$$

where
$$\mathscr{L}^{\sigma,b}u(x) := \text{p.v.} \int (u(x + \sigma(x, z)) - u(x))\nu(\mathrm{d}z) + b \cdot \nabla u(x).$$

(B) For $\alpha \in (\frac{1}{2}, 2)$, the following gradient estimate holds: for $0 < t \leq T$,

$$\|\nabla P_t^{\sigma,b}\varphi\|_{\infty} \leqslant C_T t^{-\frac{1}{\alpha}} \|\varphi\|_{\infty}.$$
(2.6)

(C) For each t > 0, the random variable $X_t(x)$ admits a density $p_t^X(x, \cdot)$ with

$$p_t^X(x,\cdot) \in \bigcap_{\eta < (\alpha + \beta - 1) \land 1} \mathbf{B}_{1,1}^{\eta}.$$
(2.7)

▲□▶▲□▶▲□▶▲□▶ □ のQで

• When σ is Lipschitz, (2.7) here is better the result in Debussche-Fournier's.

Introd	luction	
000	00000	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Part 3: Proof

Introduction 00000000	Main Results	Sketch of the proof
PDE related to SDE		

▶ Naturally we consider the following PDE,

$$\begin{cases} \partial_t u(t,x) = \mathscr{L}^{\alpha}_{\sigma} u(t,x) + b(x) \cdot \nabla u(t,x), \\ u(0,x) = \varphi(x), \end{cases}$$
(3.1)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

where $\varphi \in \mathbf{C}^\infty_b(\mathbb{R}^d)$ and

$$\mathscr{L}^{\alpha}_{\sigma}u(t,x) = \sum_{i=1}^{d} \text{p.v.} \int_{\mathbb{R}} \Big(u(t,x+\sigma(x,z)) - u(t,x) \Big) \nu(\mathrm{d} z).$$

Introduction 00000000	Main Results 000000	Sketch of the proof
PDE related to SDE		

▶ Naturally we consider the following PDE,

$$\begin{cases} \partial_t u(t,x) = \mathscr{L}^{\alpha}_{\sigma} u(t,x) + b(x) \cdot \nabla u(t,x), \\ u(0,x) = \varphi(x), \end{cases}$$
(3.1)

where $\varphi \in \mathbf{C}^\infty_b(\mathbb{R}^d)$ and

$$\mathscr{L}^{\alpha}_{\sigma}u(t,x) = \sum_{i=1}^{d} \text{p.v.} \int_{\mathbb{R}} \Big(u(t,x+\sigma(x,z)) - u(t,x) \Big) \nu(\mathrm{d}z).$$

Definition 6

We call a function $u(t, x) \in C([0, +\infty); \mathbf{C}^{\alpha+\varepsilon}(\mathbb{R}^d) \cap C^1(\mathbb{R}^d))$ for some $\varepsilon > 0$ be a classical solution of PDE (3.1) in [0, T] if for all $t \in [0, \infty)$ and $x \in \mathbb{R}^d$

$$u(t,x) = \int_0^t \mathscr{L}_{\sigma}^{\alpha} u(s,x) + b(x) \cdot \nabla u(s,x) \mathrm{d}s + \phi(x).$$

Introduction	Main Results	Sketch of the proof
0000000	000000	00000000000

▶ Is there a classical solution of PDE (3.1)?

Introduction	Main Results	Sketch of the proof
0000000	000000	00000000000

► Is there a classical solution of PDE (3.1)?

► Fortunately, we have a priori estimate: under the condition (\mathbf{H}^{σ}) and (\mathbf{A}^{b}_{β}) with $\beta \in ((1 - \alpha) \lor 0, \alpha)$, for any T > 0 and $\varepsilon \in (0, \beta \land \alpha)$, there is a constant C such that for all $t \in [0, T]$, $\varphi \in \mathbf{C}^{\infty}_{b}$ and classical solutions u

$$\|u(t)\|_{\mathbf{C}^{\alpha+\varepsilon}} \leqslant C \|\varphi\|_{\mathbf{C}^{\alpha+\varepsilon}}.$$
(3.2)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Main Results	Sketch of the proof
0000000	000000	00000000000

- ▶ Is there a classical solution of PDE (3.1)?
 - Fortunately, we have a priori estimate: under the condition (H^σ) and (A^b_β) with β ∈ ((1 − α) ∨ 0, α), for any T > 0 and ε ∈ (0, β ∧ α), there is a constant C such that for all t ∈ [0, T], φ ∈ C[∞]_b and classical solutions u

$$\|u(t)\|_{\mathbf{C}^{\alpha+\varepsilon}} \leqslant C \|\varphi\|_{\mathbf{C}^{\alpha+\varepsilon}}.$$
(3.2)

▶ Let u be a classical solution. By Itô formula, $s \to u(t - s, X_s^x)$ is a martingale for $s \in [0, t]$. Then

$$P_t^{\sigma,b}\varphi(x) = \mathbb{E}(\varphi(X_t^x)) = \mathbb{E}(u(t-s,X_s^x)) = \mathbb{E}(u(t,x)) = u(t,x).$$

Introduction 00000000	Main Results 000000	Sketch of the proof

- ▶ Is there a classical solution of PDE (3.1)?
 - Fortunately, we have a priori estimate: under the condition (H^σ) and (A^b_β) with β ∈ ((1 − α) ∨ 0, α), for any T > 0 and ε ∈ (0, β ∧ α), there is a constant C such that for all t ∈ [0, T], φ ∈ C[∞]_b and classical solutions u

$$\|u(t)\|_{\mathbf{C}^{\alpha+\varepsilon}} \leqslant C \|\varphi\|_{\mathbf{C}^{\alpha+\varepsilon}}.$$
(3.2)

▶ Let u be a classical solution. By Itô formula, $s \to u(t - s, X_s^x)$ is a martingale for $s \in [0, t]$. Then

$$P_t^{\sigma,b}\varphi(x) = \mathbb{E}(\varphi(X_t^x)) = \mathbb{E}(u(t-s,X_s^x)) = \mathbb{E}(u(t,x)) = u(t,x).$$

• The equality above tell us that if we want to establish any estimate of $P_t^{\sigma,b}\varphi(x)$, it is enough to establish the estimate of classical solution u.

Introduction 00000000	Main Results 000000	Sketch of the proof

- ▶ Is there a classical solution of PDE (3.1)?
 - Fortunately, we have a priori estimate: under the condition (H^σ) and (A^b_β) with β ∈ ((1 − α) ∨ 0, α), for any T > 0 and ε ∈ (0, β ∧ α), there is a constant C such that for all t ∈ [0, T], φ ∈ C[∞]_b and classical solutions u

$$\|u(t)\|_{\mathbf{C}^{\alpha+\varepsilon}} \leqslant C \|\varphi\|_{\mathbf{C}^{\alpha+\varepsilon}}.$$
(3.2)

▶ Let u be a classical solution. By Itô formula, $s \to u(t - s, X_s^x)$ is a martingale for $s \in [0, t]$. Then

$$P_t^{\sigma,b}\varphi(x) = \mathbb{E}(\varphi(X_t^x)) = \mathbb{E}(u(t-s,X_s^x)) = \mathbb{E}(u(t,x)) = u(t,x).$$

- The equality above tell us that if we want to establish any estimate of $P_t^{\sigma,b}\varphi(x)$, it is enough to establish the estimate of classical solution u.
- ▶ Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equivalent to the uniqueness of classical solution of PDE (3.1).

Introduction 00000000	Main Results	Sketch of the proof
Crucial lemma		

▶ Let $\theta : \mathbb{R}_+ \to \mathbb{R}^d$ be a measurable function and $p_{s,t}$ be the transition probability of process

$$Z_{s,t} := \int_{s}^{t} \int_{\mathbb{R}^{d}} \sigma(\theta(r), z) \tilde{N}(dz, dr).$$

Lemma 7 (Crucial Lemma)

For any $\beta \in [0, \alpha)$, $\gamma \in [0, +\infty)$ and T > 0, there is a constants C such that for $m \in \mathbb{N}_0$ all j > 0, $f \in L^1_{loc}(\mathbb{R}_+)$ and $t \in (0, T]$ $s \in [0, t)$, $\int_0^t \int_{\mathbb{R}^d} |x|^{\beta} |\nabla^m \Delta_j p_{s,t}(x)| |f(s)| dx ds$ $\leq C 2^{(m-\gamma-\beta)j} \int_0^t (t-s)^{-\frac{\gamma}{\alpha}} |f(s)| ds.$

Main Results

Sketch of the proof

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_{s}^{t} a(r) \mathrm{d}L_{t}^{\alpha} \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^{\alpha} \stackrel{(d)}{=} L_{t}^{\alpha}.$$

Main Results

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_{s}^{t} a(r) dL_{t}^{\alpha} \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^{\alpha} \stackrel{(d)}{=} L_{t}^{\alpha}.$$

Therefore using the change of variable and the scaling property, we have

$$\int_{s}^{t} a(r) \mathrm{d}L_{r}^{\alpha} = \int_{0}^{t-s} a(r+s) \mathrm{d}\left(L_{r+s}^{\alpha} - L_{s}^{\alpha}\right)$$
$$\stackrel{(d)}{=} (t-s)^{-\frac{1}{\alpha}} \int_{0}^{1} a(r(t-s)+s) \mathrm{d}L_{r}^{\alpha}.$$

Main Results

▲□▶▲□▶▲□▶▲□▶ □ のQで

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_{s}^{t} a(r) dL_{t}^{\alpha} \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^{\alpha} \stackrel{(d)}{=} L_{t}^{\alpha}.$$

Therefore using the change of variable and the scaling property, we have

$$\int_{s}^{t} a(r) \mathrm{d}L_{r}^{\alpha} = \int_{0}^{t-s} a(r+s) \mathrm{d}\left(L_{r+s}^{\alpha} - L_{s}^{\alpha}\right)$$
$$\stackrel{(d)}{=} (t-s)^{-\frac{1}{\alpha}} \int_{0}^{1} a(r(t-s)+s) \mathrm{d}L_{r}^{\alpha}$$

We denote by $\bar{p}_{0,1}$ the density of $\int_0^1 a(r(t-s)+s) dL_r^{\alpha}$, then

$$p_{s,t}(x) = (t-s)^{-\frac{d}{\alpha}} \bar{p}_{0,1}((t-s)^{-\frac{1}{\alpha}}x).$$

Main Results

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_{s}^{t} a(r) dL_{t}^{\alpha} \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^{\alpha} \stackrel{(d)}{=} L_{t}^{\alpha}.$$

Therefore using the change of variable and the scaling property, we have

$$\int_{s}^{t} a(r) \mathrm{d}L_{r}^{\alpha} = \int_{0}^{t-s} a(r+s) \mathrm{d}\left(L_{r+s}^{\alpha} - L_{s}^{\alpha}\right)$$
$$\stackrel{(d)}{=} (t-s)^{-\frac{1}{\alpha}} \int_{0}^{1} a(r(t-s)+s) \mathrm{d}L_{r}^{\alpha}$$

We denote by $\bar{p}_{0,1}$ the density of $\int_0^1 a(r(t-s)+s) dL_r^{\alpha}$, then

$$p_{s,t}(x) = (t-s)^{-\frac{d}{\alpha}} \bar{p}_{0,1}((t-s)^{-\frac{1}{\alpha}}x).$$

▶ $\inf_{\omega \in \mathbb{S}^{d-1}} \inf_{\lambda > 0} \lambda \sum_{i=1}^{d} |\omega \cdot \sigma(x, \frac{e_i}{\lambda})| \ge c_0^{-1}$ guarantee that for any $n \in \mathbb{N}_0$ and $\beta \in [0, \alpha)$, there is a constant C such that

$$\int_{\mathbb{R}^d} |x|^{\beta} |\nabla^n \bar{p}_{0,1}(x)| \mathrm{d}x \leqslant C.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

Introduction	Main Results	Sketch of the proof
0000000	000000	0000000000000000

Our approach

Firstly, we introduce the characteristic line θ_t^y , which is a solution of following ODE

$$\theta_t^y = y - \int_0^t b(\theta_s^y) \mathrm{d}s,$$

and get a new equation (for simplification we drop the initial y in some places):

$$\begin{cases} \partial_t \tilde{u}(t,x) = \mathscr{L}^{\alpha}_{\tilde{\sigma}} \tilde{u}(t,x) + \tilde{b}(x) \cdot \nabla \tilde{u}(t,x), \\ \tilde{u}(0,x) = \varphi(x+y), \end{cases}$$
(3.3)

where $\tilde{u}(t, x) = u(t, x + \theta_t), \tilde{\sigma}(x, z) = \sigma(x + \theta_t, z)$ and $\tilde{b}(x) = b(x + \theta_t) - b(\theta_t)$. Notice that $|\tilde{b}(x)| \leq |x|^{\beta}$ which releases the regularity of spatial x.

Introduction	Main Results	Sketch of the proof
0000000	000000	000000000000000000000000000000000000000

Our approach

Firstly, we introduce the characteristic line θ_t^y , which is a solution of following ODE

$$\theta_t^y = y - \int_0^t b(\theta_s^y) \mathrm{d}s,$$

and get a new equation (for simplification we drop the initial y in some places):

$$\begin{cases} \partial_t \tilde{u}(t,x) = \mathscr{L}^{\alpha}_{\tilde{\sigma}} \tilde{u}(t,x) + \tilde{b}(x) \cdot \nabla \tilde{u}(t,x), \\ \tilde{u}(0,x) = \varphi(x+y), \end{cases}$$
(3.3)

where $\tilde{u}(t, x) = u(t, x + \theta_t), \tilde{\sigma}(x, z) = \sigma(x + \theta_t, z)$ and $\tilde{b}(x) = b(x + \theta_t) - b(\theta_t)$. Notice that $|\tilde{b}(x)| \leq |x|^{\beta}$ which releases the regularity of spatial x.

▶ Then let $\tilde{\sigma}_0(z) = \tilde{\sigma}(0, z) = \sigma(\theta_t, z)$ and we have the following presentation

$$\begin{split} \tilde{u}(t,x) &= \int_0^t P_{s,t} \Big(\mathscr{L}^{\alpha}_{\tilde{\sigma}} - \mathscr{L}^{\alpha}_{\tilde{\sigma}_0} \Big) \tilde{u}(s,x) \mathrm{d}s + \int_0^t P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s,x) \mathrm{d}s \\ &+ P_{0,t} \varphi(x+y), \end{split}$$

where $\mathscr{L}^{\alpha}_{\sigma_0}$ is the infinitesimal generator of some process $Z_{s,t}$ introduced in the crucial lemma and $P_{s,t}f(x) := \mathbb{E}f(x + Z_{s,t})$.

roduction		
000000		

Inti

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▶ Next step is a highlight point. We take the block operator Δ_j on both sides and only look at the point zero:

$$\begin{split} \Delta_{j}\tilde{u}(t,0) &= \int_{0}^{t} \Delta_{j} P_{s,t} \Big(\mathscr{L}_{\tilde{\sigma}}^{\alpha} - \mathscr{L}_{\tilde{\sigma}_{0}}^{\alpha} \Big) \tilde{u}(s,0) \mathrm{d}s + \int_{0}^{t} \Delta_{j} P_{s,t}(\tilde{b} \cdot \nabla \tilde{u})(s,0) \mathrm{d}s \\ &+ \Delta_{j} P_{0,t} \varphi(y). \end{split}$$

00000	000000	000000000000

Introduction

▶ Next step is a highlight point. We take the block operator Δ_j on both sides and only look at the point zero:

Sketch of the proof

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

$$\begin{split} \Delta_{j}\tilde{u}(t,0) &= \int_{0}^{t} \Delta_{j} P_{s,t} \Big(\mathscr{L}_{\tilde{\sigma}}^{\alpha} - \mathscr{L}_{\tilde{\sigma}_{0}}^{\alpha} \Big) \tilde{u}(s,0) \mathrm{d}s + \int_{0}^{t} \Delta_{j} P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s,0) \mathrm{d}s \\ &+ \Delta_{j} P_{0,t} \varphi(y). \end{split}$$

▶ This time, we turn the convolution $P_{s,t}f$ into an inner product $\langle p_{s,t}, f \rangle$. Therefore, we can use our crucial lemma and get the regularity of the space.

Aain Results
000000

▶ Next step is a highlight point. We take the block operator Δ_j on both sides and only look at the point zero:

$$\begin{split} \Delta_{j}\tilde{u}(t,0) &= \int_{0}^{t} \Delta_{j} P_{s,t} \Big(\mathscr{L}_{\tilde{\sigma}}^{\alpha} - \mathscr{L}_{\tilde{\sigma}_{0}}^{\alpha} \Big) \tilde{u}(s,0) \mathrm{d}s + \int_{0}^{t} \Delta_{j} P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s,0) \mathrm{d}s \\ &+ \Delta_{j} P_{0,t} \varphi(y). \end{split}$$

- ▶ This time, we turn the convolution $P_{s,t}f$ into an inner product $\langle p_{s,t}, f \rangle$. Therefore, we can use our crucial lemma and get the regularity of the space.
- Notice that Δ_ju(t, θ_t) = Δ_jũ(t, 0). We take the supremum of the initial point of the θ_t and get the estimate of ||Δ_ju(t)||_∞. Then by taking supremum of j, we obtain that for any γ ∈ [0, α), δ > (α − 1) ∨ (1 − β) andη ≤ γ, there is a ϑ > −1 such that :

$$\|u(t)\|_{B^{\gamma}_{\infty,\infty}} \lesssim \int_{0}^{t} (t-s)^{\vartheta} \|u(s)\|_{B^{\delta}_{\infty,\infty}} \mathrm{d}s + t^{-\frac{1}{\alpha}(\gamma-\eta)} \|\varphi\|_{B^{\eta}_{\infty,\infty}}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Sketch of the proof

Main Results

Sketch of the proof

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)

Assume A > 0. For any $\theta, \vartheta > -1$ and T > 0, there exists a constant $C = C(A, \theta, \vartheta, T) \ge 0$ such that if locally integrable functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy

$$f(t) \leq A \int_0^t (t-s)^\theta f(s) \mathrm{d}s + At^\vartheta, \quad t \in (0,T],$$

then

$$f(t) \leqslant Ct^{\vartheta}, \quad t \in (0,T].$$

Main Results

Sketch of the proof

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)

Assume A > 0. For any $\theta, \vartheta > -1$ and T > 0, there exists a constant $C = C(A, \theta, \vartheta, T) \ge 0$ such that if locally integrable functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy

$$f(t) \leq A \int_0^t (t-s)^\theta f(s) \mathrm{d}s + At^\vartheta, \quad t \in (0,T],$$

then

$$f(t) \leqslant Ct^{\vartheta}, \quad t \in (0, T].$$

▶ By this type Gronwall inequality, we obtain the main result for $\gamma \in [0, \alpha)$ and $\eta \in (-(\alpha + \beta - 1) \land 1, \gamma]$.

Main Results

Sketch of the proof

▲□▶▲□▶▲□▶▲□▶ □ のQで

Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)

Assume A > 0. For any $\theta, \vartheta > -1$ and T > 0, there exists a constant $C = C(A, \theta, \vartheta, T) \ge 0$ such that if locally integrable functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy

$$f(t) \leq A \int_0^t (t-s)^\theta f(s) \mathrm{d}s + At^\vartheta, \quad t \in (0,T],$$

then

$$f(t) \leqslant Ct^{\vartheta}, \quad t \in (0,T].$$

- ▶ By this type Gronwall inequality, we obtain the main result for $\gamma \in [0, \alpha)$ and $\eta \in (-(\alpha + \beta 1) \land 1, \gamma]$.
- To lift the limitation of γ from [0, α) to [0, α + α ∧ β), we need a lift lemma and the semigroup property of Feller process.
- ▶ The proof can be found in [1].

[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. *J.Funct. Anal.*, 258 (2010), 1361-1425.

Introduction	Main Results	Sketch of the proof
Lift lemma		

Lemma 9

Assume one of the following conditions holds,

 $\bullet \ \alpha \in (0,2), b \equiv 0 \text{ and let } \beta = 1.$

• $\alpha \in (\frac{1}{2}, 2)$ and condition (\mathbf{A}^{b}_{β}) holds with $\beta \in ((1 - \alpha) \lor 0, \alpha \land 1)$.

Under condition (\mathbf{H}^{σ}), for any

 $\gamma \in (\alpha, \alpha + \alpha \land \beta), \quad \delta \in [0, \alpha),$

there is a constant C_T such that for all $\phi \in C_0^{\infty}(\mathbb{R}^d)$ and all $t \in (0, T]$,

$$\|P_t^{\sigma,b}\phi\|_{B^{\gamma}_{\infty,\infty}} \leqslant C_T t^{-\frac{\delta}{\alpha}} \|\phi\|_{B^{\gamma-\delta}_{\infty,\infty}}.$$
(3.4)

▶ Notice that $P_t^{\sigma,b}\phi = P_{\frac{t}{2}}^{\sigma,b}P_{\frac{t}{2}}^{\sigma,b}\phi$ and $(\alpha, \alpha + \alpha \land \beta) - \alpha \subset (0, \alpha)$, by this C-K property, we obtain the main result.

▲□▶▲□▶▲□▶▲□▶ = つへぐ

In	tr	oc	lu	ct	io	n	
0	0	0	0	0	0	0	0

Sketch of the proof

Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)

For $\beta \in (0,1)$ and $\theta \in (-\beta, 0]$, there is a constant C such that

 $\|[\Delta_j, f]g\|_{\infty} \leqslant C2^{-j(\beta+\theta)} \|f\|_{C^{\beta}} \|g\|_{B^{\theta}_{\infty}},$

where $[\Delta_j, f]g := \Delta_j fg - f\Delta_j g$.

In	tr	od	lu	cti	io	n	
0	0	0	0	0	0	0	0

Sketch of the proof

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)

For $\beta \in (0,1)$ and $\theta \in (-\beta, 0]$, there is a constant C such that

 $\|[\Delta_j, f]g\|_{\infty} \leqslant C2^{-j(\beta+\theta)} \|f\|_{C^{\beta}} \|g\|_{B^{\theta}_{\infty}},$

where $[\Delta_j, f]g := \Delta_j fg - f\Delta_j g$.

Sketch of the proof:

Introduction
00000000

Sketch of the proof

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)

For $\beta \in (0,1)$ and $\theta \in (-\beta, 0]$, there is a constant C such that

 $\|[\Delta_j, f]g\|_{\infty} \leqslant C2^{-j(\beta+\theta)} \|f\|_{C^{\beta}} \|g\|_{B^{\theta}_{\infty}},$

where $[\Delta_j, f]g := \Delta_j fg - f\Delta_j g$.

Sketch of the proof:

Step 1: prove it when $\theta = 0$. By definition of block operator, it is easy.

In	tr	od	lu	ct	io	n	
0	0	0	0	0	0	0	0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)

For $\beta \in (0,1)$ and $\theta \in (-\beta, 0]$, there is a constant C such that

$$\|[\Delta_j, f]g\|_{\infty} \leqslant C2^{-j(\beta+\theta)} \|f\|_{C^{\beta}} \|g\|_{B^{\theta}_{\infty}},$$

where $[\Delta_j, f]g := \Delta_j fg - f\Delta_j g$.

Sketch of the proof:

- Step 1: prove it when $\theta = 0$. By definition of block operator, it is easy.
- Step 2: make the Bony decomposition:

$$\begin{split} fg &= \sum_{i,j \in \mathbb{N}_0} \Delta_i f \Delta_j g = \sum_{i>j+1} \Delta_i f \Delta_j g + \sum_{j>i+1} \Delta_i f \Delta_j g + \sum_{|i-j| \leqslant 1} \Delta_i f \Delta_j g \\ &:= f > g + f \circ g + f > g. \end{split}$$

In	tr	od	uct	io	n	
0	0	00	00	0	0	0

Sketch of the proof

Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)

For $\beta \in (0,1)$ and $\theta \in (-\beta, 0]$, there is a constant C such that

$$\|[\Delta_j, f]g\|_{\infty} \leqslant C2^{-j(\beta+\theta)} \|f\|_{C^{\beta}} \|g\|_{B^{\theta}_{\infty}},$$

where $[\Delta_j, f]g := \Delta_j fg - f\Delta_j g$.

Sketch of the proof:

- Step 1: prove it when $\theta = 0$. By definition of block operator, it is easy.
- Step 2: make the Bony decomposition:

$$fg = \sum_{i,j\in\mathbb{N}_0} \Delta_i f \Delta_j g = \sum_{i>j+1} \Delta_i f \Delta_j g + \sum_{j>i+1} \Delta_i f \Delta_j g + \sum_{|i-j|\leqslant 1} \Delta_i f \Delta_j g$$
$$:= f > g + f \circ g + f > g.$$

► Step 3:

$$[\Delta_j, f]g = \Big(\Delta_j f < g - f < \Delta_j g\Big) + \Big(\Delta_j f \circ g - f \circ \Delta_j g + \Delta_j f > g - f > \Delta_j g\Big),$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

► To estimate
$$\int_0^t \Delta_j P_{s,t} \left(\mathscr{L}^{\alpha}_{\tilde{\sigma}} - \mathscr{L}^{\alpha}_{\tilde{\sigma}_0} \right) \tilde{u}(s,0) \mathrm{d}s$$
, we define
 $\mathscr{D}^y_z f(x) = f(x + \sigma(x + \theta^y_t, z)) - f(x + \sigma(\theta^y_t, z)) - \mathbb{1}_{\alpha \ge 1} \tilde{\sigma}(x, z) \cdot \nabla f(x),$
► and

$$\mu_{\theta}(h) := \int_{\mathbb{R}^d} (1 \wedge |x|)^{\theta} |h(x)| dx \quad , \quad \langle f, g \rangle := \int_{\mathbb{R}^d} f(x) g(x) dx.$$

► To estimate
$$\int_0^t \Delta_j P_{s,t} \left(\mathscr{L}^{\alpha}_{\tilde{\sigma}} - \mathscr{L}^{\alpha}_{\tilde{\sigma}_0} \right) \tilde{u}(s,0) \mathrm{d}s$$
, we define
 $\mathscr{D}^y_z f(x) = f(x + \sigma(x + \theta^y_t, z)) - f(x + \sigma(\theta^y_t, z)) - \mathbb{1}_{\alpha \ge 1} \tilde{\sigma}(x, z) \cdot \nabla f(x),$
► and

$$\mu_{\theta}(h) := \int_{\mathbb{R}^d} (1 \wedge |x|)^{\theta} |h(x)| dx \quad , \quad \langle f,g \rangle := \int_{\mathbb{R}^d} f(x)g(x) dx.$$

Lemma 11

For any $\theta \in [0, 1]$, there exists a constant $C = C(d, \theta) > 0$ such that for all $|z| \leq \frac{1}{2c_0}$, $f \in C^{\theta}$ and $g \in C^2$ $|\langle \mathscr{D}_z^y f, g \rangle| \leq C|z|^{\theta} ||f||_{\infty} [\mu_0(|g|) + \mu_{\theta}(|\nabla g|)^{\theta} \mu_{\theta}(|g|)^{1-\theta}]$ when $\alpha < 1$ and $|\langle \mathscr{D}_z^y f, g \rangle| \leq C|z|^{1+\theta} ||f||_{\mathbf{C}^{\theta}} [\mu_0(|g|) + \mu_1(|\nabla g|) + \mu_{1+\theta}(|\nabla^2 g|)^{\theta} \mu_{1+\theta}(|\nabla g|)^{1-\theta}]$ when $\alpha \geq 1$.

Introduction		Main Results	S	ketch of the proof
0000000		000000	(00000000000000

The key point of the proof

▶ For simplicity, we assume $\alpha < 1$ and $\phi_z(x) = \sigma(x + \theta_t^y, z)$. Rewrite

$$\mathscr{D}_z f(x) := \mathscr{D}_z^y f(x) = f(x + \phi_z(x)) - f(x + \phi_z(0))$$

▶ We can let $\overline{f}(x) = f(x + \phi_z(0))$. Their C^{θ} norms are the same. Therefore we assume that $\phi_z(0) = 0$ and there is a constant such that $|\phi_z(x)| \leq C(|x| \wedge 1)|z|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Main Results	Sketch of the proof
0000000	000000	000000000

The key point of the proof

▶ For simplicity, we assume $\alpha < 1$ and $\phi_z(x) = \sigma(x + \theta_t^y, z)$. Rewrite

$$\mathscr{D}_z f(x) := \mathscr{D}_z^y f(x) = f(x + \phi_z(x)) - f(x + \phi_z(0))$$

- ▶ We can let $\overline{f}(x) = f(x + \phi_z(0))$. Their C^{θ} norms are the same. Therefore we assume that $\phi_z(0) = 0$ and there is a constant such that $|\phi_z(x)| \leq C(|x| \wedge 1)|z|$.
- Let $\Gamma_z(x) = x + \phi_z(x)$. By change of variable, we have

$$\langle \mathscr{D}_z f, g \rangle = \langle f, \mathscr{D}_z^* g \rangle,$$

where

$$\mathscr{D}_z^*g(x) = \det(\nabla_x \Gamma_z^{-1}(x))g(\Gamma_z^{-1}(x)) - g(x).$$

Noticing that

 $|\det(\nabla_x \Gamma_z^{-1}(x)) - 1| \le |z|$, and $|\Gamma_z^{-1}(x) - x| \le C^2(|x| \land 1)|z|$,

we complete the proof.

Introduction	
00000000	

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Thanks!

