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Motivation

» Letd > 2. Consider the following stochastic differential equation :

{dXt = A(X;)dB; + b(X:)dt,

1.1
Xo =z € R? (4.

where By = (Btl7 . Bf) is a d-dimensional standard Brownian motion, b :
R? — R? is a measurable function, and A : R? — R? @ R% is a d x d matrix-
valued measurable function and satisfies

(H) A € C(R%) and for some ¢ > 0, it holds that

|det A(z)| > co, z€R"
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Motivation

» Letd > 2. Consider the following stochastic differential equation :

(H)

{dxt = A(X:)dB: + b(X¢)dt, (1.1)

Xo =z € R?

where By = (Btl7 . Bf) is a d-dimensional standard Brownian motion, b :
R? — R? is a measurable function, and A : R? — R? @ R% is a d x d matrix-
valued measurable function and satisfies

A € C(R?) and for some co > 0, it holds that

|det A(z)| > co, z€R%

Under the above assumption and b is bounded, it is well known that for each z €
R%, SDE (1.1) admits a unique weak solution X (z)(see [1]) . Furthermore, if A
and b have more regularities it admits a density p;(x, y) enjoying the following
estimates(see [2]): for any 7" > 0, there are constants c¢; > 0 such that for all
0<t<Tandz yecR?

. t*d/Qefcz\wfy\z/t

d/2 —cqlz—y|?/t
o /2 —ealz—yl?/t

<pe(w,y) <cst™

[1] Bass, R.F., Diffusions and Elliptic Operators. Springer-Verlag, New York, 1997
[2] Z.-Q. Chen, E. Hu, L. Xie, and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps.J.
Differential Equations, 263 (2017), 6576-6634.
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» Notice that B} in By = (Btl, ey Btd) are i.i.d. 1-dimensional standard Brownian
motions.

» Naturally, we consider the standard cylindrical a-stable process Ly = (Ltl, ey Ltd)
and the following SDE

{dXt = A(X¢—)dL: 4 b(Xy)dt, (1.2)

XOZI‘ERd,

where L are i.i.d. 1-dimensional standard a-stable processes.

» In fact, L; admits a density p:(z) enjoying the following estimates :
For any T" > 0, there are constants c1,c2 > Osuch thatforall0 < s <t < T
and z € R?

d t d t
im1————— <pe(z) < el ——————.
F(VE Jzi)et F(VE [zi)et

» However, there is no result for the density estimate for X;. Actually, the exis-
tence of the solution X and the density of X; are not easy questions.

C]H
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» More generality, we consider the following SDE driven by the cylindrical a-
stable process Ly,

{de = [pa 0(Xi—, 2)N(dt,dz) + b(X,)dt, (13)

X& =z e RY,
where o = (0:)%; : R x RY — R? is a measurable function, and N (dt, dz)
is the Poisson random measure of L{ defined as follow

N((s,t], E) :== Z Lo,-1, )eE-
s<u<t
» Define v(F) := EN([0, 1], E). For simplify, we assume that for all 2 € R? and
0<r<R<+o0

/T< o(z,z)v(dz) = 0.

<IzI<R
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» More generality, we consider the following SDE driven by the cylindrical a-
stable process Ly,

{de = [pa 0(Xi—, 2)N(dt,dz) + b(X;)dt, (13)

X§ =z eRY,
where o = (0:)%; : R x RY — R? is a measurable function, and N (dt, dz)
is the Poisson random measure of L{ defined as follow

N((s,t], E) := Z YL,-L, )eE-
s<u<t
» Define v(F) := EN([0, 1], E). For simplify, we assume that for all 2 € R? and
0<r<R<+o0

/T< o(z,z)v(dz) = 0.

<IzI<R

Questions:

» In what condition of ¢ and b, there is a weak(or strong) solution of SDE (1.3)?
» If there is a weak solution, does the solution have a density?
» If there is a density, can we get some precise estimates for it?



tor of X has the following form

» When L; is a d-dimensional standard «a-stable process, the infinitesimal genera-

fl@+o(z,2)) — f(z)
) — .
=Dp.v. . = |zT‘3+a f(x)/c(:r,z)dz
where dia
k(z, z) 12|

—1
= 071 (w2 |det V.o~ " (z, 2)].

DA
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» When L; is a d-dimensional standard «a-stable process, the infinitesimal genera-
tor of X7 has the following form

feto(e,2) - f@) |

Zf(x) =p-v. y P z »
flo+2) = flx) '
= p.v. y Wh(l,z)dz,
where
|Z|d+a -1
k(z,z) = |det V.o~ (z, 2)|.

lo= ! (x, 2)| 4+

» When L; is a d-dimensional cylindrical a-stable process, which is our case, the
infinitesimal generator of X has the following form

va f:c—|—(71 ze;)) — f(oc)dz7

‘1+a

where e; = (0, .., 1(i-th), .., 0).
» Notice that, it is impossible to find such a « in (1.4) this time.
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» Let .# be the Fourier transform. The 1nﬁnitesimal generator of d-dimensional
cylindrical a-stable process is Z (0:0:)2 2 with

d
F() (2:0)% £)(&) = cZ 61" F(£)(E) =11 (OF (1)),
i=1
where 11 € C®(R*\ (UL R;)), where
R; := {z € R%; z; = 0}.

» The infinitesimal generator of d-dimensional standard a-stable process is A%
with

F(AZ [)(&) = cl&|* Z()(€) == v2()F (1)),
where 12 € C*(R%\ 0).

» Therefore, compared with standard a-stable process, the cylindrical one is more
difficult to be dealed with.
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Assumptions

(A°) o(x,z) = A(x)z for some matrix value map A = (a; ;) : R = R*®R?, there
is a positive number co such that for any x,y, £ € R?andalli,j=1,....,d

o 1l < JA(z)E] < colél, (1.5)

lai,j(z) — ai;(y)| < colz —yl. (1.6)
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Assumptions

(A°) o(x,z) = A(x)z for some matrix value map A = (a; ;) : R = R*®R?, there
is a positive number co such that for any x,y, £ € R?andalli,j=1,....,d

co €] < JA(2)€] < colé], (1.5)
lai,j(x) — ai;(y)] < colz — yl. (1.6
(A%) For B € [0,1],
[b(z) = b(y)|

[bllcs := sup |b(x)] + sup < 0. 1.7

z€R4 lz—y|#0 \w - y|ﬁ
» If there is a solution X of SDE (1.3), we define

Pl"o(x) = E($(X7)), P =P



Well-known results
2006 (Bass-Chen)

There is a weak solution X of (1.3) when o(z,2) = o(x)z is continuous in
variable x and b = 0.

DA
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Well-known results

2006 (Bass-Chen)
There is a weak solution X of (1.3) when o(z,2) = o(x)z is continuous in
variable z and b = 0.

2010 (Bass-Chen)
Assume o(z,z) = o(x)z is continuous in variable = and b = 0. For any
bounded domain D C R, define 7p := inf{t > 0, X7 ¢ D}. If any bounded
function h satisfies

h(z) = E[h(X7,)] foreveryz € D,

then A is Holder continuous in D.



Introduction Main Results Sketch of the proof
00000080 000000 000000000000

Well-known results

2006 (Bass-Chen)
There is a weak solution X of (1.3) when o(z,2) = o(x)z is continuous in
variable z and b = 0.

2010 (Bass-Chen)
Assume o(z,z) = o(x)z is continuous in variable = and b = 0. For any
bounded domain D C R, define 7p := inf{t > 0, X7 ¢ D}. If any bounded
function h satisfies

h(z) = E[h(X7,)] foreveryz € D,

then A is Holder continuous in D.

2012 (Debussche-Fournier )
Assume that o(+, z) = o(-)z € C% and (A%) with some conditions of ¢; and
02, the solution admits a density, and density is in some Besov space(we will
introduce below).
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Well-known results

2006 (Bass-Chen)
There is a weak solution X of (1.3) when o(z,2) = o(x)z is continuous in
variable z and b = 0.

2010 (Bass-Chen)
Assume o(z,z) = o(x)z is continuous in variable = and b = 0. For any
bounded domain D C R, define 7p := inf{t > 0, X7 ¢ D}. If any bounded
function h satisfies

h(z) = E[h(X7,)] foreveryz € D,

then A is Holder continuous in D.

2012 (Debussche-Fournier )
Assume that o(+, z) = o(-)z € C% and (A%) with some conditions of ¢; and
02, the solution admits a density, and density is in some Besov space(we will
introduce below).

2017 (Chen-Zhang-Zhao)

Under the conditions (A?) and (A%) with 8 € (1— 5, 1), there is a unique strong
solution of (1.3).
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2018 (Kulczycki-Ryznar-Sztonyk)
Assume b = 0 and o € (0, 1). Under the condition (A7), for any v € (0, &),
T > 0, there is a constant C' such that for all ¢t € (0,T), z,y € R% and f €
L= (RY)

y

[P f(x) = P f(y)] < Clz —y|"t™ =

[fllzoe. (1.8)

For any v € (0, %), T > 0, there is a constant C' such that for all t € (0, 7],
z € RYand f € L°°(R%) N LY (RY)

P f(@)] < O AL A1 (1.9)
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2018 (Kulczycki-Ryznar-Sztonyk)
Assume b = 0 and o € (0, 1). Under the condition (A7), for any v € (0, &),
T > 0, there is a constant C' such that for all ¢t € (0,T), z,y € R% and f €
L= (RY)

y

|PY f(x) = P f(y)l < Clo =yt || fllee. (1.8)

For any v € (0, %), T > 0, there is a constant C' such that for all t € (0, 7],
z € RYand f € L°°(R%) N LY (RY)

P f(@)] < O AL A1 (1.9)

» Notice that they can not deal the case a € [1,2).
» Holder index ~y can not be 1.



Part 2: Our main results

o F - = E DAl
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Littlewood-Paley decomposition and Besov space

> Let ¢ be a radial C*°-function on R? with
¢o(§) =1 for £ € By and ¢o(§) =0 for € ¢ Bs.
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Littlewood-Paley decomposition and Besov space

> Let ¢ be a radial C*°-function on R? with
¢o(§) =1 for £ € By and ¢o(§) =0 for € ¢ Bs.

> For¢& = (&, - ,&n) € R and j € N, define
@i (&) = ¢0(27j§) — ¢0(2*(j*1)£).
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Littlewood-Paley decomposition and Besov space

> Let ¢ be a radial C*°-function on R? with
¢o(§) =1 for £ € By and ¢o(§) =0 for € ¢ Bs.

» Foré& = (&1, -+ ,&,) € RYand j € N, define
() == po(277€) — g0 (27 1¢).
» Itis easy to see that for j € N, ¢;(€) = ¢1(279~P¢) > 0 and

k
suppe; C Byre1 \ Basm1, Y 65(§) = $0(27°¢) = 1, k — oo.
j=0
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Littlewood-Paley decomposition and Besov space

> Let ¢ be a radial C*°-function on R? with
¢o(§) =1 for £ € By and ¢o(§) =0 for € ¢ Bs.

» Foré& = (&1, -+ ,&,) € RYand j € N, define
63(6) == $0(277€) — po(2707Vg).
» Itis easy to see that for j € N, ¢;(€) = ¢1(279~P¢) > 0 and
k
supp; C Bys1 \ Baym1, Y 65(6) = o(27°¢) = 1, k — oo.
7=0
» Notice that {¢; };en, is a partition of unity of
Rd =B U (U]‘EN (32j+1 \BQj—l))-



» For given j € Ny, the block operator A; is defined on .’ by

Ajf(@) = F & F () @) = F 7 (9;) * f(x)

=20 / 77 e0) 2" (@ — ) f(y)dy.

DA



» For given j € Ny, the block operator A; is defined on .%’ by
Ajf(z) :=F (¢

@ F()(@) = F Hgy) * f(=)
=270 [ 000 @ - ).
Rd

» For j € Ny, by definition it is easy to see that
AJ‘ = Aj&j, where Zj = Ajfl —+ Aj —+ AjJrl with A_1 = 0,
and A; is symmetric in the sense that

(2.1)
(Ajfvg> = (fv Ajg>

DA
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» For given j € Ny, the block operator A; is defined on .’ by
Ajf(@) = F N8 F () (@) = FH(dy) * f(x)
=270 [ F e @ ) @ - ) fw)a.
Jra
» For j € Ny, by definition it is easy to see that
Aj = Ajgj, where Ej =Aj_1+ A+ Ajp withA_; =0, (2.1)

and A; is symmetric in the sense that
(Aif.9) =}, 859).

» The cut-off low frequency operator Sy, is defined by

k—1
Sifi=> Ajf=2" [ G@@-y)fwdy—f @2
Rd

=0
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» For given j € Ny, the block operator A; is defined on .’ by
Dif(@) = F (6 Z () (@) = F(65) * f(a)
=270 [ F e @ ) @ - ) fw)a.
Jra

» For j € Ny, by definition it is easy to see that
A; = AjA;, where Aj:=A; 1 +A;+ A withA_, =0, (2.1)
and A; is symmetric in the sense that
(Ajf,9) = (f,D859)-

» The cut-off low frequency operator Sy, is defined by
k—1
Sifi=> Ajf=2" [ G@@-y)fwdy—f @2
i=0 e
» We rewrite (2.2) as

= A1,

j=0

which is called the Littlewood-Paley decomposition.



Definition 1 (Besov space)

For any s € R, the Besov space B, . is defined by

Blee(®") = {f € 7R : Wflg... :=sup (2718 z) < oo}

DA
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Definition 1 (Besov space)
For any s € R, the Besov space B, . is defined by

Ble(®") = {£ € #(RY s 1l . i= sup (2714 f1) < oo}
Jz

Proposition 2
Forany s > 0 with s ¢ N,

C*(R") = B% (R,

where C*2(R?) is the Holder space.
Moreover, for anyn € N,

C"(R?) € BL o (RY).
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Our assumption for o

(H®) There is a constant co > 1 such that for all 2,4,z € R?and all A > 0

d
inf inf A |w-o(z, %)| >l 2.3)
=1

wesSd—1 A>0

|o(z,2) — oy, 2)| < colz —yl|z].
co ' |2l <lo(z,2)] < colzl.

Remark 3

» Notice that condition A° implies condition H° here.

» o(z,z) = (2 + sinz1)z satisfies condition H° but not satisfies condition A°.
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Main Results

Theorem 4

Let o € (0,2) and B € [0, 1] with oo + 8 > 1. Assume (H?) and one of the following
conditions holds:

@ b=0,8=1

(ii) o € (3,2) and b € C”.
Let X¢(x) be the unique solution of SDE (1.3) and define

P p(x) i= Ep(Xe())-

Lety € [0,a+aAp) andn € (—((a+ 8 —1)Al),v]. Forany T > 0, there is a
constant C' > 0 such that forall 0 < t < T,

& n—xy
1P 0llsy, . <C® = llelsr, - 24

00,00

4
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Main Results

Theorem 4

Let o € (0,2) and 8 € [0, 1] with o + 8 > 1. Assume (H?) and one of the following
conditions holds:

@ b=0,8=1

(i) @ € (%,2)andb e C”.
Let X¢(x) be the unique solution of SDE (1.3) and define

Po(z) i= Bp(X4(a)).

Lety € [0,a+aAp) andn € (—((a+ 8 —1)Al),v]. Forany T > 0, there is a
constant C' > 0 such that forall 0 < t < T,

o, n=o
1P 0llsy, . <C® = llelsr, - 2.4)

00,00

4

» Notice that (2.4) reduced the restriction of the ~y in (1.8)
from (0, ) to (0, « + a A B) by taking n = 0. In particular, we have gradient
estimate. Moreover, we can deal with the case oo > 1.

» By a way of interpolation, we also get (1.9).
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Main Results

Corollary 5

(A) Let ¢ € Upc(atp—1)a1Bleo. Forany 0 < t, Pf‘bcp € Ny<atansBL, 0o
solves the following backward Kolmogorov equation: for all xz € R?,

PPY p(z) = PPS o(a / L7PPI p(x)ds, 0<to <t <t, (2.5)
to

where £%°u(z) = p.v. [(u(z + o(z, 2)) — u(x))v(dz) + b - Vu(z).
(B) For a € (3,2), the following gradient estimate holds: for 0 <t < T,

o _ 1
VP P¢lloe < Crt™ % ||| oo- (2.6)

(C) Foreacht > 0, the random variable X(x) admits a density i (x,-) with

P (@,") € Ny<(a+p—1)n1 Bl 1. 2.7
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Main Results

Corollary 5
(A) Let ¢ € Upc(atp—1)a1Bleo. Forany 0 < t, Pf‘bcp € Ny<atansBL, 0o

solves the following backward Kolmogorov equation: for all = € R?,

t1
PPb o(z) = P75 o(z) + / L7PPI p(x)ds, 0<to <t <t, (2.5)
to

where £7u(z) := p.v. [(u(z + o(z, 2)) — u(z))v(dz) + b - Vu().

(B) For a € (3,2), the following gradient estimate holds: for 0 <t < T,

o _ 1
VP P¢lloe < Crt™ % ||| oo- (2.6)

(C) For eacht > 0, the random variable X(x) admits a density pi* (x, -) with

P (@,") € Ny<(a+p—1)n1 Bl 1. 2.7

» When o is Lipschitz, (2.7) here is better the result in Debussche-Fournier’s.



Part 3: Proof
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PDE related to SDE

» Naturally we consider the following PDE,

{8tu(t, x) = Llu(t,x) + b(z) - Vul(t, z), 3.0

u(07 l’) = QO(ZL’),

where ¢ € C5°(R?) and

Llu(t,z) = zd: p.v./]Ri (u(t,:p +o(z,2)) — u(t, :r)) v(dz).
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PDE related to SDE

» Naturally we consider the following PDE,

{8tu(t, x) = Llu(t,x) + b(z) - Vul(t, z), 3.0

u(0,2) = ¢(z),

where ¢ € C5°(R?) and

Llu(t,z) = zd: p.v./]Ri (u(t,:p +o(z,2)) — u(t, :c)) v(dz).

Definition 6

We call a function u(t, z) € C([0, +-00); C*T¢(R%) N C*(R?)) for some € > 0 be a
classical solution of PDE (3.1) in [0, 77 if for all ¢ € [0, cc) and z € R?

u(t,x) = /0 Lru(s, z) + b(z) - Vu(s,z)ds + ¢(z).




» Is there a classical solution of PDE (3.1)?

DA
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» Is there a classical solution of PDE (3.1)?
» Fortunately, we have a priori estimate: under the condition (H?) and (A%) with 8 €

((1—a)VO0,a),forany T > 0and e € (0, 8 A c), there is a constant C' such that
forallt € [0,T], » € C5° and classical solutions u

u(®)llga+e < Cllellgate- (32)
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» Is there a classical solution of PDE (3.1)?
» Fortunately, we have a priori estimate: under the condition (H?) and (A%) with 8 €

((1—a)VO0,a),forany T > 0and e € (0, 8 A c), there is a constant C' such that
forallt € [0,T], » € C5° and classical solutions u

[u@®)llcate < Cllellgate- (32)

» Let u be a classical solution. By It6 formula, s — u(t — s, X7) is a martingale
for s € [0,¢]. Then

P7Po(x) = E(p(X7)) = E(u(t — 5, X7)) = E(u(t, 2)) = u(t, z).
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» Is there a classical solution of PDE (3.1)?
» Fortunately, we have a priori estimate: under the condition (H?) and (A%) with 8 €

((1—a)VO0,a),forany T > 0and e € (0, 8 A c), there is a constant C' such that
forallt € [0,T], » € C5° and classical solutions u

[u@®)llcate < Cllellgate- (32)

» Let u be a classical solution. By It6 formula, s — u(t — s, X7) is a martingale
for s € [0,¢]. Then

P7Po(x) = E(p(X7)) = E(u(t — 5, X7)) = E(u(t, 2)) = u(t, z).

» The equality above tell us that if we want to establish any estimate of Ptg’bcp(a:),
it is enough to establish the estimate of classical solution .
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Is there a classical solution of PDE (3.1)?
» Fortunately, we have a priori estimate: under the condition (H?) and (A%) with 8 €

((1—a)VO0,a),forany T > 0and e € (0, 8 A c), there is a constant C' such that
forallt € [0,T], » € C5° and classical solutions u

[lu@®llo+e < Clielicate (32
Let u be a classical solution. By It6 formula, s — u(¢ — s, X{') is a martingale

for s € [0,¢]. Then

P7Po(x) = E(p(X7)) = E(u(t — 5, X7)) = E(u(t, 2)) = u(t, z).

The equality above tell us that if we want to establish any estimate of Pf’bcp(a:),
it is enough to establish the estimate of classical solution .

Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equiva-
lent to the uniqueness of classical solution of PDE (3.1).
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Crucial lemma

> Let6:R; — R be a measurable function and p;,; be the transition probability

of process
/ / N(dz,dr).
R4

Forany B € [0,a), v € [0,400) and T > 0, there is a constants C such that for
mENgallj >0, f € Ll,.(Ry)andt € (0,T] s € [0,1),

Al/&d @ ’ iPs.e(x)[|f(s)|dads

Lemma 7 (Crucial Lemma)

m

<020 [ B (o)l

0
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The key point of proof

» For simplify, we assume o (z, z) = A(x)z for some matrix value map A : R? —
R? @ R and a(t) := A(A(t)). Recall that p ; is the transition probability of

t
Zs 2/ a(r)dLy  with A& LY, @ e,
S
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The key point of proof

» For simplify, we assume o (z, z) = A(x)z for some matrix value map A : R? —
R? @ R and a(t) := A(A(t)). Recall that p ; is the transition probability of

' a : 1o @ ;o
Zst = | a(r)dLy with M= L5, = LY.
S

Therefore using the change of variable and the scaling property, we have

t t—s
[amaze = [ a4 9a(Lz, - 2)
s 0

(d) -1

= (t—s) 5/(; a(r(t —s) + s)dL;.



Introduction Main Results Sketch of the proof
00000000 000000 000@00000000

The key point of proof

» For simplify, we assume o (z, z) = A(x)z for some matrix value map A : R? —
R? @ R and a(t) := A(A(t)). Recall that p ; is the transition probability of

' a : 1o @ ;o
Zst = | a(r)dLy with M= L5, = LY.
S

Therefore using the change of variable and the scaling property, we have

t t—s
[amaze = [ a4 9a(Lz, - 2)
s 0

(d) 1

1
= (t—s) = / a(r(t —s) + s)dL;.
0
We denote by po,1 the density of fol a(r(t — s) + s)dLg, then

ps(x) = (t =)

1

Poa((t =) >x).

_a
@
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The key point of proof

» For simplify, we assume o (z, z) = A(x)z for some matrix value map A : R? —
R? @ R and a(t) := A(A(t)). Recall that p ; is the transition probability of

' a : 1o @ ;o
Zst = | a(r)dLy with M= L5, = LY.
S

Therefore using the change of variable and the scaling property, we have

t t—s
[amaze = [ a4 9a(Lz, - 2)
s 0

(d) 1

1
= (t—s) = / a(r(t —s) + s)dL;.
0
We denote by po,1 the density of fol a(r(t — s) + s)dLg, then

ps(x) = (t =)

1

Poa((t =) >x).

_a
@

» inf cga—1infaso /\Zj:1 lw - o(z, )| > ¢y guarantee that for any n € No
and B € [0, ), there is a constant C' such that

/d |z|? V" Po.1 (z)|dz < C.
R
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Our approach

» Firstly, we introduce the characteristic line 67, which is a solution of following
ODE

t
o =y~ [ biot)as,
0

and get a new equation(for simplification we drop the initial ¢ in some places):

{atﬂ(t,x) Lea(t,x) + b(x) - Valt, o), 53)

w(0,7) = p(z +y),

where i(t, z) = u(t,r + 0:),6(z,2) = o(z + 0, 2) and b(z) = b(x + 0;) —
b(6;). Notice that |b(z)| < |z|” which releases the regularity of spatial z.
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Our approach

» Firstly, we introduce the characteristic line 67, which is a solution of following
ODE

¢
o =y~ [ biot)as,
0
and get a new equation(for simplification we drop the initial ¢ in some places):

{atﬁ(t,x) L2a(t, ) + b(z) - Va(t, z),

3.3
(0,2) = @z + 1), ©3)

where i(t, z) = u(t,r + 0:),6(z,2) = o(z + 04, z) and b(z) = b(x + 0,) —
b(6;). Notice that |b(x)| < |z|® which releases the regularity of spatial .
» Thenlet 5o(z) = (0, z) = (0, z) and we have the following presentation

it
a(t, ) :/ Psyt(.,iﬂo‘ fgog) (s, ds+/ Py (b- Vi) (s, x)ds
0
+ Po,so(x +y),

where .Z5, is the infinitesimal generator of some process Z ; introduced in the
crucial lemma and P, f(z) := Ef (z + Zs ).



» Next step is a highlight point. We take the block operator A; on both sides and
only look at the point zero:

t t
Aji(t,0) = / Ajps,t<$;—zg;>a(s,0)ds+ / A, P (b Vii)(s,0)ds
0 0
+ A Pop(y).

DA
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» Next step is a highlight point. We take the block operator A; on both sides and
only look at the point zero:

t t
Ajﬂ(t,()):/ Ajps,t(z;fzgg)a(s,o)dﬁ/ A, Pyy(b-Vi)(s,0)ds
0 0

+ A Po,o(y)-

» This time, we turn the convolution P; ; f into an inner product (ps.:, f). There-
fore, we can use our crucial lemma and get the regularity of the space.
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» Next step is a highlight point. We take the block operator A; on both sides and
only look at the point zero:

t t
Ajﬂ(t,()):/ Ajps,t(z;fzgg)a(s,o)dﬁ/ A, Pyy(b-Vi)(s,0)ds
0 0

+ A Po,o(y)-

» This time, we turn the convolution P; ; f into an inner product (ps.:, f). There-
fore, we can use our crucial lemma and get the regularity of the space.

» Notice that Aju(t,6;) = Aja(t,0). We take the supremum of the initial point
of the 6; and get the estimate of ||A;u(t)||cc. Then by taking supremum of j,
we obtain that for any v € [0, ), d > (. — 1) V (1 — 3) andn < ~, there is a
¥ > —1 such that :

t
9 J SV
lu®)lls, . S/ (t =) llu(s) g, ds +t =T lllgn
) 0 ) )
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Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)

Assume A > 0. For any 6,9 > —1 and T > O, there exists a constant C =
C(A,0,9,T) > 0 such that if locally integrable functions f : Ry — R satisfy

sy <4 f (t— ) f(s)ds + A, te (0,T],

then

f@)y<ct’, te(0,1).
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Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)

Assume A > 0. For any 0,9 > —1 and T > 0, there exists a constant C' =
C(A,0,9,T) > 0 such that if locally integrable functions f : Ry — R satisfy

sy <4 f (t— ) f(s)ds + A, te (0,T],

then

f@)y<ct’, te(0,1).

» By this type Gronwall inequality, we obtain the main result for v € [0, «) and
ne(—(a+p-1)ALA]
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Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)

Assume A > 0. For any 60,9 > —1 and T > 0, there exists a constant C' =
C(A,0,9,T) > 0 such that if locally integrable functions f : Ry — R satisfy

sy <4 f (t— ) f(s)ds + A, te (0,T],

then
f@)y<ct’, te(0,1).

» By this type Gronwall inequality, we obtain the main result for v € [0, «) and
ne(—(a+6-1)A1,47].

» To lift the limitation of 7y from [0, @) to [0, & + a A 8), we need a lift lemma and
the semigroup property of Feller process.

» The proof can be found in [1].

[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation.
J.Funct. Anal., 258 (2010), 1361-1425.
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Lift lemma

Lemma 9
Assume one of the following conditions holds,

> a€(0,2),b=0andlet g = 1.

> o € (3,2) and condition (A%) holds with B € (1 — a) V 0, a A 1).
Under condition (H?), for any

vE(mat+arp), 6€l0,a),
there is a constant Cr such that for all ¢ € C§°(R?) and all t € (0, T,

1276 5y

00,00

_ s
< Crt™ ¥ gl s (G.4)

v

» Notice that P7""¢ = P" bP" Y and (o, a + a A ) — o C (0, ), by this C-K

property, we obtain the maln result



Some techniques
Lemma 10 (Chen-Zhang-Zhao 2017)

For B € (0,1) and 6 € (—f,0], there is a constant C such that

I14;, flgllee < C277C* | fll s llgll g,
where [A;, flg := Ajfg — fA;g.

DA
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Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)
For g € (0,1) and 6 € (—p, 0], there is a constant C such that

1143, flglloo < C277C* | fllcsligll po_,
where [Aj, flg :== Ajfg — fA;g.

Sketch of the proof:
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For B € (0,1) and 6 € (—f,0), there is a constant C' such that

1143, flglloo < C277C* | fllcsligll po_,
where [Aj, flg :== Ajfg — fA;g.

Sketch of the proof:
» Step 1: prove it when § = 0. By definition of block operator, it is easy.
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Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)
For B € (0,1) and 6 € (—f,0), there is a constant C' such that

1143, flglloo < C277C* | fllcsligll po_,
where [Aj, flg :== Ajfg — fA;g.

Sketch of the proof:
» Step 1: prove it when § = 0. By definition of block operator, it is easy.
» Step 2: make the Bony decomposition:

Fa= Y AfAjg= > AifAjg+ Y AfAjg+ Y AiflAg
i.7€No i>j+1 i>it1 ji—jl<1

=f>g+fog+f>g
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Some techniques

Lemma 10 (Chen-Zhang-Zhao 2017)
For B € (0,1) and 6 € (—f,0), there is a constant C' such that

1A, flgllee < C277CFD| £l s lgll e,
where [A;, flg := Ajfg — fAg.

Sketch of the proof:
» Step 1: prove it when § = 0. By definition of block operator, it is easy.
» Step 2: make the Bony decomposition:

Fa= Y AfAjg= > AifAjg+ Y AfAjg+ Y AiflAg
i.7€No i>j+1 i>it1 ji—jl<1

=f>g+fog+f>g

» Step 3:
(5. flg = (AsF < 9=1 < Asg)+(Asfog=oDg+0,f > g=F > Asg).

the estimate of the first one from step 1 and the second part has a higher regular-
ity.



» To estimate fot APy (.Zg" - f;%)ﬁ(s, 0)ds, we define

» and

2:f(x) = [z +o(e+0/,2) = fx+0(0/,2)) = Laz16(x, 2) - V[ (2),

polh) = [ (Al alide . (f) o= [ F@)gta)da.

DA
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> Toestimate [, A;Ps; (f;f — ,Z%)ﬂ(s, 0)ds, we define

2:f(x) = f(x+o(@+0/,2) = f(z+0(6,2)) — Lax16(x, 2) - Vf(2),

» and

polh) = [ (Al alide . (f) o= [ F@)gta)da.

R4

Lemma 11

For any 0 € (0, 1], there exists a constant C = C(d,0) > 0 such that for all |z| <
L feC%andg e C?

(22 f, )] < Clz’ [ fllo [1o(Ig]) + na (1Y)’ o(lgl) ~*]

when o < 1 and

{22 f, )| < Clal "N fllce [o(lgl) + 1 (1Vg]) + w4 (1Y)’ pare(1Vgl) ']

when o > 1.
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The key point of the proof

» For simplicity, we assume « < 1 and ¢, (z) = o(z + 07, z). Rewrite
P-f(x) == 7 f(x) = f(z + ¢-(2)) — f(z + ¢(0)).

> We can let f(x) = f(x + ¢.(0)). Their C? norms are the same. Therefore we
assume that ¢ (0) = 0 and there is a constant such that |¢. (z)| < C(Jz|A1)|z].
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The key point of the proof

» For simplicity, we assume « < 1 and ¢, (z) = o(z + 07, z). Rewrite
P-f(x) == 7 f(x) = f(z + ¢-(2)) — f(z + ¢(0)).

> We can let f(x) = f(x + ¢.(0)). Their C? norms are the same. Therefore we
assume that ¢ (0) = 0 and there is a constant such that |¢. (z)| < C(Jz|A1)|z].

» LetI'.(z) = = + ¢.(x). By change of variable, we have
(2:f,9) = (f,2:9),
where
7% 9(w) = det(VoT2 ' (2))g(Is " (2)) — ().
» Noticing that
|det(Vol2 ' (2)) =1 < 2|, and P27 (2) — 2| < C*(Je| AL)|z],

we complete the proof.
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