Superposition principle for non-local Fokker-Planck operators

Xicheng Zhang

Wuhan University

(A joint work with Michael Röckner and Longjie Xie)

LSA winter meeting, Snegiri

Moscow •2019.12.02

- Introduction
- Main result
- Proofs: Continuous Elliptic Coefficients
- Proofs: General case
- 5 Application to fractional porous mediam equation

Introduction

• Consider the following SDE in \mathbb{R}^d :

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dW_t, \qquad (1.1)$$

where $b: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ are measurable functions, W_t is a standard Brownian motion defined on some probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• Assume that X_t solves the above SDE in the sense that

$$\mathbb{E}\left(\int_0^T (|b_t(X_t)| + |a_t(X_t)|) \mathrm{d}t\right) < \infty,$$

where $a_t(x) = \frac{1}{2}(\sigma_t \sigma_t^T)(x)$, and

$$X_t = X_0 + \int_0^t b_s(X_s) \mathrm{d}s + \int_0^t \sigma_s(X_s) \mathrm{d}W_s.$$

Let

$$\mathscr{A}_t f(x) := \operatorname{tr}(a_t(x) \cdot \nabla^2 f(x)), \ \mathscr{B}_t f(x) := b_t(x) \cdot \nabla f(x). \tag{1.2}$$

• Let μ_t be the marginal law of X_t . By Itô's formula, μ_t solves the following Fokker-Planck equation in the distributional sense

$$\partial_t \mu_t = \left(\mathscr{A}_t + \mathscr{B}_t \right)^* \mu_t, \tag{1.3}$$

where \mathscr{A}_t^* and \mathscr{B}_t^* stand for the adjoint operators of \mathscr{A}_t and \mathscr{B}_t , respectively, that is, for any $f \in C_c^2(\mathbb{R}^d)$,

$$\mu_t(f) = \mu_0(f) + \int_0^t \mu_s(\mathscr{A}_s(f) + \mathscr{B}_s(f)) ds.$$

In order to make the right hand have sense, it suffices to require

$$\int_0^t \int_{B_N} (|a_s(x)| + |b_s(x)|) \mu_s(\mathrm{d}x) \mathrm{d}s < \infty, \ \forall N > 0.$$

• Question: (Superposition principle) For any probability measure solution μ_t of FPE (??), is there a solution X_t to SDE (??) so that

$$\mu_t = \text{Law of } X_t, \ \forall t \geqslant 0$$
?

- In the deterministic case, i.e., $\sigma \equiv 0$, Ambrosio [2004] first studied the above problem, and use it to establish the well-posedness of ODE with BV velocity field.
- In stochastic case, when b and σ are bounded measurable, Figalli [2008] showed that for any probability measure solution μ_t of FPE (??), there is a martingale solution for SDE (??) so that

$$\mu_t = \mathbb{P} \circ X_t^{-1}.$$

 Trevisan [2016] showed the same result under the following natural assumption:

$$\int_0^T \int_{\mathbb{R}^d} (|b_t(x)| + |a_t(x)|) \mu_t(\mathrm{d}x) \mathrm{d}t < \infty.$$

However, the above assumption is not satisfied if

$$|b_t(x)|+|\sigma_t(x)|\leqslant C(1+|x|) ext{ and } \int_{\mathbb{R}^d}|x|\mu_t(\mathrm{d}x)=\infty.$$

 Recently, Bogachev, Röckner and Shaposhnikov [2019] improved Trevisan's result to the following more general assumption:

$$\int_0^T \int_{\mathbb{R}^d} \frac{|\langle x, b_t(x)\rangle| + |a_t(x)|}{1 + |x|^2} \mu_t(\mathrm{d}x) \mathrm{d}t < \infty.$$

- Let $(X_t)_{t\geqslant 0}$ be a Feller process in \mathbb{R}^d with infinitesimal generator $(\mathcal{L}, \mathsf{Dom}(\mathcal{L}))$.
- One says \mathscr{L} satisfies a maximum principle if for all $f \in \mathsf{Dom}(\mathscr{L})$ reaching a maximum at point $x_0 \in \mathbb{R}^d$, then $\mathscr{L}f(x_0) = 0$.
- Suppose that $C_c^{\infty}(\mathbb{R}^d) \subset \mathsf{Dom}(\mathscr{L})$. By Courrège's theorem, \mathscr{L} satisfies the maximum principle if and only if

$$\mathcal{L}f(x) = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \partial_{ij}^{2} f(x) + \sum_{i=1}^{d} b_{i}(x) \partial_{i} f(x)$$

$$+ \int_{\mathbb{R}^{d}} \left(f(x+z) - f(x) - 1_{|z| \leq 1} z \cdot \nabla f(x) \right) \nu_{x}(\mathrm{d}z), \tag{1.4}$$

where a, b are measurable functions and $\nu_{\chi}(\mathrm{d}z)$ is a family of Lévy measures.

• Let μ_t be the marginal law of X_t . By Dykin's formula, we have

$$\partial_t \mu_t = \mathscr{L}^* \mu_t.$$

• We naturally ask that for any probability measure solution μ_t to the above Fokker-Planck equation, is it possible to find some process X so that μ_t is just the law of X_t for each $t \ge 0$?

Main result

• Let $\{\nu_{t,x}\}_{t\geqslant 0, x\in\mathbb{R}^d}$ be a family of Lévy measures over \mathbb{R}^d , that is, for each $t\geqslant 0$ and $x\in\mathbb{R}^d$,

$$g_t^{\nu}(x) := \int_{B_{\ell}} |z|^2 \nu_{t,x}(\mathrm{d}z) < \infty, \quad \nu_{t,x}(B_{\ell}^c) < \infty, \qquad (2.1)$$

where $\ell > 0$ is a fixed number, and $B_{\ell} := \{z \in \mathbb{R}^d : |z| < \ell\}$. Without loss of generality we may assume

$$\ell \leqslant 1/\sqrt{2}$$
.

ullet We introduce the following Lévy type operator: for any $f\in C^2_b(\mathbb{R}^d),$

$$\mathscr{N}_t f(x) := \mathscr{N}_t^{\nu} f(x) := \mathscr{N}^{\nu_{t,x}} f(x) := \int_{\mathbb{R}^d} \Theta_f(x;z) \nu_{t,x}(\mathrm{d}z), \quad (2.2)$$

where

$$\Theta_f(x;z) := f(x+z) - f(x) - \mathbf{1}_{|z| \leqslant \ell} \cdot \nabla f(x). \tag{2.3}$$

• Let us consider the following non-local Fokker-Planck equation:

$$\partial_t \mu_t = \mathcal{L}_t^* \mu_t = (\mathcal{A}_t + \mathcal{B}_t + \mathcal{N}_t)^* \mu_t. \tag{2.4}$$

Definition 1 (Weak solution)

Let $\mu: \mathbb{R}_+ \to \mathcal{P}(\mathbb{R}^d)$ be a continuous curve. We call μ_t a weak solution of the non-local Fokker-Planck equation (??) if for any R > 0 and t > 0,

$$\begin{cases}
\int_{0}^{t} \int_{\mathbb{R}^{d}} \mathbf{1}_{B_{R}}(x) \Big(|a_{s}(x)| + |b_{s}(x)| + g_{s}^{\nu}(x) \Big) \mu_{s}(\mathrm{d}x) \mathrm{d}s < \infty, \\
\int_{0}^{t} \int_{\mathbb{R}^{d}} \Big(\nu_{s,x} \Big(B_{\ell \vee (|x|-R)}^{c} \Big) + \mathbf{1}_{B_{R}}(x) \nu_{s,x} \Big(B_{\ell}^{c} \Big) \Big) \mu_{s}(\mathrm{d}x) \mathrm{d}s < \infty, \end{cases}
\end{cases} (2.5)$$

and for all $f \in C_c^2(\mathbb{R}^d)$ and $t \geqslant 0$,

$$\mu_t(t) = \mu_0(t) + \int_0^t \mu_s(\mathcal{L}_s t) ds. \tag{2.6}$$

- Let $\mathbb D$ be the space of all $\mathbb R^d$ -valued cádlág functions on $\mathbb R_+$.
- Let $X_t(\omega) = \omega_t$ be the canonical process.
- For $t \geqslant 0$, let $\mathcal{B}_t^0(\mathbb{D}) = \sigma\{X_s, s \in [0, t]\}$ and

$$\mathcal{B}_t := \mathcal{B}_t(\mathbb{D}) := \cap_{s \geqslant t} \mathcal{B}_t^0(\mathbb{D}), \ \ \mathcal{B} := \mathcal{B}(\mathbb{D}) := \mathcal{B}_{\infty}(\mathbb{D}).$$

Definition 2 (Martingale Problem)

Let $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$ and $s \geqslant 0$. We call $\mathbb{P} \in \mathcal{P}(\mathbb{D})$ a martingale solution of \mathscr{L}_t with initial distribution μ_0 at time s if

- (i) $\mathbb{P}(X_t = X_s, t \in [0, s]) = 1$ and $\mathbb{P} \circ X_s^{-1} = \mu_0$.
- (ii) For any $f \in C_c^2(\mathbb{R}^d)$, M_t^f is a \mathcal{B}_t -martingale under \mathbb{P} , where

$$M_t^f := f(X_t) - f(X_s) - \int_s^t \mathscr{L}_r f(X_r) dr, \ t \geqslant s.$$

11/38

All the martingale solutions associated with \mathcal{L}_t with initial law μ_0 at time s will be denoted by $\mathcal{M}_s^{\mu_0}(\mathcal{L}_t)$. In particular, if $\mu_0 = \delta_x$ (the Dirac measure concentrated on x), we shall write $\mathcal{M}_s^{\mathsf{x}}(\mathcal{L}_t)$ for simplify.

(H) We make the following assumption:

$$\Gamma_{a,b}^{\nu} := \sup_{t,x} \left[\frac{|a_t(x)| + g_t^{\nu}(x)}{1 + |x|^2} + \frac{|b_t(x)|}{1 + |x|} + \hbar_t^{\nu}(x) \right] < \infty, \quad (2.7)$$

where $g_t^{\nu}(x)$ is defined by (??) and

$$\hbar_t^{\nu}(x) := \int_{B_{\ell}^{c}} \log\left(1 + \frac{|z|}{1 + |x|}\right) \nu_{t,x}(\mathrm{d}z), \tag{2.8}$$

and if $\nu_{t,x}$ is symmetric, then we may let

$$\hbar_t^{\nu}(x) := \int_{|z| > 1 + |x|} \log\left(1 + \frac{|z|}{1 + |x|}\right) \nu_{t,x}(\mathrm{d}z). \tag{2.9}$$

Theorem 3 (Superposition principle)

Under **(H)**, for any weak solution $(\mu_t)_{t\geqslant 0}$ of FPE **(??)** in the sense of Definition **??**, there is a martingale solution $\mathbb{P}\in\mathcal{M}_0^{\mu_0}(\mathscr{L}_t)$ such that

$$\mu_t = \mathbb{P} \circ X_t^{-1}, \ \forall t \geqslant 0.$$

Example 1

Let $\nu_{t,x}(\mathrm{d}z) = \kappa_t(x,z)\mathrm{d}z/|z|^{d+\alpha}$ with $\alpha \in (0,2)$ and

$$|\kappa_t(x,z)| \leqslant c(1+|x|)^{\alpha \wedge 1} (\mathbf{1}_{\alpha \neq 1} + \mathbf{1}_{\alpha=1}/\log(1+|x|)),$$

that is, \mathcal{N}_t is an α -stable like operator. Then $\sup_{t,x} h_t^{\nu}(x) < \infty$.

Example 2

If $\kappa_t(x,z)$ is symmetric, that is, for every $z \in \mathbb{R}^d$, $\kappa_t(x,z) = \kappa_t(x,-z)$, and $|\kappa_t(x,z)| \leq c(1+|x|)^{\alpha}$, $\alpha \in (0,2)$. Then $\sup_{t,x} h_t^{\nu}(x) < \infty$.

Example 3

Consider the following SDE driven by symmetric α -stable process:

$$dX_t = \sigma_t(X_{t-})dL_t^{(\alpha)} + b_t(X_t)dt,$$

where $\sigma_t(x)$ and $b_t(x)$ are linear growth.

Corollary 4

Under **(H)**, the well-posedness of Fokker-Planck equation **(??)** is equivalent to the well-posedness of martingale problem associated with \mathcal{L}_t . More precisely, we have the following equivalences:

- (Existence) For any $\nu \in \mathcal{P}(\mathbb{R}^d)$, the non-local FPE (??) admits a solution $(\mu_t)_{t\geqslant 0}$ with initial value $\mu_0 = \nu$ if and only if $\mathcal{M}_0^{\nu}(\mathscr{L})$ has one element.
- (Uniqueness) The following two statements are equivalent.
 - (i) For each $(s, \nu) \in \mathbb{R}_+ \times \mathcal{P}(\mathbb{R}^d)$, the non-local FPE (??) has at most one solution $(\mu_t)_{t \geqslant s}$ starting $\mu_s = \nu$ at time s.
 - (ii) For each $(s, \nu) \in \mathbb{R}_+ \times \mathcal{P}(\mathbb{R}^d)$, $\mathcal{M}_s^{\nu}(\mathscr{L})$ has at most one element.

- In the constant nonlocal noise, Z. [2013] used the superposition principle to show the uniqueness of non-local FPEs.
- Fournier and Xu [2018] proved a non-local version to the superposition principle in a special case, that is,

$$\mathscr{N}_t^{\nu} f(x) = \int_{\mathbb{R}^d} [f(x+z) - f(x)] \nu_{t,x}(\mathrm{d}z),$$

and $(\mu_t)_{t\geq 0}$ have finite first order moments, i.e.,

$$\int_{\mathbb{R}^d} |x| \mu_t(\mathrm{d}x) < \infty, \ \forall t \geqslant 0.$$

Proof of Theorem ??: continuous elliptic coefficients

Theorem 5 (Stroock [1975])

Suppose that the following conditions are satisfied:

- (A) $a_t(x) : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{S}^d_+$ is continuous and $a_t(x)$ is invertible;
- **(B)** $b_t(x): \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ is locally bounded and measurable;
- (C) for any $A \in \mathcal{B}(\mathbb{R}^d)$, $(t, x) \mapsto \int_A (1 \wedge |z|^2) \nu_{t,x}(\mathrm{d}z)$ is continuous;

(D)
$$\bar{\Gamma}_{a,b}^{\nu} := \sup_{t,x} \left(\frac{|a_t(x)| + \langle x, b_t(x) \rangle^+ + g_t^{\nu}(x)}{1 + |x|^2} + 2\hbar_t^{\nu}(x) \right) < \infty.$$

Then for each $(s, x) \in \mathbb{R}_+ \times \mathbb{R}^d$, there is a unique martingale solution $\mathbb{P}_{s,x} \in \mathcal{M}_s^x(\mathcal{L}_t)$. Moreover, we have the following conclusions:

- For each $A \in \mathcal{B}(\mathbb{D})$, $(s,x) \mapsto \mathbb{P}_{s,x}(A)$ is Borel measurable.
- The strong Markov property holds: for every $f \in C_b(\mathbb{R}_+ \times \mathbb{R}^d)$ and any finite stopping time τ ,

$$\mathbb{E}^{\mathbb{P}_{0,x}}(f(\tau+t,X_{\tau+t})|\mathcal{B}_{\tau}) = \mathbb{E}^{\mathbb{P}_{s,y}}(f(s+t,X_{s+t}))|_{(s,y)=(\tau,X_{\tau})}.$$

Lemma 6 (Lyapunov's type estiamte)

Let $\psi \in C^2(\mathbb{R};\mathbb{R}_+)$ with $\lim_{r \to \infty} \psi(r) = \infty$ and

$$0 < \psi' \leqslant 1, \quad \psi'' \leqslant 0. \tag{3.1}$$

Fix $y \in \mathbb{R}^d$ and define a Lyapunov function $V_y(x) := \psi(\log(1+|x-y|^2))$. Then for all $t \ge 0$ and $x \in \mathbb{R}^d$, we have

$$\mathscr{L}_{t}V_{y}(x) \leqslant 2\left(\frac{|a_{t}(x)| + \langle x - y, b_{t}(x) \rangle^{+} + g_{t}^{\nu}(x)}{1 + |x - y|^{2}} + 2H_{t}^{\nu}(x, y)\right), \quad (3.2)$$

where $g_t^{\nu}(x)$ is defined by (??), and

$$H_t^{\nu}(x,y) := \int_{B_s^c} \log\left(1 + \frac{|z|}{1 + |x - y|}\right) \nu_{t,x}(\mathrm{d}z).$$
 (3.3)

Theorem 7 (Continuous elliptic coefficients)

Assume that **(A)-(D)** hold. Then for any $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$, there are unique solution $(\mu_t)_{t\geqslant 0}$ to FPE (??) and unique martingale solution $\mathbb{P}_{0,\mu_0} \in \mathcal{M}_0^{\mu_0}(\mathscr{L})$ so that

$$\mu_t = \mathbb{P}_{0,\mu_0} \circ X_t^{-1}.$$

Proof of Theorem ??: General case

• Let μ_t be a solution of the following FPEs:

$$\partial_t \mu = \mathscr{L}_t^* \mu = (\mathscr{A}_t + \mathscr{B}_t + \mathscr{N}_t)^* \mu_t.$$

• We want to show that there is a martingale solution $\mathbb{P}\in\mathcal{M}_0^{\mu_0}(\mathscr{L}_t)$ so that

$$\mu_t = \mathbb{P} \circ X_t^{-1},$$

• We use the following convention: for $t \leq 0$,

$$\mu_t(\mathrm{d}x) := \mu_0(\mathrm{d}x), \ a_t(x) = 0, \ b_t(x) = 0, \ \nu_{t,x}(\mathrm{d}z) = 0.$$

Regularization

- Let ρ_{ε} be a family of mollifies in \mathbb{R}^{d+1} with supports in B_{ε} .
- For a locally finite signed measure $\zeta_t(dx)dt$ over \mathbb{R}^{d+1} , define

$$\rho_\varepsilon * \zeta(t,x) := \int_{\mathbb{R}^{d+1}} \rho_\varepsilon(t-s,x-y) \zeta_s(\mathrm{d}y) \mathrm{d}s.$$

• Let $\phi(x) := (2\pi)^{-d/2} \mathrm{e}^{-|x|^2/2}$ be the normal distribution density and

$$\Delta \phi + \operatorname{div}(\mathbf{x} \cdot \phi) = \mathbf{0}.$$

• For $\varepsilon \in (0,\ell)$, define approximation sequence $\mu_t^{\varepsilon} \in \mathcal{P}(\mathbb{R}^d)$ by

$$\mu_t^{\varepsilon}(\mathbf{x}) := (1 - \varepsilon)(\rho_{\varepsilon} * \mu)(t, \mathbf{x}) + \varepsilon \phi(\mathbf{x}). \tag{4.1}$$

We have the following easy consequence.

Lemma 8

• For each $t \geqslant 0$ and $\varepsilon \in (0, \ell)$, we have

$$0<\mu_t^{\varepsilon}(x)\in C^{\infty}(\mathbb{R}_+;C_b^{\infty}(\mathbb{R}^d)),\ \int_{\mathbb{R}^d}\mu_t^{\varepsilon}(x)\mathrm{d}x=1.$$

• For each $t\geqslant 0$, μ_t^{ε} weakly converges to μ_t , that is, for any $f\in C_b(\mathbb{R}^d)$,

$$\lim_{\varepsilon\to\infty}\int_{\mathbb{R}^d}f(x)\mu_t^\varepsilon(x)\mathrm{d}x=\int_{\mathbb{R}^d}f(x)\mu_t(\mathrm{d}x).$$

Ctd.

• μ_t^{ε} solves the following Fokker-Planck equation:

$$\partial_t \mu_t^\varepsilon = (\mathscr{A}_t^\varepsilon + \mathscr{B}_t^\varepsilon + \mathscr{N}_t^\varepsilon)^* \mu_t^\varepsilon =: (\mathscr{L}_t^\varepsilon)^* \mu_t^\varepsilon,$$

where $\mathscr{A}_t^{\varepsilon},\,\mathscr{B}_t^{\varepsilon}$ and $\mathscr{N}_t^{\varepsilon}$ are defined as in the introduction in terms of

$$egin{aligned} a_t^arepsilon(x) &:= rac{(1-arepsilon)[
ho_arepsilon* (a\mu)](t,x) + arepsilon\phi(x)\mathbb{I}}{\mu_t^arepsilon}, \ b_t^arepsilon(x) &:= rac{(1-arepsilon)[
ho_arepsilon* (b\mu)](t,x) + arepsilon\phi(x)x}{\mu_t^arepsilon}, \end{aligned}$$

and

$$\nu_{t,x}^{\varepsilon}(\mathrm{d}z):=\frac{1-\varepsilon}{\mu_t^{\varepsilon}(x)}\int_{\mathbb{R}^{d+1}}\rho_{\varepsilon}(t-s,x-y)\nu_{s,y}(\mathrm{d}z)\mu_s(\mathrm{d}y)\mathrm{d}s.$$

Ctd.

• The following uniform estimates hold: for any $\varepsilon \in (0, \ell)$,

$$\sup_{t,x} \left[\frac{|a_{t}^{\varepsilon}(x)| + g_{t}^{\nu^{\varepsilon}}(x)}{1 + |x|^{2}} + \frac{|b_{t}^{\varepsilon}(x)|}{1 + |x|} \right]$$

$$\leq 1 + 2 \sup_{t,x} \left[\frac{|a_{t}(x)| + g_{t}^{\nu}(x)}{1 + |x|^{2}} + \frac{|b_{t}(x)|}{1 + |x|} \right]$$
(4.2)

and

$$\sup_{t,x} H_t^{\nu^{\varepsilon}}(x,y) \leqslant \sup_{t,x} H_t^{\nu}(x,y), \quad y \in \mathbb{R}^d. \tag{4.3}$$

Lemma 9 (Probabilistic representation for μ^{ε})

For any $\varepsilon \in (0,\ell)$ and $(s,x) \in \mathbb{R}_+ \times \mathbb{R}^d$, there is a unique martingale solution $\mathbb{P}^{\varepsilon}_{s,x} \in \mathcal{M}^x_s(\mathscr{L}^{\varepsilon}_t)$. In particular, there is also a martingale solution $\mathbb{Q}^{\varepsilon} \in \mathcal{M}^{\mu^{\varepsilon}_0}_0(\mathscr{L}^{\varepsilon}_t)$ so that for each $t \geqslant 0$,

$$\mu_t^{\varepsilon}(x)\mathrm{d}x = \mathbb{Q}^{\varepsilon} \circ X_t^{-1}(\mathrm{d}x).$$

Tightness

Lemma 10 (Moments of initial law)

For $\mu_0^{\varepsilon} \in \mathcal{P}(\mathbb{R}^d)$ being defined by (??), there exits a function $\psi \in C^2(\mathbb{R}_+)$ with the properties

$$\psi\geqslant 0,\quad \psi(0)=0,\quad 0<\psi'\leqslant 1,\quad -2\leqslant \psi''\leqslant 0,\quad \lim_{r\to\infty}\psi(r)=+\infty,$$

and such that

$$\sup_{\varepsilon \in [0,\ell)} \int_{\mathbb{R}^d} \psi \left(\log(1+|x|^2) \right) \mu_0^{\varepsilon} (\mathrm{d}x) < \infty. \tag{4.4}$$

Lemma 11

Let $H_t^{\nu}(x,y)$ be defined by (??). We have

$$H_t^{\nu}(x,y) \leqslant 2(1+|y|)\hbar_t^{\nu}(x), \quad \forall t \geqslant 0, x, y \in \mathbb{R}^d. \tag{4.5}$$

Lemma 12

The family of probability measures $(\mathbb{Q}^{\varepsilon})_{\varepsilon \in (0,\ell)}$ is tight in $\mathcal{P}(\mathbb{D})$.

Proof.

By Aldous' criterion, it suffices to check the following two conditions:

(i) For any N > 0 and T > 0, it holds that

$$\lim_{N\to\infty}\sup_{\varepsilon}\mathbb{Q}^{\varepsilon}\left(\sup_{t\in[0,T]}|X_t|>N\right)=0.$$

(ii) For any $T, \delta_0 > 0$ and stopping time $\tau < T - \delta_0$, it holds that

$$\lim_{\delta \to 0} \sup_{\varepsilon} \sup_{\tau} \mathbb{Q}^{\varepsilon} \left(|X_{\tau+\delta} - X_{\tau}| > \lambda \right) = 0, \ \, \forall \lambda > 0.$$

Lemma 13 (Stochastic Gronwall's inequality)

Let $\xi(t)$ and $\eta(t)$ be two non-negative càdlàg adapted processes, A_t a continuous non-decreasing adapted process with $A_0=0$, M_t a local martingale with $M_0=0$. Suppose that

$$\xi(t) \leqslant \eta(t) + \int_0^t \xi(s) \mathrm{d}A_s + M_t, \ \forall t \geqslant 0.$$

Then for any 0 < q < p < 1 and stopping time $\tau > 0$, we have

$$\left[\mathbb{E}(\xi(\tau)^*)^q\right]^{1/q} \leqslant \left(\frac{\rho}{\rho-q}\right)^{1/q} \left(\mathbb{E}e^{\rho A_\tau/(1-\rho)}\right)^{(1-\rho)/\rho} \mathbb{E}(\eta(\tau)^*),$$

where $\xi(t)^* := \sup_{s \in [0,t]} \xi(s)$.

Remark: Continuous martingale due to Scheutzow (2013). Discontinuous martingale Xie and Z. (2016).

Limits

We rewrite

$$\begin{split} \mathscr{B}_t f(x) + \mathscr{N}_t f(x) &= \widetilde{b}_t(x) \cdot \nabla f(x) + \int_{\mathbb{R}^d} \Theta_f^{\pi}(x; z) \nu_{t, x}(\mathrm{d}z) \\ &=: \widetilde{\mathscr{B}}_t f(x) + \widetilde{\mathscr{N}}_t f(x), \end{split}$$

where

$$\widetilde{b}_t(x) := b_t(x) + \int_{\mathbb{R}^d} \left[\pi(z) - z \mathbf{1}_{|z| \leqslant \ell} \right] \nu_{t,x}(\mathrm{d}z),$$

and

$$\Theta_f^{\pi}(x;z) := f(x+z) - f(x) - \frac{\pi(z)}{\pi(z)} \cdot \nabla f(x).$$

• Here, $\pi: \mathbb{R}^d \to \mathbb{R}^d$ is a smooth symmetric function satisfying

$$\pi(z) = z, |z| \leqslant \ell, \pi(z) = 0, |z| > 2\ell.$$

Lemma 14

For any $f \in C_c^2(\mathbb{R}^d)$ with support in B_R , there is a constant C = C(f) > 0 such that for all $x \in \mathbb{R}^d$ and $z, z' \in \mathbb{R}^d$ with $|z'| \leq |z|$,

$$|\Theta^{\pi}_f(x;z) - \Theta^{\pi}_f(x;z')| \leqslant \textit{C}(|z-z'| \wedge 1) (\textbf{1}_{\textit{B}_{R+\ell}}(x)\textbf{1}_{|z| \leqslant \ell}|z| + \textbf{1}_{|z| > \ell \vee (|x|-R)}),$$

where
$$\Theta_f^{\pi}(x; z) := f(x + z) - f(x) - \pi(z) \cdot \nabla f(x)$$
.

The following approximation result will be crucial for taking weak limits.

Lemma 15

For any $\delta \in (0,1)$ and T>0, there is a family of Lévy measures $\eta_{t,x}(\mathrm{d}z)$ such that for any $f\in C^2_c(\mathbb{R}^d)$,

$$\int_0^T \int_{\mathbb{R}^d} \sup_{x \in B_1(y)} |\widetilde{\mathscr{N}}^{\nu_{s,y}} f(x) - \widetilde{\mathscr{N}}^{\eta_{s,y}} f(x)| \mu_s(\mathrm{d}y) \mathrm{d}s \leqslant \delta,$$

and

$$\sup_{s,v}\|\widetilde{\mathcal{N}}^{\eta_{s,y}}f\|_{\infty}<\infty,\ \ (s,y,x)\mapsto\widetilde{\mathcal{N}}^{\eta_{s,y}}f(x)\ \text{is continuous}.$$

Key point.

By the randomization of kernel functions, there is a measurable function

$$h_{t,x}(\theta): [0,T] \times \mathbb{R}^d \times [0,\infty) \to \mathbb{R}^d \cup \{\infty\}$$

such that

$$\nu_{t,x}(A) = \int_0^\infty \mathbf{1}_A(h_{t,x}(\theta)) d\theta, \ \forall A \in \mathscr{B}(\mathbb{R}^d).$$

In particular, we have

$$\widetilde{\mathscr{N}}^{\nu_{s,y}}f(x) = \int_0^\infty \Theta_f^{\pi}(x; h_{s,y}(\theta)) d\theta =: \widetilde{\mathscr{N}}^{h_{s,y}}f(x).$$

Application to fractional porous mediam equation

Consider the following fractional porous media equation:

$$\partial_t u = \Delta^{\alpha/2}(|u|^{m-1}u), \quad u(0,x) = \varphi(x),$$
 (5.1)

where m > 1, $\alpha \in (0,2)$ and $\Delta^{\alpha/2} := -(-\Delta)^{\alpha/2}$ is the usual fractional Laplacian.

Definition 16

A function u is called a weak or L^1 -energy solution of FPME (??) if

- $u \in C([0,\infty); L^1(\mathbb{R}^d))$ and $|u|^{m-1}u \in L^2_{loc}((0,\infty); \dot{H}^{\alpha/2}(\mathbb{R}^d));$
- for every $f \in C_0^1(\mathbb{R}_+ \times \mathbb{R}^d)$,

$$\int_0^\infty\!\!\int_{\mathbb{R}^d}u\cdot\partial_tf\mathrm{d}x\mathrm{d}t=\int_0^\infty\!\!\int_{\mathbb{R}^d}(|u|^{m-1}u)\cdot\Delta^{\alpha/2}f\mathrm{d}x\mathrm{d}t;$$

• $u(0,x) = \varphi(x)$ almost everywhere.

Theorem 17 (Pablo, Quirós, Rodrïguez and Vázquez (2012))

Let $\alpha \in (0,2)$ and m > 1. For every $\varphi \in L^1(\mathbb{R}^d)$, there exists a unique weak solution u for equation (??). Moreover, u enjoys properties:

- (i) if $\varphi \geqslant 0$, then u(t, x) > 0 for all t > 0 and $x \in \mathbb{R}^d$;
- (ii) $\partial_t u \in L^{\infty}((s,\infty); L^1(\mathbb{R}^d))$ for every s > 0;
- (iii) for all $t \geqslant 0$, $\int_{\mathbb{R}^d} u(t, x) dx = \int_{\mathbb{R}^d} \varphi(x) dx$;
- (iv) if $\varphi \in L^{\infty}(\mathbb{R}^d)$, then for every t > 0,

$$\|u(t,\cdot)\|_{\infty} \leqslant \|\varphi\|_{\infty};$$

(v) for some $\beta \in (0,1)$, $u \in C^{\beta}((0,\infty) \times \mathbb{R}^d)$.

- Let L_t be an α -stable process with Lévy measure $dz/|z|^{d+\alpha}$.
- Consider the following distribution dependent SDE

$$dY_t = \rho_{Y_t} (Y_{t-})^{\frac{m-1}{\alpha}} dL_t, \quad \rho_{Y_0}(x) = \varphi(x), \tag{5.2}$$

where $\rho_{Y_t}(x)$ denotes the distributional density of Y_t .

Definition 18

Let $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t \geqslant 0})$ be a stochastic basis and (Y, L) two \mathcal{F}_t -adapted càdlàg processes. For $\mu \in \mathcal{P}(\mathbb{R}^d)$, we call $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t \geqslant 0}; Y, L)$ a solution of (??) with initial law μ if

- (i) L is an α -stable process with Lévy measure $dz/|z|^{d+\alpha}$;
- (ii) for each $t \ge 0$, $\mathbf{P} \circ Y_t^{-1}(\mathrm{d}x) = \rho_{Y_t}(x)\mathrm{d}x$;
- (iii) Y_t solves the following SDE:

$$Y_t = Y_0 + \int_0^t \rho_{Y_s} (Y_{s-})^{\frac{m-1}{\alpha}} dL_s.$$

Theorem 19

Let $\varphi \geqslant 0$ be bounded and satisfy $\int_{\mathbb{R}^d} \varphi(x) dx = 1$. Let u be the unique weak solution to FPME (??) given by Theorem ?? with initial value φ . Then there exists a weak solution Y to DDSDE (??) such that

$$\rho_{Y_t}(x) = u(t, x), \quad \forall t \geqslant 0.$$

Thank you for your attention!

2021 SPA Conference at Wuhan, Welcome All of You!

