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Introduction

e Consider a wind producer who no longer has access to guaranteed purchase

scheme and must sell the production in spot / intraday market.

e She can use battery storage capacity to smooth the variations of wind power

production, and exploit intertemporal arbitrages in the day-ahead market.

e The aim is to maximize the expected gain of selling the energy produced

during a 24-hour period.

e The dynamic strategy is constrained by finite battery capacity.
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Introduction

Australia has determined that Tesla 100MW battery system saved $40 million in
20 months with a cost of only $66 million.

Teslas 100MW /129MWh Powerpack project in South Australia provides the same

grid services as peaker plants, but cheaper, quicker, and with zero-emissions.
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How to sell electricity

How to sell electricity

OTC contracts

System services

Guaranteed
purchase schemes
(for renewables)

Organized
Spot contracts
markets

Balancing market
Derivatives

Forward markets
(6 years to 2 days
before delivery) Capacity market
Spot market Intraday markets
(prices settled at (from 15h the
13h the day day before to 1h
before delivery) Derivatives before delivery)
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The spot (day-ahead) market

e One of the main trading e In this market trading happens only once:
venues for electricity is the participants submit bids for specific hours of
day-ahead market (EPEX blocks of the next day until 12:00, then at
Spot in France/Germany). 12:55 the price is fixed and market clears.
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The intraday market

The intraday market opens at 15h and allows continuous trading for each

hour/quarter-hour of the next day, up to 30 minutes before delivery.

Every delivery hour of every day corresponds to a different product: the life time
of a single product is from 9 to 32 hours.

Market liquidity is improving but remains relatively low.
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Intraday market liquidity patterns

Liquidity only appears a few hours before delivery.

Distribution of orders Distribution of transactions

~10 -8 -6 -4 -2 0 ~10 -8 -6 -4 -2 0
Time to delivery, hours Time to delivery, hours

Distribution of orders/transactions as function of time to delivery for all contracts

expiring in February 2015.
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|
Bid-ask spread and volatility

Intantaneous volatility for different hours
Jan 30, 2014, 14th hour
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Left: (Normal) volatility averaged over all days of February 2014 (kernel

estimator, source: L. Tinsi). Right: bid-ask spread evolution on a typical day.

Peter Tankov (ENSAE ParisTech) Wind power plant with storage capacity September 13, 2019 10 / 34



Strategy of the producer

e The producer makes bids in the day-ahead electricity market for the following

day;

e This bid is based on an imperfect day-ahead forecast of the renewable

production;

e He/ she may adjust the position for every hour once in the intraday market,

one hour before delivery;

e At the time of adjustment, the production is known precisely.
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Strategy of the producer

e The producer makes a bid in the spot (day-ahead) market at time t = 0, by
making an engagement to deliver the amount Py of electricity during the
delivery period [Ty + 6§, Txy1 + 0] for each k=1,..., N.

e These deliveries will be paid at the spot market price denoted by
F(O, Tk +0), k=1,...,N.

e At each time Ty, the producer knows the amount of power, which will be
generated during the delivery period [Ty + d, Tx41 + 6], and must decide how
much power to buy/sell in the intraday market, and how much power to

withdraw from / inject into the battery

e Injections/withdrawals must be balanced by production and market

purchases.
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Notation

Qx Energy stored in the battery at the beginning of delivery
period k + 1 (at time Ty41 + )

Qmin Minimal energy stored in the battery at all times

Qmax Maximal battery capacity

Pk Energy purchased in the intraday market during k-th de-
livery period [Tk + &, Tkt1 + 9]

Py Energy produced during k-th delivery period

P(0, Tx), Forecast at time 0 of energy production during k-th deliv-
ery period

Py Energy delivered during k-th delivery period according to

the engagements taken in the spot market
Fr Intraday market price at time Ty for k-th delivery period
F(0, Tx)  Spot market price for k-th delivery period
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Formulation of the optimization problem

The total gain from trading of the wind power producer is given by
N —
G =Y (PcF(0, Ti) = Fi(px + alpil)),
k=1
where the term a|py| models the bid-ask spread in the intraday market. The aim

of the producer is to maximize the expected gain under storage constraint

Qk S [Qmina Qmax]7 Qk = Qk—l + Pk - ﬁk + pk-

The optimization problem of the producer thus writes:

N N
max {ZPkF(O, T«)—E [Z Fk(Pk+a|pk|))] },
k=1

Py Puyprseespn k=1

where Py, ..., Py are constants (determined at time 0), and (pk)i1<k<n is a

dynamic strategy of trading in the intraday market.
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Modeling the intraday price process

We model the intraday price as a perturbation around the day-ahead price.
Fe = F(0,t) + a(t)(X: + a(t)),

where X; = 6f0t e~ Mt=9)dB; is a centered Gaussian factor process

(Ornstein-Uhlenbeck), where B is a Brownian motion.

Here we recall that F; is the “last” intraday price and F(0, t) is the day-ahead

price.
@ and i model the daily seasonality of the intraday price process.

The day-ahead price is considered as given: the optimization is performed within a

day, when the day-ahead price is known
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Modeling the intraday price curve: risk-neutral dynamics

For a more precise description, use a multifactor model for the last intraday price
Fe = F(0,t) + a( Z Y,

where (YJ')J’-‘/’:/1 are independent Ornstein-Uhlenbeck processes:
dY! = —NYldt+5dB,

S5 ’ . . -
where, (BJ)J-’\i1 are Brownian motions under the risk-neutral measure Q.

Intraday prices at other times are computed by taking risk-neutral expectation:

M/
F(t, T) =E[Fr|F]=FO,T)+ > _a(T)e MT-9v{.

Jj=1
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N
Modeling the intraday price curve: real-world dynamics
To obtain the real-world dynamics, change probability

T 1 T
= exp (—/ gbtdBt——/ ¢§dt>,
]:T 0 2 0

where ¢ is deterministic. The process

dP

B = §t+/0t¢>5ds
is then a Brownian motion under PP and
vi=5 /0 t e M(=)dB] + 5/ /0 t e M) ds .= 5/ /O t e M) + (1),
so that

Fe = F(0,t) + a(t Z(Y + i@ (1)),

j=1

o =j ot N (t— P .
where Y, =5/ [ e A(t=5)dBJ is a centered Gaussian factor process.
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Modeling the production process

Similarly, we model the realized production as a perturbation around the

day-ahead production forecast.

Pe = P(0,t) + a(t)(1+7P(0, £)")(Xe + pu(t)),
where X; = afo Mt=9)dW is a centered Gaussian factor (Ornstein-Uhlenbeck)
which may be correlated with the price noise X.

a and 7/ model the daily seasonality of the production process and P(0, t) is the

forecast at the gate closure time of the intraday market.

Model allows for negative production values, but such values may be possible in

practice when the wind speed is very low.

The extra factor (14 vP(0, t)° translates the fact that the forecast errors are
higher when the production is higher.
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Modeling the dynamics of the forecast curve

Multifactor model for the production process

M
Pr = P(0,t) + a(t)(L+vP(0,£)°) Y (X! + (1)),

j=1

where (XJ Y, are independent Ornstein-Uhlenbeck processes:
dX! = -\ X{dt + o;dWi.

The forecast processes at other times are given by

P(t, T) = EF[Pr|Fi]

= P(0,T) +Z{ (T)(L+7P(, TV )e M T=0(x] + p(2))}.

Peter Tankov (ENSAE ParisTech) Wind power plant with storage capacity September 13, 2019 19 / 34



Model calibration

e We focus on the production model, in the one-factor case

e Assume that the agent observes L indepenent realizations of the forecast

(P(0, Tw)) =5 N and the production process (PL)@’;,\,L

e Each reallzatlon corresponds to a single production day in the past

e Introduce the forecast error process (Z’)}ELEI‘N where Z| = P, — P'(0, T}).

S

e Z] is a Gaussian vector and the log-likelihood of (Z])/=}" LN s

(e, iy A, v, 8) = L 5 log(det Q(1)) — L Z loga; — > > log(1+~vP'(0, T)*)

Jj=1 I

.
zl zl
(; - /~L> Q7' () <; —p),
1=1

where ay = a(Ty), px = p(Tk) and Z! 5 = Z' /(1 +~P'(0, T)?).
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Maximizing the likelihood function

Differentiating with respect to u, we get an explicit expression

L

1 1-
=Y Z's=>7Z
a La; 70T Qe
and a simplified log-likelihood
I(a, A\, v, 0) = L Iog(detQ LZ log avj — Z Z log(1 4+ vP'(0, T})%)

I

L — T / —
1 7,6 —1 Z’vas _ Z'Y)‘S
2( 2) oo (% 22)

which we minimize with a numerical algorithm.
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Numerical illustration: forecast
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Top: Day-ahead forecast and realized production on Sep
8, 2014 (left) and Oct 19, 2014 (right).

Bottom: estimation of the model for realized production.

Data: production and forecast (at 12h the day before) for

a wind parc in France, Jan 1st 2012 — Dec 31st 2014.

Length of mean reversion: about 6.2 hours.
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Numerical illustration: price

=~ Day-ahead price _4ol[ = - Day-ahead price
NG — 1H ahead intraday price — 1H ahead intraday price
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Top: Day-ahead price and last intraday price on Sep 8,
50 2014 (left) and Oct 19, 2014 (right).

Bottom: Estimation of the intraday price model. Data:

EPEX Spot day-ahead and intraday price,
Germany-Austria region, Jan 1st 2014 — Dec 31st 2014.

Length of mean reversion: about 2.5 hours.
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Solving the optimization problem: dynamic programming

Recall that we need to solve

max {X:P,(F(O7 T«)—E lz Fie(px + a|pk|))] } )

P1sPh,pLs.copy =1

where P, ..., Py are determined at time 0 and (px)1<k<n are determined

dynamically

We solve this problem by discrete-time dynamic programming (backward

induction)

State variables are: battery charge state (Qx)1<k<n and the factor processes for
the wind production (X7, )1<k<n and the intraday market price (Y7, )i<k<n.

We consider all processes in discrete time.
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Solving the optimization problem: dynamic programming

Define the value function

N
vk(g, x,y) = min ETexy lz Fo(pn + Oz|pn|)1 ,

Pky---5PN, Qk—1=q
n=k

where ET+*Y means that we start the factor processes at time T from values x
and y.

The original optimization problem then writes

N
__max { ZﬁkF(O, Tk) - ]EO’XO’YO[VI(QOaXTU YTI)]}

Pi,..sPn | 2
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-
Solving the optimization problem: dynamic programming
The dynamic programming principle for the value function writes

vi(g, x,y) = _min {ok(y) (P + lpil)
Pr:q+Pik—Pi~+pi €[ Qmin, Qmax]

+ ETk7X7y[Vk+1(q + 7Tk(x) - ﬁk + Pk, XTk+1’ ka+1)}

with the terminal condition

v = vn(g,x,y) = _ min on(pn + alpnl),
PN:G+Pn—Pn+pnE[Qmin, Qmax]

where

ok(y) = F(O, Tie) + a(Te)(y + i Tk)),
T (x) = P(0, Ti) + a(Te)(1 4+ vP(0, Tx)®)(x + u( Ti)).
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Solving the optimization problem: battery state

Discretize the state of charge of the battery on a uniform grid
Qmin:ql <-ee<qy= Qmax-
= The control py takes a finite number of values.

We denote vi(qj,...) by v. Then,
viley) = min {ou(y)n(ai = 4 + Pic = m(x)) + BT v (Xriey, Yr)hs

where 7(p) = p + a|p|.
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Solving the optimization problem: quantization

Let P, be the unconditional distribution of Z := (X1, Y7,). For every
k=1,..., N, define a grid of size N by solving

min E™[(Z — 2)?],
z
where the minimum is taken over all random vectors supported by N, points.

The solution (optimal Voronoi quantization) is obtained by nearest-neighbor

projection of Z on a set of N, points.

We denote these points by 2f, ... ,fk,q with 2}‘ = ()A(jk,j}jk), the associated Voronoi
cells by Cf, ..., C,’\‘,q and the associated probabilities by pf, .. .,ﬁk,q.

The points Z can be computed using the K-means algorithm or downloaded from

quantize.maths-fi.com.
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Solving the optimization problem: quantization

Next, we replace the continuous process with a Markov chain (2k)0Sk§N with N,

states. The transition probabilities of the chain are defined by
=P[4 =211=4]
and  #f = P[Zeyy = 212 = 2f] = P[Z7,,, € (/M| Zy, € Cf].

These transition probabilities are evaluated by Monte Carlo.

The value function can then be computed on the quantization grid using the

following formula:

vi(2k) = min J{¢k()7rl;)77( — g+ P — mi(%y,)) + Zﬂ-mlvk+1 z )}
—
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Solving the optimization problem

e The value function and the optimal strategies are computed numerically by
dynamic programming

o We start by discretizing the state of charge of the battery, introducing a
uniform grid Qmin = g1 < -+ < g3 = Qmax-

e The second step is to replace the discrete-time Ornstein-Uhlenbeck processes

(X, X) with a finite-state Markov chain. This will be achieved using the

method of optimal quantization.

e The value function can then be computed on the quantization grid
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Numerical illustration: sample strategies

The spot market engagements P have been taken equal to production forecasts

for the corresponding hour: Py = P(0, T).

. .
25 ‘o
~500] vy

20 'y - - Prod forecast

' — soc
15 Forward p ~1000 v —  Production
— Intraday price - - Amount sold
o 5 10 15 20 25 - o 5 10 15 20 25

Sample evolution of the modelled quantities. In the left graph, prices are in Euros

per MWh. In the right graph, all amounts are shown in KWh.
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Numerical illustration: battery capacity

Maximum expected gain of the power producer for different values of the battery

capacity Qmax and different values of a.
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The dotted line shows the theoretical profit of the power producer if the power
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production were exactly equal to the day-ahead forecast. Left: 8 September 2014.

Right: 19 October 2014.
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Numerical illustration: optimal bids in the spot market

These are obtained by maximizing the value function of the producer with fixed

bids Py, with respect to P, with a numerical optimization algorithm (BFGS).
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Left graph: 8 September 2014. Right graph: 19 October 2014.
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Conclusion

e Methodology for optimal management of a wind plant - battery system based

on stochastic control;

e Strategy is initialized daily: it allows to determine optimal day-ahead bids

and then adjust intraday position as production becomes known.

0.6

e
o

o At present, cost of battery storage is

o
=
i

around 10 cents per KWh produced:

a 100 euro price differential is

of duration ($ per kWh)
o o
[
-

needed to implement arbitrage.

Levelized cost of energy storage as a function

e Falling cost of batteries may boost

Duration (h)

pl’Ofltablllty + 2013 — 2019 —- 2023
Source: Comello and Reichelstein, Nature Comm. (2019) 10:2038
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