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Introduction

• Consider a wind producer who no longer has access to guaranteed purchase

scheme and must sell the production in spot / intraday market.

• She can use battery storage capacity to smooth the variations of wind power

production, and exploit intertemporal arbitrages in the day-ahead market.

• The aim is to maximize the expected gain of selling the energy produced

during a 24-hour period.

• The dynamic strategy is constrained by finite battery capacity.
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Introduction

Australia has determined that Tesla 100MW battery system saved $40 million in

20 months with a cost of only $66 million.

Teslas 100MW/129MWh Powerpack project in South Australia provides the same

grid services as peaker plants, but cheaper, quicker, and with zero-emissions.
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Introduction
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How to sell electricity

Peter Tankov (ENSAE ParisTech) Wind power plant with storage capacity September 13, 2019 5 / 34



How to sell electricity
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The spot (day-ahead) market

• One of the main trading

venues for electricity is the

day-ahead market (EPEX

Spot in France/Germany).

• In this market trading happens only once:

participants submit bids for specific hours of

blocks of the next day until 12:00, then at

12:55 the price is fixed and market clears.
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The intraday market

The intraday market opens at 15h and allows continuous trading for each

hour/quarter-hour of the next day, up to 30 minutes before delivery.

Every delivery hour of every day corresponds to a different product: the life time

of a single product is from 9 to 32 hours.

Market liquidity is improving but remains relatively low.
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Intraday market liquidity patterns

Liquidity only appears a few hours before delivery.
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Bid-ask spread and volatility
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Strategy of the producer

• The producer makes bids in the day-ahead electricity market for the following

day;

• This bid is based on an imperfect day-ahead forecast of the renewable

production;

• He/ she may adjust the position for every hour once in the intraday market,

one hour before delivery;

• At the time of adjustment, the production is known precisely.
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Strategy of the producer

• The producer makes a bid in the spot (day-ahead) market at time t = 0, by

making an engagement to deliver the amount Pk of electricity during the

delivery period [Tk + δ,Tk+1 + δ] for each k = 1, . . . ,N.

• These deliveries will be paid at the spot market price denoted by

F (0,Tk + δ), k = 1, . . . ,N.

• At each time Tk , the producer knows the amount of power, which will be

generated during the delivery period [Tk + δ,Tk+1 + δ], and must decide how

much power to buy/sell in the intraday market, and how much power to

withdraw from / inject into the battery

• Injections/withdrawals must be balanced by production and market

purchases.
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Notation

Qk Energy stored in the battery at the beginning of delivery

period k + 1 (at time Tk+1 + δ)

Qmin Minimal energy stored in the battery at all times

Qmax Maximal battery capacity

pk Energy purchased in the intraday market during k-th de-

livery period [Tk + δ,Tk+1 + δ]

Pk Energy produced during k-th delivery period

P(0,Tk), Forecast at time 0 of energy production during k-th deliv-

ery period

Pk Energy delivered during k-th delivery period according to

the engagements taken in the spot market

Fk Intraday market price at time Tk for k-th delivery period

F (0,Tk) Spot market price for k-th delivery period
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Formulation of the optimization problem

The total gain from trading of the wind power producer is given by

G =
N∑

k=1

(PkF (0,Tk)− Fk(pk + α|pk |)),

where the term α|pk | models the bid-ask spread in the intraday market. The aim

of the producer is to maximize the expected gain under storage constraint

Qk ∈ [Qmin,Qmax ], Qk = Qk−1 + Pk − Pk + pk .

The optimization problem of the producer thus writes:

max
P1,...,PN ,p1,...,pN

{
N∑

k=1

PkF (0,Tk)− E

[
N∑

k=1

Fk(pk + α|pk |))

]}
,

where P1, . . . ,PN are constants (determined at time 0), and (pk)1≤k≤N is a

dynamic strategy of trading in the intraday market.
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Modeling the intraday price process

We model the intraday price as a perturbation around the day-ahead price.

Ft = F (0, t) + ᾱ(t)(X t + µ̄(t)),

where X t = σ̄
∫ t

0
e−λ(t−s)dBs is a centered Gaussian factor process

(Ornstein-Uhlenbeck), where B is a Brownian motion.

Here we recall that Ft is the “last” intraday price and F (0, t) is the day-ahead

price.

ᾱ and µ̄ model the daily seasonality of the intraday price process.

The day-ahead price is considered as given: the optimization is performed within a

day, when the day-ahead price is known
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Modeling the intraday price curve: risk-neutral dynamics

For a more precise description, use a multifactor model for the last intraday price

Ft = F (0, t) + ᾱ(t)
M′∑
j=1

Y j
t ,

where (Y j)M
′

j=1 are independent Ornstein-Uhlenbeck processes:

dY j
t = −λ̄jY j

t dt + σ̄jdB̂ j
t ,

where, (B̂ j)M
′

j=1 are Brownian motions under the risk-neutral measure Q.

Intraday prices at other times are computed by taking risk-neutral expectation:

F (t,T ) = E[FT |Ft ] = F (0,T ) +
M′∑
j=1

ᾱ(T )e−λ̄j (T−t)Y j
t .
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Modeling the intraday price curve: real-world dynamics

To obtain the real-world dynamics, change probability

dP
dQ

∣∣∣
FT

= exp

(
−
∫ T

0

φtdBt −
1

2

∫ T

0

φ2
tdt

)
,

where φ is deterministic. The process

Bt = B̂t +

∫ t

0

φsds

is then a Brownian motion under P and

Y j
t = σ̄j

∫ t

0

e−λj (t−s)dB j
s + σ̄j

∫ t

0

e−λj (t−s)φjsds := σ̄j

∫ t

0

e−λj (t−s)dB j
s + µ̄j(t),

so that

Ft = F (0, t) + ᾱ(t)
M′∑
j=1

(Y
j

t + µ̄j(t)),

where Y
j

t = σ̄j
∫ t

0
e−λj (t−s)dB j

s is a centered Gaussian factor process.
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Modeling the production process

Similarly, we model the realized production as a perturbation around the

day-ahead production forecast.

Pt = P(0, t) + α(t)(1 + γP(0, t)δ)(Xt + µ(t)),

where Xt = σ
∫ t

0
e−λ(t−s)dWs is a centered Gaussian factor (Ornstein-Uhlenbeck)

which may be correlated with the price noise X .

α and µj model the daily seasonality of the production process and P(0, t) is the

forecast at the gate closure time of the intraday market.

Model allows for negative production values, but such values may be possible in

practice when the wind speed is very low.

The extra factor (1 + γP(0, t)δ translates the fact that the forecast errors are

higher when the production is higher.
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Modeling the dynamics of the forecast curve

Multifactor model for the production process

Pt = P(0, t) + α(t)(1 + γP(0, t)δ)
M∑
j=1

(X j
t + µj(t)),

where (X j)Mj=1 are independent Ornstein-Uhlenbeck processes:

dX j
t = −λjX j

t dt + σjdW
j
t .

The forecast processes at other times are given by

P(t,T ) = EP[PT |Ft ]

= P(0,T ) +
M∑
j=1

{
α(T )(1 + γP(0,T )δ)e−λj (T−t)(X j

t + µj(t))
}
.
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Model calibration

• We focus on the production model, in the one-factor case

• Assume that the agent observes L indepenent realizations of the forecast

(P l(0,Tk))l=1,...,L
k=1,...,N and the production process (P l

k)l=1,...,L
1≤k≤N

• Each realization corresponds to a single production day in the past

• Introduce the forecast error process (Z l
k)1≤l≤L

1≤k≤N , where Z l
k = P l

k − P l(0,Tk).

• Z l
k is a Gaussian vector and the log-likelihood of (Z l

k)l=1,...,L
k=1,...,N is

l(α, µ, λ, γ, δ) = −L

2
log(det Ω(λ))− L

N∑
j=1

logαj −
∑
l

∑
j

log(1 + γP l(0,Tj)
δ)

− 1

2

L∑
l=1

(
Z l
γ,δ

α
− µ

)>
Ω−1(λ)

(
Z l
γ,δ

α
− µ

)
,

where αk := α(Tk), µk = µ(Tk) and Z l
γ,δ = Z l/(1 + γP l(0,T )δ).
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Maximizing the likelihood function

Differentiating with respect to µ, we get an explicit expression

µ =
1

Lα

L∑
l=1

Z l
γ,δ :=

1

α
Zγ,δ,

and a simplified log-likelihood

l(α, λ, γ, δ) = −L

2
log(det Ω(λ))− L

N∑
j=1

logαj −
∑
l

∑
j

log(1 + γP l(0,Tj)
δ)

− 1

2

L∑
l=1

(
Z l
γ,δ

α
− Zγ,δ

α

)>
Ω−1(λ)

(
Z l
γ,δ

α
− Zγ,δ

α

)
.

which we minimize with a numerical algorithm.
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Numerical illustration: forecast
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Top: Day-ahead forecast and realized production on Sep

8, 2014 (left) and Oct 19, 2014 (right).

Bottom: estimation of the model for realized production.

Data: production and forecast (at 12h the day before) for

a wind parc in France, Jan 1st 2012 – Dec 31st 2014.

Length of mean reversion: about 6.2 hours.
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Numerical illustration: price
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Top: Day-ahead price and last intraday price on Sep 8,

2014 (left) and Oct 19, 2014 (right).

Bottom: Estimation of the intraday price model. Data:

EPEX Spot day-ahead and intraday price,

Germany-Austria region, Jan 1st 2014 – Dec 31st 2014.

Length of mean reversion: about 2.5 hours.
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Solving the optimization problem: dynamic programming

Recall that we need to solve

max
P1,...,PN ,p1,...,pN

{
N∑

k=1

PkF (0,Tk)− E

[
N∑

k=1

Fk(pk + α|pk |))

]}
,

where P1, . . . ,PN are determined at time 0 and (pk)1≤k≤N are determined

dynamically

We solve this problem by discrete-time dynamic programming (backward

induction)

State variables are: battery charge state (Qk)1≤k≤N and the factor processes for

the wind production (XTk
)1≤k≤N and the intraday market price (YTk

)1≤k≤N .

We consider all processes in discrete time.
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Solving the optimization problem: dynamic programming

Define the value function

vk(q, x , y) = min
pk ,...,pN ,Qk−1=q

ETk ,x,y

[
N∑

n=k

Fn(pn + α|pn|)

]
,

where ETk ,x,y means that we start the factor processes at time Tk from values x

and y .

The original optimization problem then writes

max
P1,...,PN

{
N∑

k=1

PkF (0,Tk)− E0,X0,Y0 [v1(Q0,XT1 ,YT1 )]

}
.
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Solving the optimization problem: dynamic programming

The dynamic programming principle for the value function writes

vk(q, x , y) = min
pk :q+Pk−Pk+pk∈[Qmin,Qmax ]

{φk(y)(pk + α|pk |)

+ ETk ,x,y [vk+1(q + πk(x)− Pk + pk ,XTk+1
,YTk+1

)}

with the terminal condition

vN = vN(q, x , y) = min
pN :q+PN−PN+pN∈[Qmin,Qmax ]

φN(pN + α|pN |),

where

φk(y) = F (0,Tk) + ᾱ(Tk)(y + µ̄(Tk)),

πk(x) = P(0,Tk) + α(Tk)(1 + γP(0,Tk)δ)(x + µ(Tk)).
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Solving the optimization problem: battery state

Discretize the state of charge of the battery on a uniform grid

Qmin = q1 < · · · < qJ = Qmax .

⇒ The control pk takes a finite number of values.

We denote vk(qj , . . . ) by v j
k . Then,

v j
k(x , y) = min

i=1,...,J
{φk(y)η(qi − qj + Pk − πk(x)) + ETk ,x,y [v i

k+1(XTk+1
,YTk+1

)},

where η(p) = p + α|p|.
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Solving the optimization problem: quantization

Let Pk be the unconditional distribution of Z := (XTk
,YTk

). For every

k = 1, . . . ,N, define a grid of size Nq by solving

min
Ẑ

EPk [(Z − Ẑ )2],

where the minimum is taken over all random vectors supported by Nq points.

The solution (optimal Voronoi quantization) is obtained by nearest-neighbor

projection of Z on a set of Nq points.

We denote these points by ẑk1 , . . . , ẑ
k
Nq

with ẑkj := (x̂kj , ŷ
k
j ), the associated Voronoi

cells by C k
1 , . . . ,C

k
Nq

and the associated probabilities by p̂k1 , . . . , p̂
k
Nq

.

The points ẑ can be computed using the K-means algorithm or downloaded from

quantize.maths-fi.com.
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Solving the optimization problem: quantization

Next, we replace the continuous process with a Markov chain (Ẑk)0≤k≤N with Nq

states. The transition probabilities of the chain are defined by

π̂0
i = P[Ẑ1 = ẑ1

i ] = π̂1
i

and π̂k
ij = P[Ẑk+1 = ẑk+1

j |Ẑk = ẑki ] = P[ZTk+1
∈ C k+1

j |ZTk
∈ C k

i ].

These transition probabilities are evaluated by Monte Carlo.

The value function can then be computed on the quantization grid using the

following formula:

v j
k(ẑkm) = min

i=1,...,J
{φk(ŷk

m)η(qi − qj + Pk − πk(x̂km)) +

Nq∑
l=1

π̂k
mlv

i
k+1(zk+1

l )}.
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Solving the optimization problem

• The value function and the optimal strategies are computed numerically by

dynamic programming

• We start by discretizing the state of charge of the battery, introducing a

uniform grid Qmin = q1 < · · · < qJ = Qmax .

• The second step is to replace the discrete-time Ornstein-Uhlenbeck processes

(X ,X ) with a finite-state Markov chain. This will be achieved using the

method of optimal quantization.

• The value function can then be computed on the quantization grid
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Numerical illustration: sample strategies

The spot market engagements Pk have been taken equal to production forecasts

for the corresponding hour: Pk = P(0,Tk).
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Numerical illustration: battery capacity

Maximum expected gain of the power producer for different values of the battery

capacity Qmax and different values of α.
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The dotted line shows the theoretical profit of the power producer if the power

production were exactly equal to the day-ahead forecast. Left: 8 September 2014.

Right: 19 October 2014.

Peter Tankov (ENSAE ParisTech) Wind power plant with storage capacity September 13, 2019 32 / 34



Numerical illustration: optimal bids in the spot market

These are obtained by maximizing the value function of the producer with fixed

bids Pk , with respect to Pk with a numerical optimization algorithm (BFGS).
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Conclusion

• Methodology for optimal management of a wind plant - battery system based

on stochastic control;

• Strategy is initialized daily: it allows to determine optimal day-ahead bids

and then adjust intraday position as production becomes known.

• At present, cost of battery storage is

around 10 cents per KWh produced:

a 100 euro price differential is

needed to implement arbitrage.

• Falling cost of batteries may boost

profitability.

costs related to installation to be entirely independent of the size
of the battery, e.g., permitting, inspecting,and commissioning.
In the location-specific application of our model, these fixed costs
are estimated to be $400 in the U.S. and $300 (€260) in Germany
(see Supplementary Notes 1–6).

Assuming N= 365 charging/discharging events, a 10-year
useful life of the energy storage component, a 5% cost of capital,
a 5% round-trip efficiency loss, and a battery storage capacity
degradation rate of 1% annually, the corresponding levelized cost
figures are LCOEC= $0.067 per kWh and LCOPC= $0.206 per
kW for 2019. The solid curve in Fig. 1 shows the corresponding
LCOES for alternative duration values. In the presence of
installation related fixed costs, LCOES then yields the break-
even price for covering the systems costs that do vary
proportionally with either ke or kp; see Methods section for
further details.

Consistent with the recent widespread installation of li-ion
based batteries, the LCOES of such systems has dropped
dramatically in recent years21–23. The dotted curve shows the
corresponding nominal LCOES figures back in 2013. Projecting
into the future, the consensus forecast that emerges from various
literature sources are annual percentage declines of 5.6% and
8.1% for the acquisition cost of the power and storage
components, respectively, over the horizon 2018–2023. Assuming
that this rate of improvement can indeed be maintained on
average during those years, the dashed curve in Fig. 1 provides a
forecast of where the LCOES of li-ion battery systems is expected
to be in 2023 (see Supplementary Notes 2 and 4).

Our LCOES metric is a variant of existing storage cost
measures18,20,24–27. For energy generation, the familiar LCOE
measure is frequently conceptualized as total (discounted) cash
flows spent divided by total (discounted) energy delivered27,28.
Existing studies on the levelized cost of storage follow the same
total-cost-divided-by-total-energy approach20,26,29,30. While our
LCOES measure is also calibrated as a break-even measure, our
metric departs from two individual levelized cost measure (power
and energy) and then aggregates these two measures depending
on the average duration of the system. This disaggregation will
prove useful in characterizing optimally sized storage systems.

In particular, the following section shows that the conditions for
an optimally sized battery can be expressed succinctly in terms
of the optimized duration. By optimizing the duration of the
battery storage system, we obtain cost figures that are consistent
with the recent widespread and increasing deployment of such
storage systems. Earlier studies that arrived at substantially higher
cost of storage have frequently fixed the duration at 2 or 4 h20,26.
It should also be noted that our LCOES concept only captures
the cost per kWh of warehousing electricity on a daily basis,
subject to the system’s power rating constraint. In contrast, some
earlier studies also include the cost of generating the energy that
is being dispatched26,29.

Optimal battery size supplementing a solar PV system. We
consider a representative household that has already installed a
solar PV system and now faces the question whether behind-the
meter storage adds additional value. To illustrate the basic eco-
nomic tradeoff, we first consider a household for which both the
consumption load and the solar generation profile are fairly
constant across the seasons of the year. The solid curve in Fig. 2
depicts the average load profile and the bell-shaped dotted curve
depicts the average solar PV generation curve.

Absent any battery storage, the household will self-consume
the energy represented by the area marked I in Fig. 2, and buy the
energy outside the time interval [t−, t+] at the going retail rate,
denoted by p. The surplus energy from the solar system, i.e., the
regions marked II and III, can possibly be sold back to the energy
service provider at some overage tariff, OT which, in Germany, is
given by the prevailing feed-in tariff. If a battery system is added,
the energy corresponding to the region marked as II in Fig. 2
would be discharged during times when household demand
exceeds generation by the rooftop solar facility. Accordingly,
region IV in Fig. 2 is equal to region II minus the round-trip
efficiency losses. The following derivation also maintains the
implicit assumption that the demand represented by combined
areas represented IV and V is sufficiently large to absorb the
stored energy corresponding to II. Region V is residual demand
that would not be met by the battery and must be met through
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Fig. 1 Simulated trajectory for lithium-ion LCOES ($ per kWh) as a function
of duration (hours) for the years 2013, 2019, and 2023. For energy storage
systems based on stationary lithium-ion batteries, the 2019 estimate for
the levelized cost of the power component, LCOPC, is $0.206 per kW,
while the levelized cost of the energy component, LCOEC, is $0.067 per
kWh. The curve corresponding to the year 2019 plots the corresponding
LCOES values for alternative levels of the storage system’s duration.
The LCOES curve corresponding to the year 2013 indicates the decline in
lithium-ion based battery storage costs over the past five years. The 2023
curve projects anticipated future cost reductions. Source data are provided
as a Source Data file
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Fig. 2 Pattern of daily charging and discharging of a battery supplementing
a PV system. Region I represents self consumption from solar generation;
region II is surplus energy that can be stored and subsequently discharged
as region IV (minus efficiency losses); and region III is surplus energy
sold to the grid. Region V is residual demand that would not be met by
the battery and must be met through purchases from the grid at the going
retail rate p
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