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Preface

These Notes, revised and extended, form the basis for my book “Mathe-
matical Analysis of Financial Markets. Probability Theory and Financial
Mathematics,” Moscow 2010, ISBN 978-5-904073-03-9.

The aim is to give a concise introduction to the basic notions of the
elementary probability theory oriented to the applications in quantitative
and qualitative analysis of financial processes. The main objective is to give
the readers a clear idea about the mathematical structures (and their appli-
cations in model situations) lying at the foundation of the modern theories
of the financial market. This includes the theory of option pricing, hedging
by futures, portfolio optimization, credit risk and basic models of financial
dynamics on the stock exchanges. The book can form a basis of undergrad-
uate University courses in applied mathematics, economics, finances and
statistics. Probability theory is introduced in the minimal scope (say, mul-
tidimensional distributions and characteristic functions are not discussed
seriously), and all notions are illustrated by concrete examples (which dis-
tinguishes the book from the most of the mathematical texts). At the same
time, the exposition is given on a mathematically rigorous level (unlike the
most texts in finances and economics), because in the author’s opinion the
precision of the exposition is crucial for the correct understanding and hence
correct application of the underlying theory.

To read the text one is expected to have an elementary knowledge of
the basic rules of calculus (differentiation - integration, finding maxima and
minima of functions, natural logarithms and exponential functions), to un-
derstand the basic operations on sets (union, intersection), to have at least
a rudimentary idea about limits, infinite sums and continuity. Elementary
knowledge of probabilities would be an advantage for reading, but is not a
requirement.

Standard abbreviations and notations
r.h.s. right hand side
l.h.s. left hand side
r.v. random variable
i.i.d. independent identically distributed
∅ -empty set
N, Z, R -the sets of natural, integer and real numbers,
Z+ = {0, 1, 2, ...}
exp{x} = ex∑n

i=1 - sum over all i from 1 to n∏n
i=1 - product over all i from 1 to n
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◦- composition, i.e. (f ◦ g)(x) = f(g(x))

f(x) ∼ g(x), x → ∞, means limx→∞
f(x)
g(x) = 1

E - expectation, P - probability
Φ(x)- distribution function for standard normal r.v.
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Chapter 1

Elementary probability
models

The readers having some acquaintance with the elementary notions of the
probability theory can start by trying to solve the following curious prob-
lems, whose solution may look rather counterintuitive. For the solutions of
the first three problems no knowledge is required, apart from the under-
standing of what is the meaning of probability. Problem 4 is an exercise on
the conditional probabilities (Bayes rule) and Problem 5 can be most easily
resolved via Poisson approximation. We shall supply the solutions at the
end of this chapter after properly introducing all necessary tools.

Problem 1 (a birthday problem). In a football team of 23 players,
what is the probability that at least two players have birthdays on the same
day of a year?

Problem 2 (daughter or sun). Suppose you are told that a family has
two children and that one of them is a daughter. (i) What is the probability
of another child to be a daughter? (ii) Would this probability change, if you
ring the bell and a daughter opens the door?

Problem 3 (three doors quiz show). A show host leads you to three
closed doors. Behind one of them is a new car, and behind the other two
are chocolate bars. The game proceeds as follows. You are choosing a door
without opening it. Then the host will open one of the remaining doors that
hides a chocolate bar (the host knows where is the car). When this is done,
you are given the opportunity to switch door you have chosen to another
closed door left. You will win whatever is behind the door you choose on this
stage. Should you switch? In other words, would it increase your chances of
winning? This problem is sometimes called the Monty Hall dilemma after
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the USA 1970s television game show, where this chance of winning was in
fact offered. The solution was a subject of hot discussion in US press of that
time. To make a solution more transparent a modification can be suggested.
Suppose there are 100 doors (and still one car). You choose one door, and
then 98 empty doors (with a chocolate) are revealed. Would you switch your
first choice now?

Problem 4 (test paradox). Assume an inexpensive diagnostic test is
suggested that is however not 100% reliable. Among infected persons the
test shows positive in approximately 99% of the cases. For a non infected
person there is a 2% chance to get a false positive result. (i) Suppose the
test is used in a clinic with a half of all patients being infected. Show that
for a given person the probability of being infected after testing positive is
approximately 0.98. This probability being closed to one clearly supports
the suggestion to use the test. (ii) Based on the above success, it is now
suggested to test the entire population (say, yearly). It is known that one
out of 1000 persons is infected. Let us put forward the same question. For
a given person, what is the probability of being infected after testing posi-
tive? The remarkable answer is 0.047. This shows the necessity to monitor
the basic proportions. Otherwise, one can arrive at the famous conclusion:
’Statistics show that 10% of traffic accidents are caused by drunken drivers,
which means that other 90% are caused by sober drivers. Is it not sensible
to allow only drunken drivers onto the road?

Problem 5 (scratch-and-win lottery). In a popular European lotteries
N tickets are issued carrying two numbers, an open one and a hidden one.
Each of these numbers is chosen randomly from the first N integers (N =
10× 103 in Andorra and N = 10× 106 in Spain) but in such a way that no
two tickets can have identical open or identical hidden numbers. A person
buying a ticket with a hidden number coinciding with an open number wins.
What is the probability of at least one win? Can one find a reasonable
approximation for the distribution of the number of winning tickets?

The main objective of this chapter is to introduce the basic notion of
probability theory, namely a probability space, moving slowly from its most
elementary version to a more advanced one.

A finite probability space in its simplest form is specified by a finite
set Ω = {1, ..., n}, whose elements are called elementary events, and a col-
lection of non-negative numbers p1, ..., pn, called probability distribution or
probability law on Ω, assigning probabilities to these elementary events. The
probabilities should sum up to one, i.e. p1 + ...+ pn = 1. For those used to
think in percentages, 100% corresponds to probability one, the probability
p corresponds to 100p%. The subsets of Ω are called the events and the
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probability of any event I ⊂ Ω is given by the sum of the probabilities of
the elementary events contained in I:

P(I) =
∑
i∈I

pi.

In examples, the set Ω often describes the outcomes of a certain experiment,
and probabilities are assigned according to our perception of the likelihood
of these outcomes. In the situation of maximum uncertainty all outcomes
are equally probable, i.e. all pi are equal and hence all pi = 1/n, where n is
the number of elements in Ω. This probability distribution is called uniform.
In this case the probability of any event A ⊂ Ω is of course just the ratio
|A|/n, where A is the number of elements in A.

For instance, tossing a coin, can be modeled by the set Ω consisting of two
elements {H,T} (head and tail). If a coin is fair, then P(H) = P(T ) = 1/2,
i.e. tossing a coin is modeled by a uniform distribution on a two point set.

Two events A, B are called independent if the probability of their joint
occurrence factorizes:

P(A ∩B) = P(A)P(B).

For instance, when tossing a coin two times, the results of these two exper-
iments are of course independent, hence the probabilities of any of the 4
events HH,HT , TH, TT equal

1

2
× 1

2
=

1

4
.

Thus the experiment consisting of two tossing of a fair coin is described by
the uniform distribution on a four point set.

Counting the number of outcomes belong to the domain of mathemat-
ics called combinatorics. We shall use from it only the so called binomial
coefficients

Ck
n =

n!

k!(n− k)!
(1.1)

which yield the number of ways to choose k elements out of a given set of n
(say, the number of ways to choose k cards out of a pack of n).

An experiment with two outcomes (success or failure, head or tail, etc),
which one encodes by numbers 1 and 0, with given probabilities p = P(1)
and 1 − p = P(0) is called a Bernoulli trial. It is clear that the number of
ways to have (or to choose) precisely k successes (or one’s) in n independent
trials is given precisely by the binomial coefficient (1.1). As by independence,
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the probability of any outcome with k successes out of n experiments equal
pk(1− p)n−k, the probability of k successes in n trials equals

pk(n) = Ck
np

k(1− p)n−k. (1.2)

For given n, p this distribution on the set of (n+ 1) elements k = 0, 1, ..., n
is called the (n, p)-Binomial. It plays a distinguished role in probability
theory.

Remark 1 As the probabilities sum up to one, we can deduce from our
discussion the following remarkable formula of the binomial expansion:

1 =
n∑

k=0

Ck
np

k(1− p)n−k

for any integer n and any p ∈ [0, 1].

In the financial context one can illustrate the importance of studying
independence by the following elementary example. Suppose you keep a
portfolio of bonds belonging to 100 different corporations, and the proba-
bility of a default during the next three years for each of these corporations
equals to 0.02 (i.e. 2%). So called credit default swaps (CDS) allows one
to buy a protection against the first or, say, the tenth default inside your
portfolio (default means a crucial devaluation of the bond and/or of the cor-
responding payments). If the firms are independent, the number of defaults
are distributed like a Binomial (100.0.02) r.v. implying that the probability
of at least one (respectively at least 10) defaults equals 0.867 (respectively
0.003). Thus a first-to-default CDS should be valuable, but the ten-to-
default CDS is worth almost nothing. On the other hand, if the defaults of
your corporations are perfectly correlated, i.e. they occur simultaneously,
then the probabilities of at least one or at least 10 (or 50) defaults coincide
and equal 0.02. We shall return to this example in Section 3.6.

Now it is time to extend a bit our concept of a probability space. By
our initial definition, it was just a finite set Ω with given probabilities of
each element. All subsets were considered as possible events. In the ex-
tension we have in mind not all subsets will constitute an event, to which
a probability can be assigned. This extension is crucial for further devel-
opment and is very natural from the practical point of view. In fact, the
events of the model, also called measurable subsets (as their probabilities
can be measured) should be linked with particular purposes for which a
model is created. For example, consider the population of a city from a
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point of view of a financial institution. The relation with a client (say, level
of credit offered) will be based on certain financial parameters characteriz-
ing this client, primarily on an average income per annum. Thus the set of
all people with a given income should be an event. Its probability can be
estimated as a ratio of the number of people with this level of income to
the size of the population. In other words, this would yield a probability
of a randomly chosen individual to have an income of this level. On the
other hand, a subset of individuals having, say, green eyes, should not be
considered as an event in this model. Further on, often certain decisions on
offering a financial product to a customer (say, a mortgage) depends on the
income exceeding some threshold, say K thousands dollars per annum. For
this purpose then, the model will be reduced to four events (subsets of a
population) only: the whole population, its complement (the empty set ),
and the subsets having income below and above the threshold K.

This discussion was meant to justify the introduction of a general concept
of a finite probability space as a triple (Ω,F ,P), where Ω is an arbitrary finite
set, F is a collection of its subsets, called events or measurable subsets, and
P is a positive function on F assigning probabilities to the events. Such a
triple is called a probability space if it enjoys the following natural (convince
yourself that they are really natural!) properties.

(P1) If A and B are events (i.e. belong to F), then so are their union
and intersection A ∪B, A ∩B.

(P2) The whole set Ω and the empty set ∅ belong to F and have proba-
bilities one and zero respectively.

(P3) If A is an event, then its compliment Ā = Ω \ A is also an event
and P(Ā) = 1−P(A).

(P4) If A1, A2, ..., Ak is a finite collection of nonintersecting events, then
the additivity of probability holds

P(A1 ∪A2 ∪ ... ∪Ak) = P(A1) + ...+P(Ak).

Remark 2 To see why (P1) is reasonable let us return to our above example
with customers of a financial institution: if they are assessed by two criteria
corresponding to the events A and B (say, income per year and the value
of property owned), the situations when both criteria are satisfied (the event
A∩B) or at least one holds (the event A∪B) should be considered as relevant
events.

Remark 3 For a given finite probability model (Ω,F ,P) one can reduce
it, by grouping, to an equivalent one in such a way that all subsets of the
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basic underlying set of outcomes become events (or measurable). Say, in the
above example with population characterized by the income per annum, one
can alternatively take as Ω not the set of all people, but instead the set of
all incomes. However, such a reduction is not always natural practically. In
particular, this happens when analyzing the dynamics of random variables
(so called random processes). In this situation it becomes instructive to use
families Ft of the sets of events parameterized by time (called a filtration)
that store the information available to time t.

The next step in extending the notion of a probability space is in reject-
ing the assumption of finiteness of Ω. Namely, analyzing repeated experi-
ments, even the simplest Bernoulli ones, naturally leads to the necessity to
introduce at least countable sets of outcomes. Consider, for instance, the
well known strategy of betting on a certain outcome till it wins. In other
words, we are betting on a success in a Bernoulli trial with the probability
of success (encoded as number one) until it occurs. Possible outcomes in
this experiments are the strings of events

1, 01, 001, 0001, ....

There are countably many of them and their probabilities equal

p, (1− p)p, (1− p)2p, ... (1.3)

Thus we have a distribution on a set of all natural numbers. As follows
from the summation of a geometric sequence, the (infinite) sum of these
probabilities equals one, as it should be. The distribution (1.3) is called
p-Geometric.

As one can now guess the only correction to the above definition of a
probability space should be the possibility to take countable sums, which
leads to the following definition. A discrete (finite or countable) probability
space or probability model is a triple (Ω,F ,P), where Ω is an arbitrary finite
or countable set, F is a collection of its subsets, called events or measurable
subsets, and P is a positive function on F assigning probabilities to the
events. Moreover, this triple enjoys the properties (P1)-(P3) above as well
as an improved version of (P4):

(P4’) If A1, A2, ... is a finite or countable collection of nonintersecting
events, then its union is also an event and the following σ- additivity holds:

P(A1 ∪A2 ∪ ...) = P(A1) +P(A2) + ...

(this infinite sum denotes the limit as n → ∞ of the finite sums P(A1) +
...+P(An)).
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In simplest situations, like in the above example of geometric distribu-
tion, the collection F coincides with all subsets of Ω and the probability law
P is then specified just by assigning probabilities, say pk, to each element
of Ω.

By far the most important example of a countable probability law is the
so called Poisson distribution with parameter c, c > 0, where the probabili-
ties pk on the set of all non-negative integers k ∈ Ω = {0, 1, ...} are defined
as

pk =
ck

k!
e−ck. (1.4)

The Taylor formula for the exponential function ensures that these probabil-
ities sum up to one. One of the reason for the importance of this distribution
is the fact that it approximates the binomial distribution when the proba-
bility of success is small. More precisely, the following result holds, which
will be proved later in Section 5.1.

Theorem 1.0.1 If pk(n) is the (n, p)-Binomial distribution (1.2), then

lim
n→∞

pk(n) =
ck

k!
e−c,

where p depends on n and tends to zero in such a way that np → c as
n → ∞.

Crucial importance in both theory and applications of probability be-
longs to conditional probabilities, which allow to update our perception of
a certain probability law (or its dynamics) once new information becomes
available. If A and B represent events in a probability space (Ω,F ,P), the
conditional probability of B given A is defined as

P(B|A) = P(B ∩A)

P(A)
.

Notice that as a function of B conditional probability P(B|A) specifies a
probability law on the measurable subsets of A, as it clearly sums up to one:

P(A|A) =
P(A ∩A)

P(A)
=

P(A

P(A)
= 1.

From this definition it follows that A and B are independent if and only if
P(B|A) = P(B), as one should expect (conditioning on something irrelevant
should not be relevant).
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If A1, ..., Ak is a partition of Ω, i.e. it is a collection of pairwise disjoint
events with the union coinciding with Ω, then by the additivity of probability

P(B) =
n∑

j=1

P(B ∩Aj),

implying the following fundamental multiple decomposition law

P(B) =

n∑
j=1

P(B|Aj)P(Aj).

In particular, if A is an event and Ā = Ω \ A is its compliment, it implies
the following decomposition law

P(B) = P(B|A)P(A) +P(BĀ)P(Ā).

In practice one often needs to revet the event and its condition. Namely,
since by the definition of conditioning

P(A ∩B) = P(A)P(B|A) = P(B)P(A|B),

one has

P(A|B) = P(B|A)P(A)

P(B)
. (1.5)

Plugging in the decomposition rule, yields

P(A|B) = P(B|A) P(A)

P(B|A)P(A) +P(BĀ)P(Ā)
. (1.6)

Equations (1.5) and (1.6) are often refereed to as the Bayes rules.
The solution to problem 4 below demonstrates how this rule works. Gen-

erally speaking, it often occurs that conditional probabilities and not abso-
lute probabilities are naturally given by the model. As an example let us
show how the default probabilities of firms for various time periods are cal-
culated. Suppose it is known (as given, say, by default rating services) that
for a company a probability of default during a year conditioned on no ear-
lier default equals 0.02 (or 2%). What are the survival probabilities P(Sk)
up to the year k = 1, 2, ... (Sk denotes the event that the company will not
default at least till the end of year k) and the default probabilities P(Dk)
during year k? Well, of course P(D1) = 0.02 and P(S1) = 1− 0.02 = 0.98.
To calculate these probabilities for the next years, one proceeds as follows.

P(D2|S1) = 0.02 = P(D2)/P(S1).
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Hence
P(D2) = 0.02× 0.98 = 0.0196,

and consequently

P(S2) = 1−P(D1)−P(D2) = 0.9604,

and so on with P(S3), etc.
We have now all the tools at hand needed for the solutions of the prob-

lems formulated in the beginning.
Solution to Problem 1. Required probability equals 1 − p, where p

is the probability that all players have birthdays at different dates. Assume
the number of days in a year is 365. The number of all birthday allocations
(that are equiprobable) is thus 36523. The number of ways to choose 23
different days equals 365× 364× ...× (365− 22). Hence

p =
365× 364× ...× (365− 22)

36523
.

Calculation yields for the required probability of having at least two people
with the same birthday a remarkably high value 1− p = 0.5073.

Solution to Problem 2. (i) Of course it is assumed here that any new
born child turns out to be a son (S) or a daughter (D) with equal proba-
bilities. Hence there are 4 elementary events DD, DS, SD, SS, describing
possible appearance of a son or a daughter in a family with two children,
and all these outcomes are equiprobable and hence have probability 1/4.
Hence the event ∃D meaning that the family has a daughter has probability
3/4. Consequently

P(DD|∃D) = P(DD)/P(∃D) = 1/3.

(ii) Now each of the elementary events DS and SD is decompose in a pair
of equiprobable events DS : D, DS : S and respectively SD : D, SD;S (the
last letter indicating who has opened the door), each of which thus having
probability 1/8. The probability of the event (Dseen) that a daughter opens
the door equals 1/2. Consequently

P(DD|Dseen) = P(DD)/P(Dseen) = (1/4)/(1/2) = 1/2.

Solution to Problem 3. When you choose a door, you decompose
the set of three doors into two events (you are right), (you are wrong)
with probabilities 1/3 and 2/3. Opening the empty door by the host does
not change these probabilities. Hence switching allows you to change the
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probability of winning from 1/3 to 2/3. In the modified version with 100
doors you would be able to improve your chances from 1/100 to 99/100.

Solution to Problem 4. Let us denote by D (respectively D̄) the event
of having a disease (respectively not having a disease) and by P the event
of being tested positive. Then

P(P ) = P(P |D)P(D) +P(P |D̄)P(D̄).

Consequently,

P(D|P ) = P(P |D)
P(D)

P(P )
=

P(P |D)P(D)

P(P |D)P(D) +P(P |D̄)P(D̄)
. (1.7)

Now
P(P |D) = 0.99, P(P |D̄) = 0.02,

yielding

P(D|P ) =
0.99×P(D)

0.99×P(D) + 0.02(1−P(D))
. (1.8)

In case (i) P(D) = 1/2 leading to P(D|P ) = 0.98. In case (ii) P(D) = 0.001
leading to P(D|P ) = 0.047.

Solution to Problem 5. The number of winning tickets can be consid-
ered as the number of successes in N trials, each trial, being a comparison
of a printed number with hidden one, has the success probability 1/N . For
large N the dependence between the trials is weak suggesting to use the
Poisson approximation for the number of successes in N Bernoulli trials.
By the Poisson limit theorem, the distribution of the number of winnings
is approximately Poisson with parameter N × 1/N = 1, which remarkably
enough does not depend on N . Thus the probability of no win is approx-
imately 1/e = 0.37. One can also calculate this probability precisely. It
turns out that for N > 10 the Poisson approximation matches the exact
probabilities in at least eight digits.



Chapter 2

Random variables (r.v.)

2.1 Discrete r.v. and random vectors

Random variables (r.v.) represent the core notion of probability theory. One
can say that probability theory is a domain of sciences studying r.v. This
chapter is devoted to this concept in its various performances starting with
the simple discrete r.v.

In its first description a r.v. is understood as an uncertain number,
which takes particular values with prescribed probabilities. In particular,
a discrete random variable X is described by a finite (or more generally
countable) family of its possible values x1, ..., xn (the range of X) together
with the probabilities p1, ..., pn, with which these values can occur (specifying
a probability law on the range ofX). A simple example is supplied by the r.v.
X denoting the face of a die randomly chosen (or randomly thrown). The
range of this X is the collection of numbers {1, ..., 6} and the probabilities
are all equal: p1 = ... = p6 = 1/6 (if a die is assumed to be fair). One of
the basic characteristics of a r.v. is its expectation or mean value. These
averages appear constantly in every day live. In probability theory they get a
precise meaning. Namely, for a r.v. X with range x1, ..., xn and probabilities
p1, ..., pn, the expectation (or mean, or average value) is defined as

E(X) =
n∑

i=1

xipi.

If all values of X are equiprobable, i.e. all pi coincide, then this turns to the
usual arithmetic mean of the range:

E(X) =
1

n

n∑
i=1

xi.

14
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Working with r.v. one often needs to perform various operations on them,
like adding, multiplying, calculating functional transformations (thus play-
ing with uncertain numbers as with usual ones). Clearly, for a r.v. X with
range x1, ..., xn and probabilities p1, ..., pn, and a function ϕ(x), the compo-
sition ϕ(X) can be naturally defined as a r.v. with the range ϕ(x1), ..., ϕ(xn)
and the same probabilities for p1, ..., pn. As may be surprising from the first
sight, the situation is not so obvious when one tries to give sense to the sum
of r.v. Namely, suppose X is a r.v. with range x1, ..., xn and probabilities
p1, ..., pn, and Y is a r.v. with range y1, ..., ym and probabilities q1, ..., qm.
What is the meaning of X + Y ? Clearly the range should consists of all
sums xi + yj . But which probabilities are to be assigned to these values?
Of course, no sane person would try to add temperature (or average tem-
perature) with an income per annum. But to add, say, incomes of a firm in
consecutive years is a reasonable operation.

In order to get an understanding of what is going on with the sums of r.v.
it is instructive to invoke an alternative description of r.v. In this second
description a discrete r.v. is defined as a function on a discrete probability
space. From a first sight it may look like a tautological reformulation. In
fact, if X is a r.v. with range x1, ..., xn and probabilities p1, ..., pn, one
can equivalently define X as the function on the probability space ΩX =
{1, ..., n} with the law {pi = P(i)}ni=1 given by X(i) = xi. The definition of
the expectation can be equivalently rewritten now as

E(X) =
∑

ω∈ΩX

X(ω)P(ω). (2.1)

However, the problem of giving sense to the sums seems to be solved now
almost automatically. Namely, if X and Y are two functions on a discrete
probability space Ω, then X + Y is naturally defined also as a function on
Ω as (X + Y )(ω) = X(ω) + Y (ω). It is also obvious from (2.1) that the
expectation is a linear operation, i.e.

E(aX + bY ) = aE(X) + bE(Y ) (2.2)

for any numbers a, b.
Let us return to our original question. Given a r.v. X with range

x1, ..., xn and probabilities p1, ..., pn, and a r.v. Y with range y1, ..., ym and
probabilities q1, ..., qm, how to give meaning to the sum X+Y ? The point is
that in order to be able to define it as a point-wise sum of two functions, one
has to have X and Y to be specified as functions on the same probability
space. But if we would apply to Y the same construction as for X above, we
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would define it as a function on the probability space ΩY = {1, ...,m} with
the law {qj = P(j)}mj=1, which is different from ΩX . In order to circumvent
this problem, the idea is to take as common probability space the product

ΩX,Y = ΩX × ΩY = {(i, j) : i = 1, ..., n; j = 1, ...,m}.

However, the probability law on ΩX,Y can not be reconstructed from the
laws of X and Y . It should be given as additional input to the model, which
leads naturally to the notion of a random vector. Namely, a discrete two-
dimensional random vector is a pair of random variables (X,Y ) with ranges
x1, ..., xn and y1, ..., ym respectively, for which the joint probabilities (or joint
probability distribution) are specified:

pij = P(X = xi, Y = yj), i = 1, ..., n, j = 1, ...,m.

Notice that the distributions of the components X, Y (called in this setting
the marginal distributions of the random vector) are easily reconstructed
from the joint probabilities, as by the additivity of probability

pi = P(X = xi) =
m∑
j=1

P(X = xi, Y = yj) =
m∑
j=1

pij ,

qj = P(Y = yj) =

n∑
i=1

P(X = xi, Y = yj) =

n∑
i=1

pij .

Specifying the joint probability law pij on the basis of the given marginal
distributions, is called the coupling of the r.v. X and Y . It can be done in
many ways (see for instance the independent coupling, described below).

Once the joint probabilities are specified, both X and Y become defined
on the same probability space (ΩX,Y , pij) as the functions

X(i, j) = xi, Y (i, j) = yj ,

and one can apply the previously stated linearity of the expectation for r.v.
defined on a single probability space to conclude that (2.2) holds. Notice
that though in order to define the sum X + Y the joint probabilities have
to be specified, the expectation of the sum actually does not depend on
these joint distributions, but only on the marginal ones. This is specific for
the operation of taking sums. For the expectation of the product, say, one
obtains

E(XY ) =
n∑

i=1

m∑
j=1

xiyjpij ,
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which can not be calculated without the knowledge of the joint probabilities.
A particular case of coupling is of importance. One says that the r.v. X, Y
are independent if the joint probabilities factorize:

pij = P(X = xi, Y = yj) = P(X = xi)P(Y = yj) = piqj ,

i.e. the events (X = xi) and (Y = yj) are independent for all xi, yj . Evi-
dently, in this case the expression for E(XY ) also factorizes:

E(XY ) = E(X)E(Y ).

Let us summarize our conclusions in the following

Theorem 2.1.1 Expectation is a linear function on discrete r.v. , i.e. (2.2)
holds for any r.v. X,Y . Moreover, if X and Y are independent, then the
expectation of the product of X and Y equals to the product of their expec-
tations.

Similarly one defines d-dimensional random vectors as the collection
(X,Y, ..., Z) of d uncertain numbers, for which the joint probabilities are
specified:

P(X = xi, Y = yj , ..., Z = zk)

for all possible values xi of X, yj of Y , ... and zk of Z. The r.v. X,Y, ..., Z
are called independent if all the joint probabilities factorize:

P(X = xi, Y = yj , ..., Z = zk) = P(X = xi)P(Y = yj)...P(Z = zk).

The above theorem extends straightforwardly to the d-dimensional situation:

Theorem 2.1.2 For any collection of r.v. X1, ..., Xd one has

E

d∑
i=1

Xi =

d∑
i=1

E(Xi).

Moreover, if X1, ..., Xd are independent, then

E

d∏
i=1

Xi =

d∏
i=1

E(Xi).
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An important example of a r.v. on a probability space Ω is given by the
so called indicators 1A for an event A in Ω. By definition 1A(x) equals one
or zero for x ∈ A or otherwise respectively. One easily sees that for any
event A

E(1A) = P(A).

The following two classical examples nicely demonstrate the use of indica-
tors in conjunction with the linearity of expectation for the calculation of
averages.

Example: Records. Let Xk, k = 1, ...., n, denote the independent
identically distributed (i.i.d.) r.v.’s of winners’s times in n marathons. As-
sume for simplicity that P(Yi = Yj) = 0 for any i ̸= j. We call Ym a record,
if

Ym < min(Y1, ..., Ym−1).

We are interested in the average number of records Kn. As for a given m
the events (Yi < min{Yj : j ̸= i}), i = 1, ...,m are equiprobable and their
union is the full set, one concludes that the probability of Ym to be a record
equals 1/m. Hence, denoting by Rm the indicator r.v. of the event that the
m th time is a record, one concludes that E(Rm) = 1/m. Consequently,

E(Kn) = E

(
n∑

m=1

Rm

)
=

n∑
m=1

1

m
.

(In analysis one proves that this sum grows like lnn for large n.)
Example: Ladies and gentlemen on an a tea party. Suppose 10

ladies and 10 gentlemen sit in 20 chairs around an oval table. All seating
arrangements are equiprobable. How many gentlemen G do you expect to
have a lady sitting immediately to their left? Let Si (respectively S̄i) denote
the event that a man (respectively a lady) is in i th chair, i = 1, ..., 20. Let
Xi, i = 1, ..., 20, denote the indicator of the event Si ∩ S̄i+1 (where we put
S21 = S1, as the chair 1 is the left neighbor of the chair 20). One has

E(Xi) = P(Si ∩ S̄i+1) = P(Si)P(S̄i+1|Si) =
10

20

10

19
=

5

19
.

Consequently

E(G) = E

(
20∑

m=1

Xm

)
= 20× 5

19
= 5

5

19
.
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2.2 Continuous r.v. and their expectations

Here we shall introduce another useful class of r.v., continuous r.v., as well
as their main examples.

As already discussed above in discrete case, r.v. can be described in
two ways: by their distributions and by their functional realizations. We
shall introduce here continuous r.v. via the more elementary first descrip-
tion leaving the second one for the next section. One says that X is a
continuous (or more precisely absolutely continuous) r.v., if there exists a
integrable (say, continuous or piecewise continuous) non-negative function
fX , called the probability density function of X, such that for any interval
[a, b] the probability of X taking values in [a, b] (closed interval) or (a, b)
(open interval) is given by the integral:

P(X ∈ [a, b]) = P(X ∈ (a, b)) =

∫ b

a
fX(y) dy.

This implies in particular that for a continuous r.v., unlike a discrete one,
any particular value is taken with zero probability.

As the total probability always sums up to one, any probability density
function satisfies the normalizing condition∫ ∞

−∞
fX(x) dx = 1.

If the range of X belongs to [a, b], then clearly fX vanishes outside this

interval and the normalizing condition rewrites as
∫ b
a fX(x) dx = 1.

A connection with a general theory of r.v. (see next section) is given by
the so called distribution function FX of a r.v. X defined as

FX(x) = P(X ≤ x).

For a continuous r.v. X with a probability density function fX the distri-
bution function FX is clearly represented as the integral

FX(x) =

∫ x

−∞
fX(y) dy. (2.3)

If fX(x) is continuous at x, then by the main law of calculus

fX(x) =
d

dx
FX(x), (2.4)

implying in particular that FX(x) is differentiable at x.
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For example, a r.v. X is called uniformly distributed on an interval [a, b]
if its probability density function fX(x) = fX is a constant (does not depend

on x) on [a, b] and vanishes outside it. Since
∫ b
a fX dx = 1 it follows that

this constant fX equals 1/(b−a). Clearly the uniform distribution describes
the situation of the maximum uncertainty about the position of X on [a, b].

The second most important class of examples is given by the so called
normal or Gaussian r.v. ranging in the whole R and specified by the prob-
ability density functions of the form

f(x) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}
, (2.5)

where µ ∈ R and σ > 0 are two parameters. These r.v. are usually denoted
N(µ, σ2). The r.v. N(0, 1) is called standard normal and has the density

f(x) =
1√
2π

exp

{
−x2

2

}
. (2.6)

Its distribution function

Φ(x) =
1√
2π

∫ x

−∞
exp

{
−y2

2

}
dy (2.7)

can not be expressed in closed form, but is tabulated in standard statistical
tables with great precision due to its importance. The properties of general
N(µ, σ2) are easily deduced from the standard normal r.v. due to their
simple linear connections. Namely, if X is N(0, 1) r.v., then

Y = µ+ σX (2.8)

is N(µ, σ2). In fact,

FY (x) = P(µ+ σX ≤ x) = P

(
X ≤ x− µ

σ

)
,

so that the distribution function of Y is

FY (x) = Φ

(
x− µ

σ

)
.

Differentiating with respect to x yields for the probability density of Y the
expression (2.5) as was claimed.
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The meaning of the parameters µ, σ, as well as the importance of the
normal r.v. will be revealed later. We notice here that

1√
2πσ

∫ ∞

−∞
exp

{
−1

2

(
x− µ

σ

)2
}

dx = 1

for any µ ∈ R, σ > 0 as it should be for any probability density function.
This fact is not obvious but can be checked by the methods of calculus.

In the analysis of the stock market the central role belongs to the so called
log-normal r.v. A r.v. X is called log-normal if its logarithm Y = lnX is
normal N(µ, σ2).

Another key example constitute the exponential distributions that model
memoryless waiting times in a variety of situations from the cash counter
queues and default times to the processes of nuclear radiation. One says
that a positive r.v. τ is memoryless if for any s, t > 0

P(τ > t+ s|τ > s) = P(τ > t),

i.e. the waiting time after a moment s does not depend on the waiting time
before this moment.

Lemma 2.2.1 Let f be a continuous function (0,∞) → (0,∞) such that
f(s+ t) = f(s)f(t) for all s, t. Then there exists a number a s.t. f(t) = eat.

Proof. Introducing g = ln f implies g(s + t) = g(s) + g(t). Consequently
g(1/n) = g(1)/n for all natural n. Hence for all natural m,n one has
g(m/n) = (m/n)g(1) implying by continuity that g(t) = tg(1) for all t.
Hence f(t) = etg(1).

Applying this lemma to the function f(t) = P(τ > t) and taking into
account that f(t) ≤ 1 for all t so that the corresponding constant a should
be negative, implies that a memoryless r.v. τ is θ-exponential for a certain
positive constant θ, i.e.

P(τ > t) = exp{− t

θ
}.

The distribution function of this r.v. is then given by

Fτ (t) = P(τ ≤ t) = 1− exp{− t

θ
}.

It is differentiable so that the probability density function fτ is defined as

fτ (t) =
d

dt
Fτ (t) =

1

θ
exp{− t

θ
}.
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A slight extension of this distribution forms a standard model for the default
probabilities in the theory of credit risk, see Section 3.6.

When adapting the notions related to discrete r.v. to the continuous r.v.
the rule of thumb is to use integrals instead of sums. For instance, for a r.v.
X with a probability density function fX(x) the expectation of X is defined
as

E(X) =

∫ ∞

−∞
xfX(x) dx. (2.9)

As in discrete case one often needs to work not only with r.v., but also
with random vectors. For a pair of r.v. X and Y one says that their joint
distribution is defined, or the random vector (X,Y ) is defined, if for any
intervals A, B of the real line the joint probabilities P(X ∈ A, Y ∈ B) are
specified. One says that X and Y are independent, if these probabilities
factorize, i.e. if for any A, B

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B). (2.10)

As in discrete case, specifying joint distributions for two r.v. X, Y with
given distribution functions FX and FY is called the coupling of the r.v. X
and Y . The simplest coupling is of course the independent coupling given
by (2.10).

The following result represents an extension of the corresponding facts
obtained above for discrete r.v. We present it without a proof, as the techni-
cal issues required (multiple integrals) are beyond the scope of our exposition
(see however the next section).

Theorem 2.2.1 (i) Suppose X is a r.v. with the probability density func-
tion fX and let ϕ be any continuous (or piecewise continuous) function.
Then

E(ϕ(X)) =

∫ ∞

−∞
ϕ(x)fX(x) dx. (2.11)

(ii) Suppose X and Y are r.v. forming a random vector. Then

E(X + Y ) = E(X) +E(Y ).

(iii) If these X and Y are independent, then

E(XY ) = E(X)E(Y ). (2.12)

Similarly one can define a n-dimensional random vector (X1, ..., Xn) by
specifying its joint probabilities:

P(X1 ∈ A1, ..., Xn ∈ An) (2.13)
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for all intervals A1, ..., An. One says that the r.v. X1, ..., Xn are independent,
if all these probabilities factorize:

P(X1 ∈ A1, ..., Xn ∈ An) = P(X1 ∈ A1)...P(Xn ∈ An).

As easily follows by induction from the above stated fact for n = 2, in this
case the expectation again factorizes:

E(X1...Xn) = E(X1)...E(Xn). (2.14)

The r.v. X1, ..., Xn are called mutually Gaussian (equivalently the ran-
dom vector (X1, ..., Xn) is called Gaussian), if any linear combinations of Xi

is a Gaussian r.v. As for Gaussian r.v., one can specify the joint distributions
for Gaussian random vectors explicitly.

Let us calculate the expectation for the uniform, normal and log-normal
r.v. If X is uniformly distributed on an interval [a, b], its probability density
functions fX(x) is a constant 1/(b− a) so that

E(X) =

∫ b

a

x

b− a
dx =

1

2(b− a)
x2 |ba=

b2 − a2

2(b− a)
=

b+ a

2
,

so that, as one expects from the common sense, the mean value of the
points taking all values of the interval [a, b] with equal probabilities is just
the middle of this interval.

If X is a normal r.v. N(µ, σ2), then

E(X) =
1√
2πσ

∫ ∞

−∞
x exp

{
−1

2

(
x− µ

σ

)2
}

dx,

which by changing the variable of integration x to y = (x−µ)/σ rewrites as

E(X) =
1√
2π

∫ ∞

−∞
yσ exp

{
−1

2
x2
}

dx+ µ
1√
2π

∫ ∞

−∞
exp

{
−1

2
x2
}

dx.

The first integral here vanishes (which one can see either from the general
evident fact that the integral of any odd function vanishes, or by the inte-
gration by parts followed by the explicit evaluation), and the second integral
equals µ, because the integral of any a probability density function equals
one. Thus the parameter µ in the notation N(µ, σ2) denotes the mean value
of this normal r.v.

If X is log-normal, so that X = eY with a normal N(µ, σ2) r.v. Y , then
by (2.11)

E(X) =

∫ ∞

−∞
ex

1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

dx.
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Changing variable of integration to y = (x− µ)/σ yields

E(X) = eµ
∫ ∞

−∞

1√
2π

exp

{
σy − y2

2

}
dy,

which rewrites as

eµeσ
2/2

∫ ∞

−∞

1√
2π

exp

{
−1

2
(y − σ)2

}
dy.

As the integral here equals one it implies finally

E(X) = exp{µ+ σ2/2}. (2.15)

The following calculations form the basis for the deduction of the Black-
Sholes option pricing formula in Section 3.4.

Proposition 2.2.1 Suppose X is log-normal, so that X = eY with a normal
N(µ, σ2) r.v. Y , and let K be a positive constant. Then

Emax(X −K, 0) = µ̃Φ

(
ln(µ̃/K) + σ2/2

σ

)
−KΦ

(
ln(µ̃/K)− σ2/2

σ

)
,

(2.16)
where

µ̃ = E(X) = exp{µ+ σ2/2}.

Proof. By (2.8),

Emax(X −K, 0) = Emax(exp{µ+ σZ} −K, 0)

with a standard N(0, 1) r.v. Z. Consequently

Emax(X −K, 0) =

∫ ∞

(lnK−µ)/σ
(eµ+σx −K)

1√
2π

exp

{
−x2

2

}
dx

= µ̃

∫ ∞

(lnK−µ)/σ

1√
2π

exp

{
−(x− σ)2

2

}
dx−K

∫ ∞

(lnK−µ)/σ

1√
2π

exp

{
−x2

2

}
dx,

which rewrites as (2.16).
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2.3 General r.v.: transformations and simulation

Conceptually, the following discussion of the general notion of r.v. and their
transformations would be possibly the most difficult part of the Lectures,
as we shall move along a carefully chosen logical path at the border of a
deep mathematical discipline (measure theory) trying not to plunge into
its abysses, but at the same time to extract the most useful fruits from its
immense richness. By ∗ a more advanced material is marked.

The main results obtained will concern the functional transformations of
arbitrary r.v. implying in particular 1) the universal method of their simula-
tions (used basically in all applications of probability), 2) the representation
of their means via the integral over the unit interval (giving the basic tool
for all calculations with r.v.) and finally 3) the method of the transforma-
tions of arbitrary r.v. into a given one (in practice usually Gaussian) that
lies in the heart of the method of the Gaussian copulas, which is crucial in
the theory of credit derivatives and risk measurement. At the end we shall
summarize again the main points to be learned from this discussion.

In its first, more elementary description, a r.v. is understood as an un-
certain number which takes particular values with prescribed probabilities.
More precisely, any r.v. X is described by its distribution function FX(x)
that for any x ∈ R specifies the probability of the event that the value of X
does not exceed x:

FX(x) = P(X ≤ x).

Clearly FX(x) is a non-decreasing function of x taking values 0 and 1 at −∞
and +∞ respectively (more precisely, the latter means that limx→∞ FX(x) =
1, limx→−∞ FX(x) = 0). By the additivity of probability the knowledge of
FX allows to specify the probabilities of the values of X to belong to any
given interval, as

PX((a, b]) = P(X ∈ (a, b]) = P(X ≤ b)−P(X ≤ a) = FX(b)− FX(a).
(2.17)

One says that the range of X belongs to an interval [a, b] if the probability
of the values of X being below a or above b vanishes. This clearly means
that FX(x) = 0 for all x < a and FX(x) = 1 for all x ≥ b.

The discrete r.v., studied in the previous section can be characterized
by the fact that their distribution functions are piecewise constant. For
instance, a Bernoulli r.v. X taking values 1 and 0 with probability p and
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1− p has the distribution function

FX(x) =


0, x < 0

1− p, 0 ≤ x < 1

1, x > 1

(2.18)

On the other hand, continuous r.v. have continuous distribution func-
tions (expressed via their probability density functions by formula (2.3)),
which are even differentiable whenever a probability density function is con-
tinuous.

A r.v. does not have to be either discrete or continuous (it could contain
rather weird mixtures of these two types), though in practical examples r.v.
usually belong to one of these two types. On the other hand, as one easily
observed in both cases the distribution function is right continuous (i.e.
when xn → x0 as n → ∞ so that all xn > x0, then F (xn) → F (x)). This
property turns out to be general, i.e. it holds for any distribution function.

Remark 4 The right continuity of a distribution function follows from the
continuity of the probability measure (see Remark 5 below), as the set (X ≤
x) is the intersection of the sets (X ≤ x + 1/n) over all natural n. Some
authors prefer to use distribution functions defined as F̃X(x) = P(X < x).
Thus defined F̃X(x) is always left continuous.

The above given definition of a r.v. via its distribution function is intu-
itively appealing, but left unclear many important issues, both theoretical
and practical, say how to take the compositions of various r.v. or how to add
them. These issues are resolved in another description of r.v. as a function
on a probability space.

A discrete probability space was introduced in Chapter 1. For a general
definition one only has to denounce the assumption of countability of Ω.
Namely, a general probability space or probability model is a triple (Ω,F ,P),
where Ω is an arbitrary set, F is a collection of its subsets, called events
or measurable subsets, P is a positive function on F assigning probabilities
to the events and the conditions (P1)-(P3), (P4’) from Chapter 1 hold.
The basic examples of an uncountable probability space (sufficient for the
most of practical applications) represent the geometric probability models,
where Ω is a real line, or a plane, or more generally a subset of the d-
dimensional Euclidean space. The family F is then usually chosen as the
set of the so called Borel sets. The simplest Borel subsets of the real line
R are the intervals [a, b], and the whole family B of the Borel subsets of
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the line R is defined as the class of subsets of R obtained by applying
at most countably many times the operations of intersection and union to
open and closed intervals. Similarly, the family B of the Borel subsets of the
plane R2 is defined as the class of subsets of R2 obtained by applying at
most countably many times the operations of intersection and union to the
rectangles [a, b] × [c, d]. Similarly Borel subsets of an arbitrary Euclidean
space are constructed from d dimensional parallelepipeds.

By far the most important example of a Borel probability space is the
standard (or Lebesgue) probability space that models the uniform distribu-
tion on the unit interval [0, 1], where all points are equally probable (in
other words, the points of [0, 1] are considered as the values of a uniformly
distributed r.v., introduced in the previous section). In this model Ω = [0, 1]
and the class F is given by the Borel class B of the subsets of Ω. The sim-
plest events (or Borel subsets) of this space are the subintervals [a, b] ⊂ [0, 1]
and their probability equals their length: P([a, b]) = b−a. Also any finite or
countable union of nonintersecting subintervals of [0, 1] specifies an event (is
a measurable Borel set), the probability of such an event being of course the
total length, i.e. the sum of the lengths of all intervals entering this subset.
The so called measure theory is a special branch of mathematics designed
to give a proper understanding to what is measurable or not. For practical
applications one just has to have in mind that though not every subset of
[0, 1] is measurable, i.e. represents an event to which a probability of occur-
rence can be assigned, the usual subsets A met in practice are measurable
and their probabilities are given by the integral P(A) =

∫ 1
0 1A(x)dx, where

1A is the indicator function of the set A (i.e. 1A(x) equals one or zero when
respectively x belongs to A or not).

Remark 5 ∗ When we extend the notion of a probability space from a finite
to a countable setting, we have also extended the additivity axiom (P4) to
the countable (or σ-) additivity (P4’). However, denouncing the countability
of the basic set Ω, we still have to keep the additivity countable (an attempt
to use arbitrary, i.e. uncountable, unions would lead to inconsistency). It is
easy to deduce from the σ- additivity of P that it also enjoys the following
continuity property: if {An}∞n=1 is a collection of measurable subsets such
that An+1 ⊂ An for all n, then A = ∩nAn is measurable and

P(A) = lim
n→∞

P(An).

In particular, this property implies that distribution functions of any r.v.
should be right continuous. Finally let us notice that unlike the case of finite
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spaces, one usually can not reduce a given probability space to get a space
with all sets being measurable. The existence of nonmeasurable sets is a
crucial feature of uncountable probability spaces.

In its second description a general random variable (r.v.) is defined as a
measurable function X(ω) on a probability space (Ω,F ,P), i.e. a function,
for which the subsets (X ≤ x) = {ω ∈ Ω : X(ω) ≤ x} belong to F for
any x, i.e. they represent events, for which certain probabilities can be
assigned. The notion of measurability is one of the central in probability
theory and is not so easy to grasp in its full richness. For practical purposes
it is usually enough to know that any continuous, or piecewise continuous,
or any monotone function is measurable.

A measurable function X(ω) on the standard probability space [0, 1] (or
more generally on geometric or Borel probability spaces) introduced above
is often called Borel measurable, or simply a Borel function).

The link to our previous definition of a r.v. via its distribution is as
follows. If X(ω) is a measurable function on a probability space (Ω,F ,P),
its distribution function is defined of course as

FX(x) = P({ω ∈ Ω : X(ω) ≤ x}) = P(X ≤ x). (2.19)

For a given distribution function FX , the probability law PX is defined by
(2.17) on the intervals and then can be extended by (countable) additivity
to all Borel subsets B of the real line and hence specifies a probability space
(R,B,PX). The simplest functional representation for a r.v. given by its
distribution function FX is then the identical map X(x) = x on this Borel
probability space. As was already clear from the discussion of the discrete
r.v., functional representation of a r.v. is not unique (it is in some sense
similar to choosing coordinates on a plane). In particular, the next result
(that could possibly seem surprising) states that any r.v. given by an arbi-
trary distribution function can be represented as a measurable function on
the standard probability space, in other words, as a function of a uniform
r.v.

Theorem 2.3.1 Let F (x) be an arbitrary non-decreasing right continuous
function on R such that limx→∞ FX(x) = 1, limx→−∞ FX(x) = 0. Then
there exists a nondecreasing right continuous function X(ω) on [0, 1] such
that F = FX with FX given by (2.19). Explicitly, X can be chosen as the
generalized inverse of F introduced below.

Proof (simple case). Suppose that F (x) is a continuous and strictly
increasing function, the latter meaning that x < y always implies F (x) <
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F (y). In this case the inverse function F−1 is clearly well defined and is
a continuous strictly increasing function on [0, 1] (recall that x = F−1(y)
denotes the solution to the equation F (x) = y). We claim that one can take
X(ω) = F−1(ω). In fact, for this X,

FX(x) = P({ω ∈ [0, 1] : X(ω) ≤ x}) = P({ω ∈ [0, 1] : ω ≤ F (x)}) = F (x),

as required, the latter equation is due to the fact that P is the uniform
measure and the length of the interval [0, F (x)] equals F (x).

Proof (general case)∗. In general situation one clearly has to look for
an appropriate extension of the notion of the inverse function. Namely, for
any non-decreasing function F (x) on R let us define its generalized inverse
function F−1 as follows.

F−1(y) = sup{u : F (u) ≤ y}. (2.20)

It is easy to see that when F (x) is continuous and strictly increasing then
x = F−1(y) yields the unique solution to the equation F (x) = y. In order
to proceed in the general case, we shall need the following properties of this
generalized inverse:

(I1) for any nondecreasing function F on R one has

F−1(y) = inf{u : F (u) > y}; (2.21)

(I2) if additionally F is right continuous, then

{F−1(y) < x} ⊂ {y < F (x)} ⊂ {F−1(y) ≤ x} ⊂ {y ≤ F (x)} (2.22)

(right continuity is needed only for the last inclusion);
(I3) if additionally F is continuous, then F−1 is the right inverse of F

in the sense that for all y

(F ◦ F−1)(y) = F (F−1(y)) = y (2.23)

whenever y is inside the range of F (which partially justify the notation
F−1).

Remark 6 ∗ These properties are easily obtained. Namely, to get (I1) as-
sume that the r.h.s. of (2.21) and (2.20) do not coincide. Then there exists
a number a such that

sup{u : F (u) ≤ y} < a < inf{u : F (u) > y}.
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But then the left inequality implies F (a) > y and the right inequality implies
F (a) ≤ y leading to a contradiction and hence proving (2.21). Turning to
(I2) observe that the first two inclusions in (2.22) follow directly from (2.21).
To prove the last one it remains to see that if F−1(y) = x, then F (u) > y for
all u > x again by (2.21), and consequently F (x) ≥ y by the right continuity
of F . Finally the property (I3) follows directly from the coincidence of the
r.h.s. of (2.21) and (2.20). Let us notice also for completeness that (as one
easily sees) the function (2.21) is always right continuous (even if F is not).

Let us show now that X(ω) = F−1(ω) satisfies the requirement of the
theorem under its general assumptions. Since ω is uniformly distributed on
[0, 1],

P(ω < F (x)) = P(ω ≤ F (x)) = F (x).

Hence from the last two inclusions in (2.22) with ω = y it follows that
P(F−1(ω) ≤ x} = F (x), as required.

The above theorem yields a universal tool for simulating arbitrary r.v.,
as it reduces the problem to the simulation of uniform variables. A generator
of uniformly distributed numbers on [0, 1] is attached to all basic program
packages, and taking the (generalized) inverse function F−1 specifies a r.v.
with the distribution function F . It is useful even for discrete r.v., where
F (x) is clearly not strictly increasing (hence the practical necessity to use a
more complicated expression (2.20). For instance, assume we are interested
in simulating the discrete r.v. X that takes (n+ 1) integer values 0, 1, ..., n
with equal probabilities. Thus the distribution function is

FX(x) =



0, x < 0

1

n+ 1
, 0 ≤ x < 1

2

n+ 1
, 1 ≤ x < 2

...
n

n+ 1
, n− 1 ≤ x < n

1, x ≥ n

(2.24)
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Using (2.20) one finds the generalized inverse

F−1
X (y) =



0, 0 ≤ y <
1

n+ 1

1,
1

n+ 1
≤ y <

2

n+ 1

...

n,
n

n+ 1
≤ y < 1

n+ 1, y = 1

(2.25)

that can be expressed as a single formula

F−1(y) = [(n+ 1)y],

using the integer part function [u] that equals the maximum integer not
exceeding u. Consequently, if θ is uniformly distributed on [0, 1], the r.v.
X(θ) = [(n+ 1)θ] is a discrete r.v. taking values 0, 1, ..., n with equal prob-
abilities.

The representation of a r.v. X as a function X(ω) on the standard prob-
ability space allows to define its expectation in a unified way (independently
on whether X is discrete, or continuous or from neither of these classes) as

E(X) =

∫ 1

0
X(ω) dω. (2.26)

Moreover, for any piece-wise continuous function ϕ, one can now nat-
urally define the r.v. ϕ(X) as the composition ϕ(X(ω)). Using definition
(2.26) to the r.v. ϕ(X) yields the formula for its expectation:

E(ϕ(X)) =

∫ 1

0
ϕ(X(ω)) dω. (2.27)

The next result shows that in case of continuous r.v. our new general
definition of the expectation coincides with the previously given one.

Theorem 2.3.2 Let a r.v. X, given as a function X(ω) on the standard
probability space, has a probability density function fX . And let ϕ be a piece-
wise continuous function. Then

E(ϕ(X)) =

∫ 1

0
ϕ(X(ω)) dω =

∫ ∞

−∞
ϕ(x)fX(x) dx. (2.28)
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Proof ∗. It is based on the ideas of linearity and approximation. Namely,
as any continuous (or piece-wise continuous) function can be uniformly ap-
proximated on any interval by piece-wise constant functions, it is enough to
show (2.28) for piece-wise constant ϕ. But any such ϕ is a linear combination
of the indicator functions of the form 1A with an interval A. Hence, by the
linearity of the integral, it is sufficient to show (2.28) for these indicators.
But in case ϕ = 1A the equation (2.28) reduces to the equation

P(X ∈ A) =

∫
A
fX(x) dx,

which follows from the definition of the probability density function fX .
In practice one often meets with the problem of finding a distribution of

a certain function of a random parameter, whose distribution is known. In
elementary examples this function may be linear, as say, in the problem of
calculating the distribution of your income in dollars, when you know it in
pounds, or the problem of recalculating the distribution of your income after
tax. The next result solves this problem for a general monotone function.

Theorem 2.3.3 Let X be a continuously distributed r.v. with a distribu-
tion function FX being given by (2.3) with a certain f . And let G be a
nondecreasing function. Then the distribution function of the r.v. G(X) is
the composition of FX and G−1, i.e. it equals FX ◦ G−1, where G−1 is the
generalized inverse of G.

Proof (simple case). If G is continuous and strictly increasing, then

P(G(X) ≤ y) = 1−P(G(X) > y) = 1−P(X > G−1(y))

= P(X ≤ G−1(y)) = FX(G−1(y)),

as required.
Proof (general case)∗. For general G the generalized inverse G−1 should

be used. By (2.22)

{G−1(y) < X} ⊂ {y < G(X)} ⊂ {G−1(y) ≤ X}

for any number y. Since X is continuous, the probabilities of the left and
the right sets in this inclusion coincide. Consequently all three sets have the
same probability. Therefore, the same calculations as above do the job.

Of importance are the following corollaries.
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Theorem 2.3.4 Under the assumptions of the previous theorem assume
additionally that G is itself a distribution function (i.e. it is right continuous
and takes values 0 and 1 at −∞ and ∞ respectively). Then (i) the r.v.
FX(X) is uniformly distributed on [0, 1] and (ii) the r.v. G−1(FX(X)) =
(G−1 ◦ FX)(X) has the distribution function G.

Proof. By Theorem 2.3.3 the r.v. FX(X) has the distribution function
FX ◦ F−1

X . But since X is continuous its distribution function FX is contin-
uous, and hence FX ◦ F−1

X (x) = x for all x ∈ [0, 1] by (2.23), implying (i).
Statement (ii) then follows from (i) and Theorem 2.3.1.

Remark 7 It is worth noting that the assumption that X is continuous is
essential for the validity of Theorem 2.3.4, because, say, if X takes only finite
number of values, then so does the composition FX(X), which therefore can
not be uniformly distributed.

Finally, let us discuss random vectors and sums. Representing two r.v. as
functions on the same standard probability space allows naturally to define
their sums (X + Y )(ω) = X(ω) + Y (ω) (if X and Y are defined only via
their distributions, the sense of these combinations is rather obscure) and
to observe the basic property of the linearity of the expectation. Namely, if
they both are defined on the standard probability space, it follows directly
from (2.26), that for any real numbers a, b one has

E(aX + bY ) = aE(X) + bE(Y ).

However, as in the discrete case, the possibility to define two r.v. on a single
probability space is linked with their coupling, i.e. with specifying certain
joint probabilities

PX,Y (A×B) = P(X ∈ A, Y ∈ B)

for intervals A, B. Once such a distribution is defined, it specifies a structure
of a geometric probability space (R2,B,PX,Y ) on the plane, where both
r.v. X and Y can be nicely defined as the coordinate functions X(x, y) =
x, Y (x, y) = y implying the linearity of the expectation.

Remark 8 ∗ Suppose X and Y are specified as functions on a standard
probability space (say, by Theorem 2.3.1). Then one can define the r.v. X,
Y simultaneously on the product probability space [0, 1] × [0, 1], being the
square on a plane (with the probabilities of the Borel subsets being given by
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their geometric areas), as X(ω1, ω2) = X(ω1) and Y (ω1, ω2) = Y (ω2). This
definition specifies the independent coupling. Moreover, it makes it clear
that the expectation

E(XY ) =

∫ 1

0

∫ 1

0
X(ω1)Y (ω2) dω1 dω2

decomposes into the product E(X)E(Y ) by the Fubbini’s theorem.

For conclusion, let us summarize the main issues of this section. Random
variables can be defined either by their distribution function FX or as (usual)
functions on a probability space. As such a space one can always choose the
standard probability space [0, 1] with the probability being defined as the
length. The connection between the tho representations is given by equation
(2.19). In case of continuous r.v. X, its distribution function has form (2.3),
and the expectation of any function ϕ of X is given by the two equivalent
expressions in (2.28). Furthermore, using generalized inverse functions, one
can express any r.v. as a function of the standard uniform one (giving
a universal tool for the simulation of r.v.) and define explicit functional
transformations between any given continuous random variables.



Chapter 3

Volatility - spread - risk

3.1 Variance and correlation

Trying to describe a r.v. X by some simple characteristics, one is naturally
led to look for its location statistics and its spread, i.e. one looks for a point
d, where the spread of the deviation E[(X−d)2] is minimal and then assesses
this spread.

As by the linearity of the mean

E[(X − d)2] = E(X2)− 2dE(X) + d2,

one easily finds that the minimum is attained when d = E(X) (check it!),
yielding a characterization of the expectation as the location statistics. The
minimum itself

V ar(X) = E[(X −E(X))2] = E(X2)− [E(X)]2 (3.1)

(check that the two expressions coincide!) is called the variance of X and
constitutes the second basic characteristics of a r.v. describing its spread
statistics. In application, the variance often represents a natural measure
of risk, as it specifies the average deviation from the expected level of gain,
loss, win, etc. A variance is measured in square units, and the equivalent
spread statistics measured in the same units as X is the standard deviation
of X:

σ = σX =
√

V ar(X).

For instance, if 1A is the indicator function on a probability space, then
E(1A) = P(A) and 1A = (1A)

2 so that

V ar(1A) = E(1A)− [E(1A)]
2 = P(A)[1−P(A)].

35
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In particular, for a Bernoulli r.v. X taking values 1 and 0 with probabilities
p and 1− p (in other words X is Binomial (1, p)) it implies

V ar(X) = p(1− p). (3.2)

The simplest measure of the dependence of two r.v. X,Y (forming a
random vector, i.e with the joint probabilities specified) is supplied by their
covariance:

Cov(X,Y ) = E[(X −E(X))(Y −E(Y ))]

or equivalently by their correlation coefficient

ρ = ρ(X,Y ) =
Cov(X,Y )

σXσY
.

Exercise 3.1.1 Convince yourself that Cov(X,X) = V ar(X) and that

Cov(X,Y ) = E(XY )−E(X)E(Y ). (3.3)

If Cov(X,Y ) = 0, one says that the r.v. X and Y are uncorrelated. As it
follows from (2.12), if X and Y are independent, then they are uncorrelated.
The converse statement does not hold true.

However, it is possible to show (we will not go into detail here) that it
does hold for Gaussian r.v., i.e. two (joint) Gaussian r.v. are uncorrelated
if and only if they are independent. This implies, in particular, that the
dependence structure of, say, two standard Gaussian r.v. can be practically
described by a singe parameter, their correlation. This property makes
Gaussian r.v. particularly handy when assessing dependence, as is revealed,
say, by the method of Gaussian copulas, see Section 3.6.

The linearity of the expectation implies that for a collection of r.v.
X1, ..., Xk one has

V ar(

k∑
i=1

Xi) =

k∑
i=1

V ar(Xi) +
∑
i ̸=j

Cov(Xi, Xj).

In particular, if r.v. X1, ..., Xk are pairwise uncorrelated, for example if they
are independent, the variance of their sum equals the sum of their variances:

V ar(X1 + ...+Xk) = V ar(X1) + ...+ V ar(Xk). (3.4)

This linearity is very useful in practical calculations. For example, if X
is Binomial (n, p) r.v., then

X =
n∑

i=1

Xi,
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where Xi are independent Bernoulli trials, or independent Binomial (1, p)
r.v., so that by (3.2) and by linearity one gets

V ar(X) = np(1− p). (3.5)

By (2.28), for a continuous r.v. X with the probability density function
f , the variance can be calculated as

V ar(X) =

∫
[x−E(X)]2fX(x) dx. (3.6)

As an example, let us calculate the variance for a normal r.v. To begin
with, let X be N(0, 1). Then by (3.6) and (2.5) (taking into account that
the expectation of X vanishes and using integration by parts)

V ar(X) =
1√
2π

∫ ∞

−∞
x2 exp

{
−1

2
x2
}

dx

= − 1√
2π

x exp

{
−1

2
x2
}∣∣∣∣∞

−∞
+

1√
2π

∫ ∞

−∞
exp

{
−1

2
x2
}

dx = 1,

as the second term is the integral of a probability density function. It now
follows from (2.8) that the variance of a N(µ, σ2) normal r.v. equals σ2.
Thus two parameters in the notation N(µ, σ2) for a normal r.v. stand for
its mean and variance.

3.2 Waiting time paradox

As an illustration of an application of variance, let us discuss the so called
waiting time paradox. One could be very annoyed by regularly waiting an
hour for a bus at a bus stop, where buses are scheduled to run at 20-minutes
intervals. However, only if the buses run precisely at 20 minutes intervals,
your average waiting time (when you arrive at the stop at a random moment)
will be 10 minutes. Of course this effect is relevant not only for buses, but
for a variety of situations, when waiting times and queues are to be handled
(i.e. supermarket cash points, internet sites, mobile phone networks, etc).
The full development belongs to a highly applied domain of probability,
called the queueing theory. Here we shall only sketch a (not quite rigorous)
argument leading to the calculation of the average waiting times.

To simplify the matter, let us assume that possible intervals between
busses take only finite number of values, say T1, ..., Tk, with certain prob-
abilities p1, ..., pk. The average interval (usually posted on a timetable) is
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therefore

E(T ) =
k∑

j=1

pjTj .

We are interested in the average waiting time. Suppose first that all possible
intervals follow each other periodically in a strictly prescribed order, say
T1, T2, ..., Tk, T1, T2, ... What will be your average waiting time, if you arrive
at the stop at a random time t uniformly distributed on the interval [0, T1+
... + Tk]. If T1 + ... + Tj−1 < t ≤ T1 + ... + Tj (i.e.your arrive at the j th
period between busses), then you will wait the time W = T1 + ... + Tj − t.
Taking expectation with respect to the uniform distribution of t yields

ET1,...,Tk
(W ) =

1

T1 + ...+ Tk

(∫ T1

0
(T1 − t) dt

+

∫ T1+T2

T1

(T1 + T2 − t) dt+ ...+

∫ T1+...+Tk

T1+...+Tk−1

(T1 + ...+ Tk − t) dt

)

=
1

T1 + ...+ Tk

(∫ T1

0
t dt+

∫ T2

0
t dt+ ...+

∫ Tk

0
t dt

)
=

T 2
1 + ...+ T 2

k

2(T1 + ...+ Tk)
.

Similarly, if during a period of time there were m1 intervals of the length
T1, m2 intervals of the length T2,..., mk intervals of the length Tk (in any
order), and you arrive uniformly randomly on this period, then your average
waiting time will be

ET1,...,Tk;m1,...,mk
(W ) =

m1T
2
1 + ...+mkT

2
k

2(m1T1 + ...+mkTk)
=

q1T
2
1 + ...+ qkT

2
k

2(q1T1 + ...+ qkTk)
,

where qj = kj/(k1+ ...+km) denote the frequencies of the appearance of the
intervals Tj . But frequencies are equal approximately to probabilities (and
approach them as the number of trials go to infinity), so that approximately,
if the intervals Tj occur with probabilities pj , the above formula turns to

E(W ) =
q1T

2
1 + ...+ qkT

2
k

2(q1T1 + ...+ qkTk)
=

E(T 2)

2E(T )
, (3.7)

which can be equivalently rewritten as

E(W ) =
1

2

[
E(T ) +

V ar(T )

E(T )

]
. (3.8)
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Hence, as we have expected, for a given average interval time E(T ), the
average waiting time can be be arbitrary large depending on the variance of
the interval lengths.

Similar arguments can be used in assessing traffic flows. To wit, suppose
n cars are driven along the race track, formed as a circumference of radius
1 km, with the speeds v1,...,vn kilometers per hour, and a speed camera
is placed at some point that registers the speeds of passing cars and then
calculates the average (arithmetic mean) speed from all the observed ones.
Would the average be (v1 + ... + vn)/n? Of course not! In fact, during a
time T , the cars will cover v1T, ..., vnT circumferences respectively, so that
the camera will register (v1 + ...+ vn)T cars with the average speed being

v21 + ...+ v2n
v1 + ...+ vn

.

If the speed of a car is a r.v. with a given distribution, then this would turn
to the expression E(V 2)/E(V ), which is similar to (3.7).

3.3 Hedging via futures

Futures and forwards represent contracts to buy or sell a commodity or an
asset by a fixed price on a prescribed date in future.

Futures markets can be used to hedge the risk, i.e. to neutralize it as
far as possible. The plan of this section is the following: 1) we shall show
how this kind of hedging works on a simple numerical example; 2) deduce
the main formula for the optimal hedge ratio; 3) introduce the main idea
(arbitrage) underlying the pricing of the futures.

Assume that on the 1st of April an oil producer negotiated a contract to
sell 1 million barrels of crude oil on the 1st of August by the market price
that will form on this latter date. The point is that this market price is
unknown on the 1st of April. Suppose that on the 1st of April the crude
oil futures price (on a certain Exchange) for August delivery is $19 per
barrel and each futures contract is for the delivery of 1000 barrels. The
oil producer can hedge its risk by shorting 1000 futures contracts, i.e. by
agreeing to sell 1000× 1000 = 106 barrels on the 1st of August by the price
$19 per barrel. Let us see what can then happen. Suppose the price for
crude oil will go down and on the 1st of August become, say, $18 per barrel.
Then the company will realize 18 millions from its initial contract. On the
other hand, the right to sell something by $19 per barrel when the actual
price is $18 per barrel means effectively the gain of $1 per barrel, i.e. the
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company will realize from its futures contract the sum of 1 million. The
total gain then will equal 18 + 1 = 19 millions. Suppose now the opposite
scenario takes place, namely, the price for crude oil will go up and on the
1st of August become, say, $21 per barrel. Then the company will realize
21 millions from its initial contract. On the other hand, the obligation to
sell something by $19 per barrel when the actual price is $21 per barrel
means effectively the loss of $2 per barrel, i.e. the company will loose from
its futures contract the sum of 2 million. The total gain then will equal
21 − 2 = 19 millions. In both cases the total gain of the company is the
one obtained by selling its oil according to the futures price for the August
delivery. Thus the risk is totally eliminated.

Such a perfect hedging was possible, because the commodity underlying
a futures contract has been the same as the commodity whose price is being
hedged. However, this is not always possible, so that one can only hedge
the risk using futures on a related commodity or an asset (say to hedge a
contract on a certain product of crude oil by the futures on the oil itself).
To assess (and to minimize) risk the correlations between these commodity
prices should be then taken into account. Suppose NA units of assets are
to be sold at time t2 and a company is hedging its risk at time t1 < t2 by
shorting futures contract on NF units of a similar (but not identical asset).
The hedge ratio is defined as

h = NF /NA.

Let S1 and F1 be the (known at time t1) asset and futures prices at the
initial time t1 (let us stress that F1 is the price, at which one can agree
at time t1 to deliver a unit of the related asset on the time t2), and let S2

and F2 be the (unknown at time t1) asset and futures prices at the time t2
(F2 is the price, at which one can agree at time t2 to deliver a unit of the
underlying asset at this time t2, so it is basically equal to the asset price at
time t2). The gain of the company at time t2 becomes

Y = S2NA − (F2 −F1)NF = [S2 − h(F2 −F1)]NA = [S1 + (∆S − h∆F )]NA,

where
∆S = S2 − S1, ∆F = F2 − F1.

We aim at minimizing the risk, i.e. the spread of this r.v. around its average.
In other words we are aiming at minimizing the variance V ar(Y ). As S1

and NA are given, it is equivalent to minimizing

V ar(∆S − h∆F ).
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Let σS , σF and ρ denote respectively the variance of ∆S, the variance of ∆F
and the correlation between these r.v. Then

V ar(∆S − h∆F ) = (σ2
S + h2σ2

F − 2hρσSσF ).

Minimizing this quadratic expression with respect to h one obtains (check!)
that the minimum is attained on the value

h⋆ = ρ
σS
σF

, (3.9)

which is the basic formula for the it optimal hedge ratio.
In practice, the coefficients σS , σF and ρ are calculated from the historical

behavior of the prices using the standard statistical estimators (see Section
4.2).

Finally, for completeness, let us give a rough idea on how futures con-
tracts are priced. Let S0 denote the price of this asset at time t0 and let r
denotes the risk free rates, with which one can borrow and/or lend money
(in practice rates r can be variable, but we only consider a simple situation
with fixed rates). The futures price F to deliver this asset after a time T
(called time to maturity) from the initial time t0 should be equal to

F = S0e
rT . (3.10)

Otherwise, arbitrage opportunities arise that would drive the price back to
this level. In fact, suppose F > S0e

rT (opposite situation is considered
similarly). Then one can buy the asset by the price S0 and short a future
contract on it (i.e. enter into the agreement to sell an asset at time t0 + T ).
Realizing this contract at time t0 + T would yield the sum F , which, when
discounted to the present time equals Fe−rT . Since this is greater than S0,
one gets a free income.

3.4 Black-Sholes option pricing

We shall sketch here the celebrated Nobel price winning Black-Sholes op-
tion pricing theory taking for granted the so called risk-neutral evaluation
principle.

Thinking about stock prices as a result of a large number of influences of
various sizes and sources, one naturally comes to the analogy with a small
particle put in a liquid and moving under a constant bombardment of the
immense number of the molecules of the liquid. The erratic behavior of
such a particle was observed and protocolled by R. Brown and is called the
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Brownian motion. The analogy of share prices with the Brownian motion
was exploited by Bachelier at the dawn of the 20th century. Referring to
the Central Limit Theorem that states that the sum of independent r.v.
can be approximated by normal laws under rather general assumptions (see
Section 5.2), Bachelier assumed the prices ST of a stock at time T to be
normally distributed. However, the assumption of normality (distribution on
all numbers, positive and negative)) clearly contradicts the crucial positivity
property of prices. Later on, the Bachelier model was improved by assuming
that the rates of changes are normal, i.e. the logarithm of prices lnST is
normal, in other words ST themselves are log-normal. This was the starting
point for the Black-Sholes theory.

Suppose now that a r.v. Xt can be considered as the sum of independent
inputs acting at shorter times, i.e. one can write

X1 = X1
t + ...+Xn

t , t = 1/n,

for any integer n with i.i.d r.v. Xi
t , distributed like Xt. By the linearity of

the expectation and variance for independent r.v. it follows that

EX1 = nE(Xt) =
1

t
E(Xt), V ar(X1) = nV ar(Xt) =

1

t
V ar(Xt),

so that
EXt = tE(X1), V ar(Xt) = t V ar(X1),

leading to the conclusion that the expectation and variance of suchXt should
depend linearly on time. Applying this to lnST allows to make our model
for stock prices more precise by assuming that lnST is normal N(µt, σ2t)
and thus leaving only two parameters µ, σ to be specified (say, by observed
data, see Section 4.2). The quadratic variation σ in this model is usually
referred to as the volatility of the stock.

A standard European call option gives to the holder the right (but unlike
a futures contract, not the obligation) to by a stock by certain time T in
the future, called the expiration date or maturity, for a fixed price K, called
the strike price or the exercise price. If by the time T the stock price would
not rise above K, there would be no reason for an option holder to exercise
this right turning his/her gain to zero. On the other hand, if by the time T
the stock price would rise above K, an option holder would exercise his/her
right yielding the payoff of ST − K. Hence the price of an option at the
expiry date is max(ST −K, 0). We are interested in a fair price of an option
at the initial time 0.
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Suppose that r is the risk free interest rate in our model, i.e. one can
borrow money at this rate (borrowing now the amount V , you have to return
ertV after time t, or equivalently, the discounted present cost of the amount
V payed at the time t is e−rtV ). The Black-Sholes risk-neutral evaluation
principle states that the fair price of an option does not depend on the
parameter µ in the normal N(µt, σ2t) model for lnST , so that it can be
calculated as the discounted expectation of the price at time T assuming
the risk neutral distribution for ST , i.e. that it is log-normal with E(ST ) =
erTS0. The deduction of this principle is rather deep and is beyond the
scope of the present exposition. Taking this principle for granted yields for
the fare price of an option the value

c = e−rT Ê[max(ST −K, 0)],

where Ê means the expectation with respect to the risk-neutral distribution.
Applying Proposition 2.2.1 yields

c = e−rT [S0e
rTΦ(d1)−KΦ(d2)] = S0Φ(d1)−Ke−rTΦ(d2), (3.11)

where

d1 =
ln Ê(ST )/K) + σ2T/2

σ
√
T

=
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln Ê(ST )/K)− σ2T/2

σ
√
T

=
ln(S0/K) + (r − σ2/2)T

σ
√
T

.

This is the celebrated Black-Sholes formula.

3.5 Markowitz portfolio optimization

We shall sketch here another Nobel prize wining idea. Let a market contain
n securities with prices S1

0 , ..., S
n
0 at the initial moment of time. Their prices

Si
T at the future time T are considered as r.v. The returns of the securities

in time T are defined as the ratios Ri = Ri(T ) = Si
T /S

i
0. Assume their

means and covariances are known (or have been estimated):

E(Ri) = µi, Cov(Ri, Rj) = σij .

An investor with initial wealth x > 0 is supposed to choose ϕi securities of
type i, i = 1, ..., n, complying with the budget constraint

n∑
i=1

ϕiS
i
0 = x.
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In terms of the portfolio vector π = (π1, ..., πn) defined by πi = ϕiS
i
0/x, the

budget constraint rewrites as the normalizing condition
∑n

i=1 πi = 1. Once
the choice of ϕi (or equivalently πi) is made, the final wealth of the investor
in time T will constitute

X(T ) =
n∑

i=1

ϕiS
i
T ,

and the total portfolio return will be equal to

R =
X(T )

x
=

n∑
i=1

ϕiS
i
0

x
Ri =

n∑
i=1

πiRi.

The mean and variance of the portfolio return are then given by

E(R) =

n∑
i=1

πiµi, V ar(R) =

n∑
i=1

n∑
j=1

πiσijπj .

Choosing a portfolio an investor aims at maximizing its return. However,
possible risk should also be taken into account. The basic Markowitz idea
was to look for a balance between the portfolio mean return and the risk
measured by the portfolio variance. This leads to the two closely connected
problems: finding a portfolio with a minimal variance for a given level of
portfolio return or finding a portfolio with the maximum return for a given
level of portfolio variance. These are the problems of quadratic program-
ming. A variety of methods can be used for their effective numeric solutions.

3.6 Credit risk; Gaussian copulas

Default time τ for a company are usually assessed (or stored) by the cumu-
lative probabilities of survival

V (t) = P(τ > t)

(no default till time t). It is often assumed that the change rate of V is
proportional to V , i.e.

dV (t)

dt
= −λ(t)V (t), (3.12)

with a positive function λ, called default intensities or hazard rates. Ap-
proximately, for small s

λ(t) ∼ V (t)− V (t+ s)

V (t)
= P(τ ∈ [t, t+ s]|τ > t),
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so that the intensity specifies the conditional default probabilities. From
(3.12) one deduces that

V (t) = exp{−
∫ t

0
λ(s) ds},

so that the distribution function of the r.v. τ equals

Fτ (t) = P(τ ≤ t) = 1− exp{−
∫ t

0
λ(s) ds}. (3.13)

Thus the distribution of τ is a time non-homogeneous extension of the ex-
ponential distribution.

If a firm goes bankrupt, its creditors file claims against its assets to
recover some of its dept. The recovery rate R for a bond is defined as the
bond’s market price immediately after default as a percent of its face value.
It is reasonable to assume (at least for rough estimates) that the possibility
of a default is the only reason for higher return rates of the bonds issued by
a firm as compared to the corresponding risk free bonds (say, issued by the
government). Consequently, if s denotes the additional interest on a firm’s
bond as compared with an equivalent risk free bond, and if p denotes the
default probability per year so that p(1−R) is the average rate of loss due
to default, one should have

s = p(1−R),

yielding an important estimate for the default probability

p = s/(1−R) (3.14)

via the prices of bonds the company has issued.
As we observed already in Chapter 1 for assessing possible defaults and

hence pricing the corresponding credit derivatives (like CDS) the structure
of the dependence between various firms defaults becomes crucial. This re-
quires specifying joint default probabilities, which practically are difficult
to assess. Only for Gaussian r.v. the dependence structure can be incor-
porate in a few key parameters (say, for two standard Gaussian r.v., only
one parameter, their correlation coefficient, specifies the joint distribution
uniquely). As the default times are principally different from Gaussian r.v.
(in particular, because they are positive), the idea is to transform them into
Gaussian and then to specify the dependence structure on these Gaussian
images. To do this, Theorem 2.3.4 is applied with G = Φ being the distribu-
tion function (2.7) of a standard normal r.v. implying that if τ is a random
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time to default for a firm and the distribution function of τ is Fτ (say, given
by equation (3.13)), then

X = Φ−1(Fτ (τ))

is N(0, 1) Gaussian r.v. For n firms with default times τi and their dis-
tribution functions Fi, the Gaussian copula assumption states that the r.v.
Xi = Φ−1(Fi(τi)) are mutually Gaussian with the correlation coefficients
between Xi and Xj being given numbers ρij .

Avoiding here a discussion of multivariate distributions (Gaussian vec-
tors), let us introduce only the simplest model of the Gaussian copula ap-
proach, namely the so called one factor model, where one assumes that

Xi = aiM +
√

1− a2iZi, (3.15)

whereM,Z1, ..., Zn are independent normal N(0, 1) r.v. and ai are constants
from [−1, 1]. Here M stands for the common factor affecting all firms and
Zi stand for their individual characteristics.

Exercise 3.6.1 Check that each Xi is also N(0, 1) and Cov(Xi, Xj) =
ρXi,Xj = aiaj for i ̸= j.

Consequently the event (τi ≤ T ) (i th firm defaults before time T ) can
be described as

Xi = aiM +
√

1− a2iZi ≤ Φ−1(Fi(T ))

or equivalently as

Zi ≤
Φ−1(Fi(T ))− aiM√

1− a2i

.

Hence, as Zi is N(0, 1) r.v., for the probability Di(T |M) of the ith firm
default conditional on the value of the factor M one has

Di(T |M) = Φ

Φ−1(Fi(T ))− aiM√
1− a2i

 .

In particular, if all Fi = F are the same (firms are chosen from a certain
common class) and all correlations are the same, say ai =

√
ρ, then all

Di(T |M) coincide and equal

D(T |M) = Φ

(
Φ−1(F (T ))−√

ρM
√
1− ρ

)
. (3.16)
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Practically, for a large portfolio of similar assets, this probability estimates
the frequency of defaults, i.e. the ratio of the number of assets belonging to
firms that defaulted to time T to the total number of assets of the portfolio.
For risk assessment one is often interested in the worst scenario. Choosing
a confidence level C (say, 0.999, or 99.9%), one is interested in a bound for
losses that can occur C almost certainly, i.e. with probability C (99.9% say).
Since M is N(0, 1) normal, M ≥ m with probability 1−Φ(m) = Φ(−m), so
that M ≥ −Φ−1(C) with probability C implying that with this probability
the frequency of defaults over T years will be less than

V (C, T ) = Φ

(
Φ−1(F (T )) +

√
ρΦ−1(C)

√
1− ρ

)
. (3.17)

This is so called Vasicek formula.
Let us denote by P (k, T |M) the probability of k defaults by time T con-

ditioned on M . When M is fixed the default probabilities are independent.
Hence, the binomial distribution can be applied to yield

P (k, T |M) =
n!

(n− k)!k!
[D(T |M)]k[1−D(T |M)]n−k (3.18)

with D(T |M) given by (3.16). To get unconditional probabilities it remains
to integrate over the normally distributed factor M . These formulas become
the standard market tool for valuing default ratios and hence pricing the
corresponding n th-to-default CDS (credit default swaps).



Chapter 4

The law of large numbers

4.1 Markov’s inequality and the law of large num-
bers

The law of large numbers (in its various forms) constitutes one of the oldest
result in probability theory. We shall prove only its weak version, which
is a consequence of the classical Markov and Chebyshev inequalities. As
applications, we shall discuss the basic statistic estimator for a volatility
and the optimal betting system.

The importance of the following elementary inequalities is difficult to
overestimate.

Theorem 4.1.1 Markov’s Inequality: If X is a non-negative random
variable, then for any ϵ > 0

P(X ≥ ϵ) ≤ EX

ϵ
.

Chebyshev’s Inequality: For any ϵ > 0 and a random variable Y

P(|Y −EY | ≥ ϵ) ≤ V ar(Y )

ϵ2
.

Proof. Evident inequalities

EX ≥ E(X1X≥ϵ) ≥ ϵE1X≥ϵ = ϵP(X ≥ ϵ)

imply Markov’s one. Applying Markov’s Inequality to X = |Y −EY |2 yields
Chebyshev’s one.

48
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Theorem 4.1.2 (Weak law of large numbers) If X1, X2, ... is a collec-
tion of i.i.d. random variables with E(Xj) = m and V ar(Xj) < ∞, then
the means (X1+ ...+Xn)/n approaches m as n → ∞ in the following sense:
for any ϵ > 0

P

(
|X1 + ...+Xn

n
−m| > ϵ

)
→ 0, (4.1)

as n → ∞.

Proof. By (3.4)

V ar

(
X1 + ...+Xn

n
−m

)
= V ar

(X1 −m) + ...+ (Xn −m)

n
=

V arX1

n
,

which of course tends to zero as n → ∞. By Chebyshev’s inequality

P

(
|X1 + ...+Xn

n
−m| > ϵ

)
≤ V ar(X1)

nϵ2
,

implying (4.1).
As the simplest example, we can deduce that if Yn denotes the number

of successes in a series of n independent Bernoulli trials with the probability
of success in each trial being p, the frequency of successes Yn/n converges
to p in the sense that for any ϵ > 0

P

(
|Yn
n

− p| > ϵ

)
→ 0,

as n → ∞. This fact is sometimes called the Golden Theorem.
The convergence in Theorem 4.1.2 can be essentially improved yielding

the celebrated Kolmogorov’s strong law of large numbers that states that
the average sum (X1 + ...+Xn)/n converges to m as n → ∞ for almost all
realizations of the sequences Xn. ’For almost all’ means with probability one,
i.e the sets of converging sequences has the full probability one (see Remark
below).

Remark 9 ∗ In order to talk about convergence of a sequence of r.v., say
(X1 + ...+Xn)/n, with probability one, one has to define all Xn on a single
probability space. Suppose for simplicity that Xn are independent Bernoulli
trials, i.e. Xn take values 1 and 0 with probabilities p and 1−p respectively.
As a common probability space for the sequence Xn, n = 1, 2, ..., one can
take the set Ω of all sequences of zero’s and one’s. Probability law on Ω
is uniquely specified by the requirement that the sets Ω0

k of sequences with
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zero on the k th place have probability 1/2 for all k. The important point is
that the set of all sequences Ω is not countable (this is in fact a natural ex-
ample of the appearance of an uncountable state when working with discrete
probabilities). To see this one has to note that each sequence of zero’s and
one’s specifies a number on the interval [0, 1] by its binary expansion. This
correspondence even becomes one-to-one if one excludes the countable subset
of sequences (with vanishing probability) that have all one’s starting from a
certain index. Thus the set of all sequences is (essentially) in a one-to-one
correspondence with the points of [0, 1]. Moreover, under this correspon-
dence the probability law on sequences introduced above corresponds to the
standard probability measures on [0, 1] (just because the sets Ω0

k corresponds
to the union of 2k−1 intervals of the length 2−k. Thus the sequence Xn be-
comes naturally defined on the standard probability space, yielding precise
meaning to the ’convergence with probability one’ mentioned above.

It is worth stressing the importance of the assumption of independence in
both weak and strong laws of large numbers. In fact, suppose, say that allXj

are identical (note the crucial difference between ’identical’ and ’identically
distributed’ !), i.e. Xk = X1 for all k. Then the average Yn/n equals X1 and
of course does not converge to any constant (as long as X1 is not a constant
itself).

4.2 Volatility and correlation estimators

A standard problem in applications of probability consists in estimating the
mean, variance and correlations of random variables on the basis of their
observed realizations during a period of time. Such estimates are routinely
performed, say, by traders, for assessing the volatility of the stock market
or a particular common stock. In its simplest mathematical formulation the
problem is to estimate the mean and variance of a r.v. X, when a realization
of a sequence X1, ..., Xn of independent r.v. distributed like X was observed.
It is of course natural to estimate the expectation µ of X by its empirical
mean

µ̂n =
1

n

n∑
i=1

Xi.

This estimate is unbiased in the sense that E(µ̂n) = µ and asymptotically
effective in the sense that µ̂n converges to µ by the law of large numbers. As
the variance σ2 is the expectation of (X−µ)2, the above reasoning suggests



CHAPTER 4. THE LAW OF LARGE NUMBERS 51

also the estimate for the variance in the form

σ̂2
1 =

1

n

n∑
i=1

(Xi − µ)2,

which is again unbiased and asymptotically effective. The problem with
this estimate lies in utilizing the unknown µ. To remedy this shortcoming,
it is natural to plug in the above given estimate instead of µ leading to the
estimate

σ̂2
2 =

1

n

n∑
i=1

(Xi − µ̂n)
2 =

1

n

n∑
i=1

X2
i − µ̂2

n.

But here a surprise is awaiting. This estimate is no longer unbiased. In fact,
as (by the i.i.d. property of Xi)

E(µ̂2
n) =

1

n
(E(X2) + (n− 1)[E(X)]2) =

1

n
σ2 + µ2,

one has

E(σ̂2
2) = σ2 + µ2 − (

1

n
σ2 + µ2) =

n− 1

n
σ2.

So, to have unbiased estimate one has to take instead σ̂2
2 the estimate

σ̂2
3 =

1

n− 1

n∑
i=1

(Xi − µ̂n)
2.

Of course, for large n the difference between σ̂2
2 and σ̂2

3 disappears, and both
these estimates are asymptotically effective.

Similarly, suppose we observe two sequences of i.i.d. r.v. X1, X2, ...,
Y1, Y2, ... distributed like X and Y respectively (let us stress that actually
we observe the realizations of i.i.d. random vectors (X1, Y1), (X2, Y2), ...).
An unbiased and asymptotically effective estimate for the covariance can be
constructed as

Ĉov(X,Y ) =
1

n− 1

n∑
i=1

(Xi − µ̂n)(Yi − ν̂n),

where ν̂n = (Y1 + ...+ Yn)/n.
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4.3 Optimal betting (Kelly’s system)

A nice illustration of the law of large numbers presents the analysis of opti-
mal betting.

Suppose you have an edge in betting on a series of similar trials, i.e. the
average gain in each bet is positive (say, as you might expect by trading on
Forex using some advanced strategy). Then you naturally expect to win in
a long run. However, if you are going to put all your bankroll on each bet,
you would definitely loose instead. An obvious idea is therefore to bet on a
fraction of you current capital. What is the optimal fraction?

To answer this question assume that you are betting on a series of
Bernoulli trials with the probability of success p, when you get m times
the amount you bet. And otherwise, with probability 1− p, you loose your
bet. Consequently, if you invest one dollar, the expectation of you gain is mp
dollars. Thus, assuming that you have an edge, is equivalent to assuming
mp > 1, as we shall do now.

Let V0 be your initial capital, and your strategy is to invest in each bet
a fixed fraction α, 0 < α < 1, of your current bankroll. Let Xk denote the
r.v. that equals m, if the k th bet is winning, and equals zero otherwise,
so that all Xk are independent and identically distributed. Hence after the
first bet your capital becomes V1 = (1−α+αX1)V0, after the second bet it
will be

V2 = (1− α+ αX2)(1− α+ αX1)V0,

and for any n your capital at time n will become

Vn = (1− α+ αXn)...(1− α+ αX1)V0.

We are aiming at maximizing the ratio Vn/V0, or equivalently its logarithm

ln
Vn

V0
= ln(1− α+ αXn) + ...+ ln(1− α+ αX1).

Here the law of large numbers comes into play. Namely, according to this
law, the average of the winning rates per bet

Gn =
1

n
ln

Vn

V0
=

1

n
[ln(1− α+ αXn) + ...+ ln(1− α+ αX1)]

converges to the expectation

ϕ(α) = E ln(1− α+ αX1)

= p ln(1− α+ αm) + (1− p) ln(1− α).
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Therefore, to maximize the gain in a long run, one has to look for α that
maximizes the function ϕ(α). But this is an easy exercise in calculus yielding
(check it!) that the maximum is attained at

α⋆ =
pm− 1

m− 1
. (4.2)

This is the final formula we aimed at, known as Kelly’s betting system
formula. This is not however the full story, as we did not take into account
the risk (we only used averages). A careful analysis (that we are not going
into) allows to conclude that choosing the betting fraction α slightly smaller
than α⋆ one can essentially reduce the risk with only a slight decrease of the
expected gain.

4.4 Playing on a stock market

We shall touch here only one aspect of financial trading, namely the money
management, which by many active and successful traders is considered by
the most crucial one.

As a first (possibly rather artificial) example, suppose you are trading on
a stock that each week goes up 80% or down 60% with equal probabilities
1/2. You clearly have an edge in this game, as the expectation of your gain
is

1

2
80%− 1

2
60% = 10%.

On the other hand, suppose you invest (and reinvest) your capital for many
weeks, say n times. Each time your capital is multiplied either by 1.8 (suc-
cess) or by 0.4 (failure) with equal probabilities. During a large period of
time, you can expect the number of successes and failures to be approxi-
mately equal. Thus your initial capital V0 would turn to

1.8n/20.4n/2V0 = (0.72)n/2V0,

which quickly tends to zero as n → ∞. So, do you really have an edge in
this game?

The explanation to this paradoxical situation should be seen from the
previous section. The point is that you should not invest all your capital at
once (money management!).

To properly sort out the situation it is convenient to work in a more
general setting. Namely, assume that the distribution of the rate return is
given by a positive random variable R (i.e. in a one time investing your
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capital is multiplied by R) with a given distribution. Following the line of
reasoning of the previous section, we can conclude that if you always invest
the fraction α of your capital, then the average rate of return per investment
would converge to

g(α) = E ln(1− α+ αR).

We are interested in the maximum of this expression over all α ∈ [0, 1].

Theorem 4.4.1 Assume E(R) > 1 (i.e. you have an edge in the game).
Then (i) if E(1/R) ≤ 1 (your edge is overwhelming), then α = 1 is optimal
and your maximum average return per investment equals g(1) = E ln(R);

(ii) if E(1/R) > 1, then there exists a unique α̂ ∈ (0, 1) maximizing
g(α), which is found from the equation

g′(α̂) = E
R− 1

1 + (R− 1)α̂
= 0. (4.3)

Proof. Since the second derivative

g′′(α) = −E

(
R− 1

1 + (R− 1)α̂

)2

is negative, the function g is concave (i.e. its derivative is decreasing), and
there can be at most one solution of equation (4.3) that necessarily would
specify a maximum value of g. The assumption E(R) > 1 is equivalent to
saying that g′(0) > 0. In case (i) one has g′(1) ≥ 0, so that the solution α̂
can lie only to the right of α = 1 and hence the maximum of g(α) is attained
at α = 1. In case (ii), g′(1) < 0 implying the existence of the unique solution
to (4.3) in (0, 1).

Exercise 4.4.1 Show that if R takes only two values m1 and m2 with equal
probabilities (in the example at the beginning m1 = 1.8, m2 = 0.4), the
condition E(1/R) > 1 rewrites as m1 + m2 > 2m1m2, and if it holds, the
optimal α̂ equals

α̂ =
1

2(1−m1)
+

1

2(1−m2)
.

Exercise 4.4.2 Specify the results of Theorem 4.4.1 in case when R is a
log-normal r.v. (which is often assumed in stock pricing models).



Chapter 5

Basic Limiting distributions

5.1 Generating functions and Poisson’s limit; an
epidemics model

For a r.v. X its generating function (called also the probability generating
function) GX(s) is defined for non-negative s as

GX(s) = E(sX).

Generating functions represent a useful tool for working with r.v. taking
values in Z+ - the set of non-negative integers. In this case the above formula
makes sense for all s ∈ [−1, 1] and by the definition of expectation rewrites
as

GX(s) =
∞∑
n=0

pns
n, (5.1)

where pn stand for the probabilities pn = P(X = n). From this expansion
it follows that

pn =
1

n!
G

(n)
X (0),

so that the probabilities pn are uniquely specified by GX . More generally,
differentiating the defining formula for GX yields

G
(k)
X (s) = E[X(X−1)...(X−(k−1))sX−k] =

∞∑
n=k

n(n−1)...(n−k+1)sn−kpn,

implying

G
(k)
X (1) = E[X(X − 1)...(X − (k − 1))].

55
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This formula allows to express the moments E(Xk) of X in terms of the
derivatives of the generating function. In particular, as

G′
X(1) = E(X), G′′

X(1) = E(X2)−E(X),

one obtains

E(X) = G′
X(1), V ar(X) = G′′

X(1) +E(X)− [E(X)]2. (5.2)

The following result explains, why generating functions are especially
useful for studying the sums of i.i.d. r.v.

Theorem 5.1.1 Let X1, X2, ... be a sequence of independent Z+-valued r.v.
with the generating functions GXi(s). Then the generating function of the
sum Yn = X1 + ...+Xn equals the product

GYn = GX1(s)...GXn(s).

Proof.
GYn = EsX1+...+Xn = E[sX1 ...sXn ],

which by the independence of Xi rewrites as

E(sX1)...E(sXn) =

n∏
i=1

GXi(s),

as required.
Examples. 1. If X is Bernoulli with the success probability p, then

GX(s) = (1− p) + sp.

2. If X is p-Geometric, then

GX(s) =

∞∑
n=0

p(1− p)nsn =
p

1− s(1− p)
.

3. If X is c-Poisson, then

GX(s) =

∞∑
n=0

cnsn

n!
e−c = ec(s−1).

4. If X is Binomial (n, p), then X is the sum of n independent Bernoulli
r.v. so that by Theorem 5.1.1

GX(s) = [(1− p) + sp]n.
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Exercise 5.1.1 Calculate the expectation and variance for the r.v. from the
above examples using formula (5.2).

The method of generating function is a natural tool for justifying the
statement of Theorem 1.0.1. Namely let us show that the generating function
of a Binomial (n, p) r.v. X converges to the generating function of a c-
Poisson r.v. as n → ∞ whenever p tends to zero in such a way that np → c.
In fact, since ln(1 + x) = x(1 + α(x)) with a function α(x) tending to zero
as x → 0 (Taylor’s formula), one has

GX(s) = [(1− p) + sp]n = en ln[1+p(s−1)] = en(s−1)p(1+α(p))

with α(p) → 0 as p → 0, and this tends to ec(s−1), which is the generating
function of the Poisson r.v. with parameter c. Of course, this does not
constitute a complete proof, as one still have to deduce from the point-wise
convergence of the generating functions the convergence of all its derivatives
at zero that specify the corresponding probability laws (which follows in fact
from a general result of the complex analysis), but at least makes the result
of Theorem 1.0.1 plausible.

We have observed in many examples the appearance of the sums of i.i.d.
r.v. Hence the importance of Theorem 5.1.1 above. In many situations one
encounters as well the sums of i.i.d. r.v. with a random number of terms.
The next result shows how this case can be handled.

Theorem 5.1.2 Let X1, X2, ... be a sequence of i.i.d. Z+-valued r.v. each
having the generating function GX . And let N be another Z+-valued r.v.,
independent of all Xi, and having the generating function GN . Then the
generating function GY of the sum of a random number of term Y = X1 +
...+XN equals the composition of GN and GX , i.e. GY (s) = GN (GX(s)).

Proof. By the probability decomposition law

GY = EsX1+...+XN =

∞∑
n=0

E[sX1+...+XN1N=n] =

∞∑
n=0

E[sX1+...+Xn1N=n].

Hence by the independence of Xi and N

GY (s) =

∞∑
n=0

E(sX1)...E(sXn)E(1N=n) =

∞∑
n=0

[GX(s)]nP(N = n),

which equals GN (GX(s)), as required.
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Example. An epidemics model. Suppose a carrier can expose N con-
tacts to infection and p denotes the probability that a contact actually leads
to infection. One can speak, say, about AIDS expansion for people, or foot-
and-mouth disease for the cattle. One can naturally model N as a Poisson
r.v. with a certain parameter λ. Hence the number of infected individuals
will be given by

N∑
i=1

Xi,

where Xi is the Bernoulli r.v. with probability of success p. The generat-
ing function of the r.v. Y (and hence its distribution) can be found from
Theorem 5.1.2.

5.2 Asymptotic normality (central limit theorem).

We shall explain here shortly why the normal r.v. are called ’normal’, i.e.
why they are so universal.

For continuous r.v. X, more handy than generating functions become
other equivalent characteristics, namely themoment generating functionMX

and the Laplace transform LX defined as

MX(t) = EeXt, LX(t) = Ee−Xt. (5.3)

Clearly
MX(t) = LX(−t) = GX(et).

From the definition it follows straightforwardly that the moments E(Xk)
are found from the derivatives of MX as

M
(k)
X (0) = E(Xk),

and expanding the exponential function in the Taylor series yields

MX(t) =

∞∑
k=0

tk

k!
E(Xk) (5.4)

(hence the name ’moment generating function’).
If Z is normal N(µ, σ2), then by (2.15)

E(eZ) = exp{µ+ σ2/2}.

But then tZ is normal N(tµ, t2σ2) implying that

MZ(t) = E(eZt) = exp{tµ+ t2σ2/2}. (5.5)
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Exercise 5.2.1 Calculate the moment generating function of a θ-exponential
r.v. and then deduce its expectation and variance. Answer: moments gen-
erating function is (1− θt)−1.

Similarly to Theorem 5.1.1 one shows that for a sequence X1, X2, ... of
independent r.v. with the moment generating functionsMXi(s), the moment
generating function of the sum Yn = X1 + ...+Xn equals the product

MYn = MX1(s)...MXn(s). (5.6)

For example, of interest in application is the r.v. X representing the sum
of, say n, independent θ-exponential r.v. (total waiting time for n sequential
independent events). The distribution of such X is called (θ, n)- Gamma
distribution. By Exercise 5.2.1 and equation (5.6) its moment generating
function equals (1− θt)−n.

In the same way as we deduced above the Poisson limit theorem from
the the limiting behavior of the generating function of the binomial law,
one can deduce the so called central limit theorem (representing one of the
major strongholds of the probability theory) that states that the sum of i.i.d.
r.v. becomes asymptotically normal as the number of terms increases. If
they are properly normalized, then the limiting distribution is the standard
normal one. Namely, assume X1, X2, ... are i.i.d. r.v. with µ = E(Xi),
σ2 = V ar(Xi). Let

Yn =
X1 + ...+Xn − nµ

σ
√
n

=
X1 − µ

σ
√
n

+ ...+
Xn − µ

σ
√
n

. (5.7)

By linearity E(Yn) = 0 and V ar(Yn) = 1. The central limit theorem states
that Yn converges to the standard normal r.v. in the sense that

lim
n→∞

P(a ≤ Yn ≤ b) =
1√
2π

∫ b

a
exp{−x2

2
} dx (5.8)

for any a < b. To see why this result is plausible let us show that the moment
generating function MYn of Yn converges to the moment generating function
(5.5) (to transform this argument into a rigorous proof one would have of
course to show that from this convergence one can deduce the convergence
(5.8), which is beyond our scope). From (5.7) and using that the expectation
of a product of i.i.d. r.v. equals the product of their expectations it follows
that

MYn(t) =
[
M(X1−µ)/σ

√
n(t)

]n
.
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By (5.4)

M(X1−µ)/σ
√
n(t) = 1 +

t2

2n
+

α(n)

n

with a certain function α that tends to zero as n → ∞. Hence

MYn(t) =

[
1 +

t2 + α(n)

2n

]n
→ exp(t2/2),

as required.
Since Yn is asymptotically N(0, 1) normal, the sum Zn = X1 + ...+Xn

is asymptotically N(nµ, nσ2) normal and the mean Zn/n is asymptotically
N(µ, σ2/n) normal. Consequently, approximately, as n → ∞, one gets the
following equation allowing to calculate the distributions of arbitrary sums
of i.i.d. r.v.:

P(Zn ≤ x) = Φ

(
x− nµ

σ
√
n

)
, (5.9)

where Φ is the distribution function of a standard normal r.v.
Example. Biased betting. Suppose you are betting on independent

Bernoulli trials with success probability slightly less than 1/2, say p = 0.497.
Let Yn be the total number of winning in n experiments (similar model
would work in many situations, say when estimating the number of males
or females born in a population in a given period). As p is close to 1/2
one can expect that Pn = P(Yn ≥ n/2) should be slightly less than 1/2.
Can you guess an approximation, say for n = 500000? By the asymptotic
normality, Yn is approximately N(np, np(1− p)) = N(248500, 3542). Hence
approximately

Pn = 1−P(Y500000 ≤ 250000) = 1−Φ(
250000− 248500

354
) = 1−Φ(4.24) = 0.00001.

’Slightly’ less than 1/2 indeed!

5.3 Fat (or heavy) tails.

The results of the previous section can lead to a misleading impression that
essentially all distributions met in real life are normal. In fact, the practical
applications of normal laws often go far beyond the situations, where this
application can be justified by the above given central limit theorem. This
leads to superficial conclusions, based on what one can call the prejudice of
normality.
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Experiments with concrete statistical data give clear evidence that many
real life distributions (including in particular stock prices) have quite differ-
ent qualitative features than Gaussian. In particular, they are often heavy-
tailed, i.e. unlike the light tails of Gaussian laws, where P(X > x) decreases
exponentially as t → ∞, the r.v. X with heavy (or fat) tails has a property
that P(X > x) decreases as a power x−ω as x → ∞ for some ω > 0. We are
going to use the method of generating functions in order to show how heavy
tailed distributions can appear as the limits of the sums of i.i.d. r.v. when
their second moment is not finite. We shall reduce our attention to positive
r.v. X (modeling, say, waiting times) such that

P(X > x) ∼ c

xα
, x → ∞, (5.10)

in other words limx→∞P(X > x)xα = c with some c > 0, α ∈ (0, 1). As
one easily sees, even the expectation E(X) is not defined (it equals infinity)
in this cases, so that already the law of large numbers can not be applied.
For positive r.v. it is usually more convenient to work with the Laplace
transform defined by the second equation in (5.3), rather than with the
moment generating function.

Proposition 5.3.1 Let X1, X2, ... be a sequence of positive i.i.d. r.v. with
the probability density function p(x), x ∈ (0,∞), such that

P(X1 > x) =

∫ ∞

x
p(y) dy ∼ c

xα
, x → ∞, (5.11)

with some c > 0, α ∈ (0, 1). Then the Laplace transforms LYk
(t) of the nor-

malized sums Yk = (X1+...+Xk)/k
1/α converge, as k → ∞, to exp{−cβαt

α}
with a certain constant βα > 0.

Proof. First one notes that, for a bounded differentiable function g : [0,∞) →
[0,∞) such that g′(0) = 0 and

∫∞
1 g(y)y−(1+α) dy < ∞, it follows from (5.11)

that

lim
k→∞

k

∫ ∞

0
g
( x

k1/α

)
p(x) dx = αc

∫ ∞

0
g(y)y−(1+α) dy.

In fact, by linearity and approximation, it is enough to show this for the
indicators 1[a,∞) with any a > 0. But in this case

k

∫ ∞

0
1[a,∞)

( x

k1/α

)
p(x) dx = k

∫ ∞

ak1/α
p(x) dx → c

aα
= αc

∫ ∞

a
y−(1+α) dy,
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as required. Now one can follow the same arguments as for the central limit
theorem above. Namely,

LYk
(t) =

[
LX1

(
t

k1/α

)]k
=

[∫ ∞

0
exp{− xt

k1/α
}p(x) dx

]k

=

[
1 +

∫ ∞

0
(exp{− xt

k1/α
} − 1)p(x) dx

]k
=

[
1 + αc

∫ ∞

0
(e−tx − 1)

dx

x1+α

1 + ω(k)

k

]k
,

where ω(k) → 0, as k → ∞. Consequently, since by the change of variables∫ ∞

0
(e−tx − 1)

dx

x1+α
= tα

∫ ∞

0
(e−x − 1)

dx

x1+α
,

one concludes that
LYk

(t) → exp{−cβαt
α}

as required with βα = α
∫∞
0 (1− e−x)x−(1+α) dx.

Remark 10 ∗ By the integration by parts

βα = α

∫ ∞

0
(1− e−x)

dx

x1+α
=

∫ ∞

0
x−αe−x dx,

so that βα = Γ(1− α), where Γ denotes the Euler Gamma function.

Positive r.v. (and their distributions), whose Laplace transform equals
exp{−c′tα} with some constants c′ > 0 and α ∈ (0, 1) are called α-stable
with the index of stability α. One can show that such random variable X
satisfies condition (5.10). In particular, it has fat tails. The term ’stable’
stems from the observation that the sum of independent copies of such a
random variable belongs to the same class, because the Laplace transform
of this sum equals exp{−c′ntα}, where n denotes the number of terms.

The above Proposition shows that not only Gaussian r.v. can describe
the limits of the sums of i.i.d. r.v. Namely, one says that a r.v. X belongs to
the domain of attraction of an α-stable law, if (5.10) holds. By Proposition
5.3.1, the distributions of the normalized sums of i.i.d. copies of such r.v.
converge to the α-stable law. Unfortunately, the probability density func-
tions of stable laws with α ∈ (0, 1) can not be expressed in a closed form (in
elementary function), which makes their analysis more involved than, say,
of Gaussian or exponential distributions.
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