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Chemotaxis

Figure: Motion of amoeba in reaction to chemo-attractant.

e Collective movement of a population (bacteria) in response to a
chemical stimulus (food).

@ Important role in many biological processes.
@ Successfully modeled by the Keller-Segel model (K-S).
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Keller-Segel model

e Coupled non linear system on population density - p(t, x) and
chemo-attractant concentration - c(7, x):

dep(t,x) =V - (Vp—xpVc), t>0, xeR,
adec(t.x)=NAc—=Ac+p, t>0, xR, (1)
:0(07X) = po(X), C(07X) = CO(X)7
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Keller-Segel model

e Coupled non linear system on population density - p(t, x) and
chemo-attractant concentration - c(7, x):

dep(t,x) =V - (Vp—xpVc), t>0, xeR,
adec(t.x)=NAc—=Ac+p, t>0, xR, (1)
10(07X) = po(X), C(07X) = CO(X)7

@ o« = 0 - parabolic-elliptic, & = 1 - parabolic-parabolic model.
@ x > 0 - chemo-attractant sensitivity.

e Mass conservation: [, p(t,x)dx = [, po(x)dx := M.
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K-S model - well-posedness

@ The subject of a huge amount of PDE literature over the last 30
years.

> We refer to Perthame (2004) for a survey paper.

@ Solutions may blow-up in finite time:
fora T < oo: lime 7 sup(]|pelloc + llct]loc) = +00

@ Global existence or the blow-up in finite time: space dimension
dependent phenomenon.
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Parabolic-parabolic case - well-posedness

@ All authors consider: positive solutions of weak type.

@ Case d = 1: global existence on bounded intervals / for both types
of K-S model (Osaki-Yagi (2001) and Hillen-Potapov(2004)).

o Case d = 2: the "threshold” phenomenon:
» M. x < 8r - global existence.

» Exists a solution with a blow up for M- x > 8.

> Global existence even with M - x > 87 under additional conditions on
(po, co) and size of .

( Mizogouchi(2013) , Corrias et al.(2014) and the references therein)
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Parabolic-parabolic case - well-posedness d > 2

@ Blowing-up solutions exist for any positive mass.
@ Global existence condition involves small | pgl|;q/2 -

@ Not clear if the blow-up in finite time follows from large || po|| 4/

( Corrias-Perthame(2006) and the references therein.)
e 721
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Probabilistic side - literature

e Parabolic-elliptic (¢ = 0) model in d = 2:
Haskovec-Schmeiser (2011) and Fournier-Jourdain (2016).
e Fournier-Jourdain (2016) give rise to the NLSDE:
dXe = V2dW; 4 x(K * p)(Xe)dt,
where K(x) = —ﬁ.

For x < 27, associated particle system is well defined, up is tight and
any weak limit is the law of X;.
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Our objectives

@ Propose a new probabilistic interpretation for the fully parabolic

model.
@ Any space dimension.

@ Theoretical and numerical viewpoint

] 10 /27



Informal explanation of our interpretation |

dep(t,x) =V -(Vp—xpVc), t>0, xR,
Orc(t.x)=NAc—Ac+p, t>0, xR
p(0, x) = po(x), c(0, x) = cp(x),

@ We will aim for the integral solutions that verify

pe=ge* po+ X Jy V8t—s * (psVCs)ds
e =e Mg, xc+ fot e M p,_g % gods.

g - density of v2W,.
o Compute V¢;:

t
Ve =e Mgy x Ve + / e Mt=8) p % Vg ods.
0

@ Plug V¢s in the equation for p;.
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Our interpretation

@ p; is the density of stochastic process:
dXe = V2dW; + et / Vaico(x 4+ V2y)|x=x.g(t,y)dy dt

t
I e—)\(t—s) \V4 t— 57y;x x=X,dyds dt.
X/O / ps(y)Vxg( V2 lx=x. dy

L 7



Our interpretation

@ p; is the density of stochastic process:
dXt = \/§th + {Xe_)‘t/VxCO(X + \/Ey)|X:th(t,)/)dy}dt
t
—)\(t—s) _ y—X
+ {X/O /e Ps()/)ng(t s, —\/z )|x:xtdyds}dt.

» Singular kernel, convolution in time and space.
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Our interpretation

@ p; is the density of stochastic process:

dX; = V2dW, + {Xe_’\t/vxco(x + \/§y)|xzxtg(t,y)dy}dt

' Mt—s) y—-X
(s __y—x
X/o /e ps(y)Vxg(t —s, 7 )|X:xtdyds}dt.

» Singular kernel, convolution in time and space.

e Concentration:

t
c(t,x) = e ME(co(x + V2W,)) / e M pr_s(x + V2W,)ds
0
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Come back to the K-S model:

@ Construct the family (p¢)i<7.
@ Construct the family (¢;)i<7.
© Prove the pair (p¢, ¢t) solves K-S.

@ Precise the notion of solution to K-S.
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One-dimensional case

@ NLSDE becomes:
dX: = v2dW; + b(t, X;)dt
(r—X¢)?
+XC fy [ e M o fme W ps(y)dydsdt
Xo ~ po, Xs ~ ps(y)dy.

> b linear part.
» well-defined?

14 / 27



One-dimensional case

@ NLSDE becomes:
dX: = v2dW; + b(t, X;)dt
(r—X¢)?
+XC fy [ e M o fme W ps(y)dydsdt
Xo ~ po, Xs ~ ps(y)dy.

> b linear part.
» well-defined?

@ Using (pt)e<T define (ct)i<T.

14 / 27



One-dimensional case

@ NLSDE becomes:
dX: = v2dW; + b(t, X;)dt
(r—X¢)?
+XC fy [ e M o fme W ps(y)dydsdt
Xo ~ po, Xs ~ ps(y)dy.

> b linear part.
» well-defined?

@ Using (pt)e<1 define (ct)e<T.
@ (p+, ct) unique solution to the KS system?
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Notion of solution

Definition 1

Let x >0 and T > 0 be given. The pair (p, c) is said to be a solution to
K-S model if

pr € L'(R), Vtllptllo@) < C, ¢t € Go(R) fort € (0, T),
and ¥t € (0, T]

pe=8(t,) *po+ X [y a8(t —s,7) % (ps (s, ))ds
ct = e Mg(t,))x o+ fot e Mpi_s x g(s,-)ds.

o g - density of v2W,.
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Main results, d=1

Theorem 1 (Talay, T.)

Assume that pg € L}(R) and cg € CE(R). Then, for any T >0 and

X > 0, Equation (2) admits a unique weak solution up to T in the class of
measures on C[0, T| whose one dimensional marginals are densities
(pt)e<T which satisfy for any t € (0, T)

Cr

7 (3)

1ptlloo <

@ Proof of Theorem 1 can be rewritten with the additional
assumption:

> po € L>°(R). Then, Theorem 1 is valid with a change of space for p:
p € L>([0, T]; L* N L>=(R)).

» po € L?(R). Then, Theorem 1 is valid with a change of space for p:
pt € LY(R)) and /4] pe| () < C.
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Main results, d=1

Theorem 2 (Talay, T.)

Let T >0 and x > 0. Assume that pg € L1(R) and ¢y € CL(R). Let
(pt)e<T be the family constructed in Theorem 1. Define (¢t)i<T as:

c(t,x) = e ME(qp(x + V2W;)) + E /t e M pr_s(x + V2W;)ds.
0

Then, the pair (p:, ct)e<T is @ unique solution to the KS system in the
sense of Definition 1.
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Main results, d=1

Theorem 2 (Talay, T.)

Let T >0 and x > 0. Assume that pg € L1(R) and ¢y € CL(R). Let
(pt)e<T be the family constructed in Theorem 1. Define (¢t)i<T as:

c(t,x) = e ME(qp(x + V2W;)) + E /t e M pr_s(x + V2W;)ds.
0

Then, the pair (p:, ct)e<T is @ unique solution to the KS system in the
sense of Definition 1.

PDE results:

e Osaki-Yagi (2001): po € L2(1) N LY(1),co € H*(/) and inf,¢j co > 0.
e Hillen-Potapov (2004): po € L°(1) N LY (1), co € WI(I), (0, p) € A
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Theorem 1: lterative procedure

o We define the sequence X*:
step k=1:

{ dx}t = dWe+ { J5 [ K(t = s, X¢ = y)poly)dyds }dt
)(6L ~ Po.

step k:

{ axt = dWe + { J5 [ K(t = 5, XE = y)pk~3(y)dyds e
Xé( ~ pPo.

e Tightness: bound all the drifts uniformly in k (density estimates) and
t< Tp.

@ Solve a non-linear martingale problem associated to the NLSDE.
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Key argument in Theorem 1 - density estimates result

e We adapt the arguments of Qian-Zheng (2002).
o Let X():

ax? = b(t, X{P)dt + dW,, te [0, T],
X5
0 Po-

Assume 3 := sup;co, 1] [1b(t;)|loo < oo

@ We obtain the density estimate when pg € L*(R) and t > 0:

C
1Pelloc < —= + 8.

G
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Related Particle system

ax(M = v2dwi + N 3 o K(t - s XN = XN ds1iX] # X}t
X, iid. ~ po
(4)

Non-Markovian, singularity in time and space
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Related Particle system

dX¢" = V2dwi+ XN Jo K(t— s, XPV = XEN)ds1{X] # X{}dt
X, iid. ~ po
(4)
Non-Markovian, singularity in time and space
Theorem 3 (Jabir, Talay, T.)

Let T > 0 and x > 0. Then, for a fixed N € N there exists a weak
solution to the system (4).
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Theorem 3 - main arguments

o ldea: Procedure of Krylov-Rockner (2005) for constructing a solution
to an SDE with singular coefficients.

o Let Bi(x) := (BL(x),...,BN(x)),x € RN, where B/(x) is the drift of
the equation for X"N.

o Let QN be the probability measure under which

XN =Xi+wWi, t<T %)
X~ po iid.
We prove that the Novikov condition is satisfied:

Proposition 1

Let T >0, x >0 and N € N. Then,
T
Eq (exp{m / |Bt|2dr}) < C(T\x, N, )
0

L T




Related Particle system
Theorem 4 (Jabir, Talay, T.)

The sequence of empirical measures "V := % Z,N:l Oxin is tight.

@ Use the Kolmogorov criterion:
LN N = n
Epn[[Xe ™ — X571 = Equ[Z7| Wi — W]
Problem: The estimate on the Girsanov term tends to infinity as

N — oo.
Solution: We perform a Girsanov transformation that involves just
one particle.

Theorem 5 (Propagation of chaos result -Jabir, Talay, T. )

The sequence L{uN} converges weakly to 6p, where P is the unique
solution to the martingale problem related to the SDE related to the KS
model.

We adapt Bossy - Talay (1996) and use Girsanov transformations involving

finite number of particles.
] 22 /27
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Current extensions and further objectives

@ d =2 - local existence and uniqueness — > not yet global.
Particle system numerical simulations give hope!
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Current extensions and further objectives

@ d = 2 - local existence and uniqueness — > not yet global.
Particle system numerical simulations give hope!
Density time profiles for the simplified system:
t = 0: uniform distribution,
t=1:
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