A New Probabilistic Interpretation of Keller-Segel Model for Chemotaxis. Application to d=1

Milica Tomasevic

TOSCA- INRIA SAM

LSA Winter meeting, Snegiri, December 2017

Outline

- Chemotaxis and KS model
 - Chemotaxis
 - Keller-Segel model
- Probabilistic interpretation
 - Existing work
 - Our interpretation
 - Application to d=1
- 3 Current extensions and further objectives

Chemotaxis

Figure: Motion of amoeba in reaction to chemo-attractant.

- Collective movement of a population (bacteria) in response to a chemical stimulus (food).
- Important role in many biological processes.
- Successfully modeled by the Keller-Segel model (K-S).

Keller-Segel model

• Coupled non linear system on **population density** - $\rho(t,x)$ and **chemo-attractant concentration** - c(t,x):

$$\begin{cases}
\partial_{t}\rho(t,x) = \nabla \cdot (\nabla \rho - \chi \rho \nabla c), & t > 0, x \in \mathbb{R}^{d}, \\
\alpha \partial_{t}c(t,x) = \Delta c - \lambda c + \rho, & t > 0, x \in \mathbb{R}^{d}. \\
\rho(0,x) = \rho_{0}(x), c(0,x) = c_{0}(x),
\end{cases} (1)$$

Keller-Segel model

• Coupled non linear system on **population density** - $\rho(t,x)$ and **chemo-attractant concentration** - c(t,x):

$$\begin{cases}
\partial_{t}\rho(t,x) = \nabla \cdot (\nabla \rho - \chi \rho \nabla c), & t > 0, x \in \mathbb{R}^{d}, \\
\alpha \partial_{t}c(t,x) = \Delta c - \lambda c + \rho, & t > 0, x \in \mathbb{R}^{d}. \\
\rho(0,x) = \rho_{0}(x), c(0,x) = c_{0}(x),
\end{cases} (1)$$

- $oldsymbol{\circ} lpha = 0$ parabolic-elliptic, lpha = 1 parabolic-parabolic model.
- $\chi > 0$ chemo-attractant sensitivity.
- Mass conservation: $\int_{\Omega} \rho(t,x) dx = \int_{\Omega} \rho_0(x) dx := M$.

K-S model - well-posedness

- The subject of a huge amount of PDE literature over the last 30 years.
 - ▶ We refer to Perthame (2004) for a survey paper.
- Solutions may blow-up in finite time: for a $T < \infty$: $\lim_{t \to T} \sup(\|\rho_t\|_{\infty} + \|c_t\|_{\infty}) = +\infty$
- Global existence or the blow-up in finite time: space dimension dependent phenomenon.

Parabolic-parabolic case - well-posedness

- All authors consider: positive solutions of weak type.
- Case d = 1: global existence on bounded intervals I for both types of K-S model (Osaki-Yagi (2001) and Hillen-Potapov(2004)).
- Case d = 2: the "threshold" phenomenon:
 - $M \cdot \chi < 8\pi$ global existence.
 - Exists a solution with a blow up for $M \cdot \chi > 8\pi$.
 - ▶ Global existence even with $M \cdot \chi > 8\pi$ under additional conditions on (ρ_0, c_0) and size of α .

(Mizogouchi(2013), Corrias et al.(2014) and the references therein)

Parabolic-parabolic case - well-posedness d > 2

- Blowing-up solutions exist for any positive mass.
- Global existence condition involves small $\|\rho_0\|_{L^{d/2}}$.
- Not clear if the blow-up in finite time follows from large $\|\rho_0\|_{L^{d/2}}$.

(Corrias-Perthame(2006) and the references therein.)

Outline

- Chemotaxis and KS model
 - Chemotaxis
 - Keller-Segel model
- Probabilistic interpretation
 - Existing work
 - Our interpretation
 - Application to d=1
- 3 Current extensions and further objectives

Probabilistic side - literature

- Parabolic-elliptic ($\alpha = 0$) model in d = 2:
 Haskovec-Schmeiser (2011) and Fournier-Jourdain (2016).
- Fournier-Jourdain (2016) give rise to the NLSDE:

$$dX_t = \sqrt{2}dW_t + \chi(K \star \rho_t)(X_t)dt,$$

where $K(x) = -\frac{x}{2\pi |x|^2}$.

For $\chi < 2\pi$, associated particle system is well defined, μ_N is tight and any weak limit is the law of X_t .

Our objectives

- Propose a new probabilistic interpretation for the fully parabolic model.
- Any space dimension.
- Theoretical and numerical viewpoint

Informal explanation of our interpretation I

$$\begin{cases} \partial_t \rho(t,x) = \nabla \cdot (\nabla \rho - \chi \rho \nabla c), & t > 0, \ x \in \mathbb{R}^d, \\ \partial_t c(t,x) = \Delta c - \lambda c + \rho, & t > 0, \ x \in \mathbb{R}^d. \\ \rho(0,x) = \rho_0(x), c(0,x) = c_0(x), \end{cases}$$

• We will aim for the integral solutions that verify

$$\begin{cases} \rho_t = g_t * \rho_0 + \chi \int_0^t \nabla g_{t-s} * (\rho_s \nabla c_s) ds \\ c_t = e^{-\lambda t} g_t * c_0 + \int_0^t e^{-\lambda s} \rho_{t-s} * g_s ds. \end{cases}$$

g - density of $\sqrt{2}W_t$.

• Compute ∇c_t :

$$abla c_t = e^{-\lambda t} g_t *
abla c_0 + \int_0^t e^{-\lambda(t-s)}
ho_s *
abla g_{t-s} ds.$$

• Plug ∇c_s in the equation for ρ_t .

Our interpretation

• ρ_t is the **density** of stochastic process:

$$\begin{split} dX_t &= \sqrt{2} dW_t + \chi e^{-\lambda t} \int \nabla_x c_0(x + \sqrt{2}y)|_{x = X_t} g(t, y) dy \ dt \\ &+ \chi \int_0^t \int e^{-\lambda(t-s)} \rho_s(y) \nabla_x g(t-s, \frac{y-x}{\sqrt{2}})|_{x = X_t} dy ds \ dt. \end{split}$$

Our interpretation

• ρ_t is the **density** of stochastic process:

$$\begin{split} dX_t &= \sqrt{2} dW_t + \left\{ \chi e^{-\lambda t} \int \nabla_x c_0(x + \sqrt{2}y)|_{x = X_t} g(t, y) dy \right\} dt \\ &+ \left\{ \chi \int_0^t \int e^{-\lambda(t-s)} \rho_s(y) \nabla_x g(t-s, \frac{y-x}{\sqrt{2}})|_{x = X_t} dy ds \right\} dt. \end{split}$$

► Singular kernel, convolution in **time and space**.

Our interpretation

• ρ_t is the **density** of stochastic process:

$$\begin{split} dX_t &= \sqrt{2} dW_t + \left\{ \chi e^{-\lambda t} \int \nabla_x c_0(x + \sqrt{2}y)|_{x = X_t} g(t, y) dy \right\} dt \\ &+ \left\{ \chi \int_0^t \int e^{-\lambda(t-s)} \rho_s(y) \nabla_x g(t-s, \frac{y-x}{\sqrt{2}})|_{x = X_t} dy ds \right\} dt. \end{split}$$

- Singular kernel, convolution in time and space.
- Concentration:

$$c(t,x) = e^{-\lambda t} \mathbb{E}(c_0(x+\sqrt{2}W_t)) + \mathbb{E}\int_0^t e^{-\lambda s} \rho_{t-s}(x+\sqrt{2}W_s) ds.$$

Come back to the K-S model:

- **1** Construct the family $(\rho_t)_{t < T}$.
- 2 Construct the family $(c_t)_{t \leq T}$.
- **3** Prove the pair (ρ_t, c_t) solves K-S.
 - Precise the **notion of solution** to K-S.

One-dimensional case

NLSDE becomes:

$$\begin{cases} dX_t = \sqrt{2}dW_t + b(t, X_t)dt \\ +\chi C \int_0^t \int e^{-\lambda(t-s)} \frac{y - X_t}{(t-s)^{3/2}} e^{-\frac{(y - X_t)^2}{4(t-s)}} \rho_s(y) dy ds dt \\ X_0 \sim \rho_0, X_s \sim \rho_s(y) dy. \end{cases}$$
(2)

- b linear part.
- well-defined?

One-dimensional case

• NLSDE becomes:

$$\begin{cases} dX_t = \sqrt{2}dW_t + b(t, X_t)dt \\ +\chi C \int_0^t \int e^{-\lambda(t-s)} \frac{y - X_t}{(t-s)^{3/2}} e^{-\frac{(y - X_t)^2}{4(t-s)}} \rho_s(y) dy ds dt \\ X_0 \sim \rho_0, X_s \sim \rho_s(y) dy. \end{cases}$$
(2)

- b linear part.
- well-defined?
- **2** Using $(\rho_t)_{t \leq T}$ define $(c_t)_{t \leq T}$.

One-dimensional case

• NLSDE becomes:

$$\begin{cases} dX_t = \sqrt{2}dW_t + b(t, X_t)dt \\ +\chi C \int_0^t \int e^{-\lambda(t-s)} \frac{y - X_t}{(t-s)^{3/2}} e^{-\frac{(y - X_t)^2}{4(t-s)}} \rho_s(y) dy ds dt \\ X_0 \sim \rho_0, X_s \sim \rho_s(y) dy. \end{cases}$$
(2)

- b linear part.
- ▶ well-defined?
- **2** Using $(\rho_t)_{t \leq T}$ define $(c_t)_{t \leq T}$.
- \bullet (ρ_t, c_t) unique solution to the KS system?

Notion of solution

Definition 1

Let $\chi>0$ and T>0 be given. The pair (ρ,c) is said to be a solution to K-S model if

$$\rho_t \in L^1(\mathbb{R}), \quad \sqrt{t} \|\rho_t\|_{L^{\infty}(\mathbb{R})} \leq C, \quad c_t \in C_b^1(\mathbb{R}) \text{ for } t \in (0, T),$$

and $\forall t \in (0, T]$

$$\begin{cases} \rho_t = g(t,\cdot) * \rho_0 + \chi \int_0^t \frac{\partial}{\partial y} g(t-s,\cdot) * (\rho_s \frac{\partial}{\partial x} c(s,\cdot)) ds \\ c_t = e^{-\lambda t} g(t,\cdot) * c_0 + \int_0^t e^{-\lambda s} \rho_{t-s} * g(s,\cdot) ds. \end{cases}$$

• g - density of $\sqrt{2}W_t$.

Theorem 1 (Talay, T.)

Assume that $\rho_0 \in L^1(\mathbb{R})$ and $c_0 \in C_b^1(\mathbb{R})$. Then, for any T > 0 and $\chi > 0$, Equation (2) admits a unique weak solution up to T in the class of measures on C[0,T] whose one dimensional marginals are densities $(p_t)_{t \leq T}$ which satisfy for any $t \in (0,T)$

$$\|p_t\|_{\infty} \le \frac{C_T}{\sqrt{t}}.\tag{3}$$

- Proof of Theorem 1 can be rewritten with the additional assumption:
 - ▶ $\rho_0 \in L^{\infty}(\mathbb{R})$. Then, Theorem 1 is valid with a change of space for ρ : $\rho \in L^{\infty}([0, T]; L^1 \cap L^{\infty}(\mathbb{R}))$.
 - ▶ $\rho_0 \in L^2(\mathbb{R})$. Then, Theorem 1 is valid with a change of space for ρ : $\rho_t \in L^1(\mathbb{R})$ and $t^{1/4} \|\rho_t\|_{L^\infty(\mathbb{R})} \leq C$.

Theorem 2 (Talay, T.)

Let T > 0 and $\chi > 0$. Assume that $\rho_0 \in L^1(\mathbb{R})$ and $c_0 \in C_b^1(\mathbb{R})$. Let $(\rho_t)_{t \leq T}$ be the family constructed in Theorem 1. Define $(c_t)_{t \leq T}$ as:

$$c(t,x) = e^{-\lambda t} \mathbb{E}(c_0(x+\sqrt{2}W_t)) + \mathbb{E}\int_0^t e^{-\lambda s} \rho_{t-s}(x+\sqrt{2}W_s) ds.$$

Then, the pair $(\rho_t, c_t)_{t \leq T}$ is a unique solution to the KS system in the sense of Definition 1.

Theorem 2 (Talay, T.)

Let T > 0 and $\chi > 0$. Assume that $\rho_0 \in L^1(\mathbb{R})$ and $c_0 \in C_b^1(\mathbb{R})$. Let $(\rho_t)_{t \leq T}$ be the family constructed in Theorem 1. Define $(c_t)_{t \leq T}$ as:

$$c(t,x) = e^{-\lambda t} \mathbb{E}(c_0(x+\sqrt{2}W_t)) + \mathbb{E}\int_0^t e^{-\lambda s} \rho_{t-s}(x+\sqrt{2}W_s) ds.$$

Then, the pair $(\rho_t, c_t)_{t \leq T}$ is a unique solution to the KS system in the sense of Definition 1.

PDE results:

• Osaki-Yagi (2001): $\rho_0 \in L^2(I) \cap L^1(I)$, $c_0 \in H^1(I)$ and $\inf_{x \in I} c_0 > 0$.

Theorem 2 (Talay, T.)

Let T > 0 and $\chi > 0$. Assume that $\rho_0 \in L^1(\mathbb{R})$ and $c_0 \in C_b^1(\mathbb{R})$. Let $(\rho_t)_{t \leq T}$ be the family constructed in Theorem 1. Define $(c_t)_{t \leq T}$ as:

$$c(t,x) = e^{-\lambda t} \mathbb{E}(c_0(x+\sqrt{2}W_t)) + \mathbb{E}\int_0^t e^{-\lambda s} \rho_{t-s}(x+\sqrt{2}W_s) ds.$$

Then, the pair $(\rho_t, c_t)_{t \leq T}$ is a unique solution to the KS system in the sense of Definition 1.

PDE results:

- Osaki-Yagi (2001): $\rho_0 \in L^2(I) \cap L^1(I), c_0 \in H^1(I)$ and $\inf_{x \in I} c_0 > 0$.
- Hillen-Potapov (2004): $\rho_0 \in L^{\infty}(I) \cap L^1(I), c_0 \in W_p^{\sigma}(I), (\sigma, p) \in A$.

Theorem 1: Iterative procedure

 We define the sequence X^k: step k=1:

$$\begin{cases} dX_t^1 = dW_t + \left\{ \int_0^t \int K(t-s, X_t^1 - y) p_0(y) dy ds \right\} dt \\ X_0^1 \sim p_0. \end{cases}$$

step k:

$$\begin{cases} dX_t^k = dW_t + \left\{ \int_0^t \int K(t-s, X_t^k - y) p_s^{k-1}(y) dy ds \right\} dt \\ X_0^k \sim p_0. \end{cases}$$

- Tightness: bound all the drifts uniformly in k (density estimates) and $t < T_0$.
- Solve a non-linear martingale problem associated to the NLSDE.

Key argument in Theorem 1 - density estimates result

- We adapt the arguments of Qian-Zheng (2002).
- Let *X*^(b):

$$\begin{cases} dX_t^{(b)} = b(t, X_t^{(b)})dt + dW_t, & t \in [0, T], \\ X_0^{(b)} \sim p_0. \end{cases}$$

Assume $\beta := \sup_{t \in [0,T]} \|b(t,\cdot)\|_{\infty} < \infty$.

• We obtain the density estimate when $p_0 \in L^1(\mathbb{R})$ and t > 0:

$$\|p_t\|_{\infty} \leq \frac{C}{\sqrt{t}} + \beta.$$

Related Particle system

$$\begin{cases} dX_{t}^{i,N} = \sqrt{2}dW_{t}^{i} + \frac{\chi}{N} \sum_{j=1}^{N} \int_{0}^{t} K(t-s, X_{t}^{i,N} - X_{s}^{j,N}) ds \mathbb{1}\{X_{t}^{i} \neq X_{t}^{j}\} dt \\ X_{0}^{i} \quad i.i.d. \sim p_{0} \end{cases}$$
(4)

Non-Markovian, singularity in time and space

Related Particle system

$$\begin{cases}
dX_t^{i,N} = \sqrt{2}dW_t^i + \frac{\chi}{N} \sum_{j=1}^N \int_0^t K(t-s, X_t^{i,N} - X_s^{j,N}) ds \mathbb{I}\{X_t^i \neq X_t^j\} dt \\
X_0^i \quad i.i.d. \sim p_0
\end{cases}$$
(4)

Non-Markovian, singularity in time and space

Theorem 3 (Jabir, Talay, T.)

Let T > 0 and $\chi > 0$. Then, for a fixed $N \in \mathbb{N}$ there exists a weak solution to the system (4).

Theorem 3 - main arguments

- Idea: Procedure of Krylov-Röckner (2005) for constructing a solution to an SDE with singular coefficients.
- Let $B_t(x) := (B_t^1(x), \dots, B^N(x)), x \in \mathbb{R}^N$, where $B^i(x)$ is the drift of the equation for $X^{i,N}$.
- Let \mathbb{Q}^N be the probability measure under which

$$\begin{cases}
\bar{X}_t^{i,N} = \bar{X}_0^i + W_t^i, & t \leq T \\
\bar{X}_0^i \sim p_0 \text{ i.i.d.}
\end{cases} (5)$$

We prove that the Novikov condition is satisfied:

Proposition 1

Let T > 0, $\kappa > 0$ and $N \in \mathbb{N}$. Then,

$$\mathbb{E}_{\mathbb{Q}}\left(\exp\{\kappa\int_{0}^{T}|B_{t}|^{2}dt\}\right)\leq C(T,\chi,N,\kappa)$$

Related Particle system

Theorem 4 (Jabir, Talay, T.)

The sequence of empirical measures $\mu^N := \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{i,N}}$ is tight.

Use the Kolmogorov criterion:

$$\mathbb{E}_{\mathbb{P}^N}[|X_t^{1,N} - X_s^{\bar{1},N}|^4] = \mathbb{E}_{\mathbb{Q}^N}[Z_T|\bar{W}_t^1 - \bar{W}_s^1|^4]$$

Problem: The estimate on the Girsanov term tends to infinity as $N \to \infty$.

Solution: We perform a Girsanov transformation that involves just one particle.

Theorem 5 (Propagation of chaos result -Jabir, Talay, T.)

The sequence $\mathcal{L}\{\mu^N\}$ converges weakly to $\delta_{\mathbb{P}}$, where \mathbb{P} is the unique solution to the martingale problem related to the SDE related to the KS model.

We adapt Bossy - Talay (1996) and use Girsanov transformations involving finite number of particles.

Outline

- Chemotaxis and KS mode
 - Chemotaxis
 - Keller-Segel model
- Probabilistic interpretation
 - Existing work
 - Our interpretation
 - Application to d=1
- 3 Current extensions and further objectives

Current extensions and further objectives

• d = 2 - local existence and uniqueness - > not yet global. Particle system numerical simulations give hope!

Current extensions and further objectives

d = 2 - local existence and uniqueness -> not yet global.
 Particle system numerical simulations give hope!
 Density time profiles for the simplified system:

t = 0: uniform distribution,

t = 1:

$$\chi = 1$$

$$\chi = 0.2$$

• d > 3.

References PDEs I:

B. Perthame.

PDE models for chemotactic movements, parabolic, hyperbolic and kinetic.

Appl. Math. 49:539-564, 2004.

K. Osaki and A. Yagi.

Finite dimensional attractor for one-dimensional Keller-Segel equations.

Funkcial. Ekvac., 44(3):441-469, 2001.

T. Hillen and A. Potapov.

The one dimensional chemotaxis model: global existence and asymptotic profile.

Math. Meth. Appl. Sci. 27: 1783-1801, 2004.

References PDEs II:

N. Mizoguchi.

Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane.

Calc. Var. Partial Differential Equations. 48(3): 491–505, 2013.

L. Corrias, M. Escobedo and J. Matos.

Existence, uniqueness and asymptotic behaviour of the solutions to the fully parabolic Keller-Segel system in the plane.

J. Differential equations. 257: 1840-1878, 2014.

L. Corrias and B. Perthame.

Critical space for the parabolic-parabolic Keller-Segel model in \mathbb{R}^d .

C. R. Math. Acad. Sci. Paris. 342(10):745–750, 2006.

References probability:

N. Fournier and B. Jourdain.

Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes.

Accepted, Annals of Applied Probability

J. Haskovec and C. Schmeiser.

Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system.

Comm. Partial Differential Equations. 36(6):940–960, 2011.

Z. Qian and W. Zheng.

Sharp bounds for transition probability densities of a class of diffusions.

Comptes Rendus Mathematique. 335(11):953-957, 2002.