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Part I: Estimation of the Missing Mass
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Bird Example

Consider the bird population in a particular location ...
I Species: a1, a2, · · ·

I Unknown species proportions: P = {p1, p2, · · · }
I A sample of n = 2000 is taken.
I Counts: x1 = 300, x2 = 200, · · ·
I p̂1 = 0.15, p̂2 = 0.10, · · · estimating p1, p2, · · ·
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Bird Example Questions

I Q1: What is the probability that the next observation will be
of species a1?

I A1: We can estimate it by p̂1 = .15.
I Q2: What is the probability that the next observation will be

of a species that we have not observed before?
I A2: An answer is given by Turing’s formula.

T0,n =
# of species occurring exactly once in the sample

n
.
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Intuition

Turing’s formula estimation the probability of seeing a new
species by

T0,n =
# of species occurring exactly once in the sample

n
.

If all observations are of different species then

T0,n =
n

n
= 1.

If all observations are from a few very abundant species then

T0,n =
0

n
= 0.
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Notation

Let
I A = {a1, a2, . . . } = an at most countable alphabet.
I P = {pa : a ∈ A} the associated probability distribution,

where pa ∈ [0, 1] and
∑

a∈A pa = 1.
I S = {a ∈ A : pa > 0} = the support of P .

Let X1, . . . , Xn be independent and identically distributed
A-valued random variables, with distribution P .

I Ln(a)=
∑n

i=1 1{Xi = a} – the sample counts of a ∈ A;
I p̂a= Ln(a)/n – the sample proportion of a ∈ A.
I Kr,n =

∑
a∈A 1[Ln(a)=r], r = 0, 1, . . . , n.
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Missing Mass

The missing mass is the total probability associated with the
letters not covered in the sample, it is given by

M0,n =
∑
a∈A

pa1{Ln(a) = 0}.

Note that this is not a parameter or a statistic. It depends on
both unknown parameters and the sample.
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Turing’s Formula

A “good” estimator of the missing mass

M0,n =
∑
a∈A

pa1{Ln(a) = 0}

is provided by Turing’s formula

T0,n =
# of letters occurring exactly once in the sample

n
=
K1,n

n
.

This formula was first introduced in Good (1953), where the
results were largely credited to Alan Turing.
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Bias of Turing’s Formula

E [T0,n −M0,n] =
∑
a∈A

p2
a (1− pa)

n−1 > 0.

Thus, for large n,
E [T0,n −M0,n] ≈ 0.
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Consistency of Turing’s Formula

We always have
T0,n −M0,n

p→ 0.

However,
M0,n

p→ 0, T0,n
p→ 0, as n→∞
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Consistency in Relative Error

Ohannessian and Dahleh (2012) suggested that it is more
meaningful to consider consistency in relative error:

T0,n −M0,n

M0,n

p→ 0.

This does not hold for all distributions.

Ben-Hamou et al. (2017) gave sufficient conditions when this
holds.
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Asymptotic normality

We consider the related problem of asymptotic normality. This
allows not just for estimation, but for statistical inference.

Asymptotic normality for Turing’s formula was considered in
Esty (1983), Zhang and Huang (2008), Zhang and Zhang
(2009), and Grabchak and Zhang (2017).
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Main Theorem

Let gn be a deterministic sequence of positive numbers with

lim sup
n→∞

gn
n1−β <∞ for some β ∈ (0, 1/2).

If there are constants c1 > 0 and c2 ≥ 0 with

lim
n→∞

g2
n

n
E[T0,n] = c1 and lim

n→∞
g2
n

∑
a∈A

p2
ae
−npa = c2

then

hn

(
T0,n −M0,n

M0,n

)
d→ N(0, c1 + c2).

where hn = E[M0,n]gn
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Corollary

In practice, we don’t know gn, but so long as it exists, it and the
other parameters can be estimated.

Corollary. If the conditions of the Theorem are satisfied, then

K1,n√
K1,n + 2K2,n

(
T0,n −M0,n

M0,n

)
d→ N(0, 1),

where
Kr,n =

∑
a∈A

1{Ln(a) = r}.
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Confidence Intervals

If K1,n

2K2,n
is not very close to 0, then an approximate (1− α)100%

confidence interval

K2
1,n/n

K1,n + zα/2
√
K1,n + 2K2,n

≤M0,n ≤
K2

1,n/n

K1,n − zα/2
√
K1,n + 2K2,n

where zα/2 is a number with P (Z > zα/2) = α/2.
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Consistency

Corollary. If the conditions of the Theorem are satisfied, then

T0,n −M0,n

M0,n

p→ 0.

Our conditions appear to be different from the ones given in
Ben-Hamou et al. (2017)
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The Counting Function

To talk about tails of distributions on an alphabet, Karlin (1967)
introduced the counting function ν : [0, 1]→ N, defined by

ν(ε) =
∑
a∈A

1{pa ≥ ε}

Facts:
1. ν is non-increasing with ε
2. For all 0 < ε ≤ 1, ν(ε) ≤ ε−1

3. εν(ε)→ 0 as ε→ 0
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Regularly Varying Distributions

A discrete distribution P is said to be regularly varying with
index α ∈ [0, 1] if

ν(ε) = ε−α`(1/ε),

where ` is a slowly varying function, i.e.

lim
x→∞

`(xt)

`(x)
= 1, for any t > 0.

In this case we write P ∈ RVα(`). This definition is due to
Karlin (1967), see Gnedin et al. (2007) for a recent review.
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Regularly Varying Distributions

Fact: Assume that A = N. P ∈ RVα(`) with α ∈ (0, 1) if and
only if

pk ∼ `∗(k)k−1/α as k →∞,

where `∗ is a slowly varying function, in general, different from `.
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Results for Regularly Varying Distributions

Proposition. If P ∈ RVα(`) for some α ∈ (0, 1) then, the
assumptions of the Theorem hold and

καn
α/2[`(n)]1/2

(
T0,n −M0,n

M0,n

)
d→ N(0, 1) as n→∞,

where κα =
√

αΓ(1−α)
2−α .

A similar result holds for α = 1, but with a somewhat different
scaling.

Michael Grabchak Turing’s Formula



Results for Regularly Varying Distributions

Proposition. If P ∈ RVα(`) for some α ∈ (0, 1) then, the
assumptions of the Theorem hold and

καn
α/2[`(n)]1/2

(
T0,n −M0,n

M0,n

)
d→ N(0, 1) as n→∞,

where κα =
√

αΓ(1−α)
2−α .

A similar result holds for α = 1, but with a somewhat different
scaling.

Michael Grabchak Turing’s Formula



Case α = 0

When α = 0 the distributions may no longer be heavy tailed and
the results of the Theorem need not hold.

Ohannessian and Dahleh (2012) showed that consistency in
relative error cannot hold for certain RV0 distributions.
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Extension: rth order Turing Formula

For any 0 ≤ r ≤ n− 1 we define the occupancy probabilities by

Mr,n =
∑
a∈A

pa1{Ln(a) = r}.

and the occupancy counts by

Kr,n =
∑
a∈A

1{Ln(a) = r}.

We can estimate Mr,n by the rth order Turing’s formula

Tr,n =
r + 1

n− r
Kr+1,n

and our results can be extended to this case
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Part II: Expectation of the Missing Mass

Joint work with G. Decrouez and Q. Paris
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Main Objects

For 0 ≤ r ≤ n, the occupancy counts Kr,n are defined by

Kr,n =
∑
a∈A

1{Ln(a) = r}

and the occupancy probabilities Mr,n are defined by

Mr,n =
∑
a∈A

pa1{Ln(a) = r} .

The missing mass is M0,n.
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Statement of Problem

Our Goal: To understand the finite sample properties of EKr,n

and EMr,n.

It can be shown that

EMr,n =

(
1 + r

1 + n

)
EKr+1,n+1 .

For this reason we only focus on EMr,n

This problem was previously studied in Ohannessian and
Dahleh (2010) and Berend and Kontorovich (2012) for the case
r = 0.
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Statement of Problem

In short, we study the object

EMr,n =

(
n

r

)∑
a∈A

pr+1
a (1− pa)n−r.
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Upper Bounds

Theorem
For any n ≥ 1 and any 0 ≤ r ≤ n− 1, we have

EMr,n ≤ inf
0≤ε≤1

{
ϕ+
r,n(ε) + ψ+

r,n(ε)
}
,

where

ϕ+
r,n(ε) =

c(r)ν(ε)

n
,

ψ+
r,n(ε) = 21+r

(
n

r

)∫ ε

0
ν
(u
2

)
ur
(
1− u

2

)n−r
du,

c(r) =

{
e−1 if r = 0,
(1+r)2+r

r! e−
1+r
2 if 1 ≤ r ≤ n− 1.

In many situations, a relevant choice of ε yields explicit and, as
far as we know, new bounds.
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Finite Support

Corollary. Suppose that S is finite. Then, for all n ≥ 1 and all
0 ≤ r ≤ n− 1,

EMr,n ≤
c(r)|S|
n

.

When we take r = 0 we recover the bound for the expected
missing mass

EM0,n ≤
|S|
ne

,

provided by Berend and Kontorovich (2012).
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Regular Variation

Fact : ν(ε) = ε−α`
(

1
ε

)
⇒ EMr,n ∼

n→∞
αΓ(1+r−α)

r!
`(n)
n1−α

Corollary.

ν(ε) ≤ ε−α`
(
1

ε

)
⇒ EMr,n ≤ c(α, r)

`(n)

n1−α ,

where

c(α, r) = c(r) +
41+r

r!
(1 + r)1+r−α

∫ 1/2

0
ur−αe−udu

where ` is nondecreasing.
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Regular Variation: Lower Bounds

Fact : ν(ε) = ε−α`
(

1
ε

)
⇒ EMr,n ∼

n→∞
αΓ(1+r−α)

r!
`(n)
n1−α

Corollary.

ν(ε) ≥ ε−α`
(
1

ε

)
⇒ EMr,n ≥ c1(α, r)

`(n)

n1−α ,

where ` is nondecreasing.
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Application: Bounds in Probability

Concentration inequalities for the missing mass have been
studied in McAllester and Ortiz (2003), Ohannessian and
Dahleh (2012), and Ben-Hamou et al. (2017).

These can combined with our bounds to get bounds in
probability.
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Application: Bounds in Probability

Example: Assume that, for some α ∈ (0, 1),

pk = Cαk
−1/α, k = 1, 2, . . . .

For all t > 0,

P
(
m−0,n(t, α) ≤M0,n ≤ m+

0,n(t, α)
)
≥ 1− 2e−t,

where

m−0,n(t, α) =
(2α − 1)γ(1− α, 2)

32

Cαα
n1−α −

√
2t

ne

m+
0,n(t, α) =

(
1

e
+ 4γ

(
1− α, 1

2

))
Cαα
n1−α +

√
t

n
.
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Part III: Simpson’s Indices

Joint work with L. Cao and Z. Zhang
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Simpson’s Index

Simpson (1949), introduced a bio-diversity index

ζ1 =
∑
a∈A

pa(1− pa)

= E [M0,1] .

It is sometimes called Simpson’s index or the Gini-Simpson
index.
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Simpson’s Index

Simpson (1949), introduced a bio-diversity index

ζ1 =
∑
a∈A

pa(1− pa).

To estimate the diversity of an eco-system, we can estimate ζ1.
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Simpson’s Index

Simpson (1949), introduced a bio-diversity index

ζ1 =
∑
a∈A

pa(1− pa).

Instead Simpson (1949) suggested the unbiased estimator

Z1 =
n

n− 1

∑
a∈A

p̂a(1− p̂a),
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Generalized Simpson’s Indices

We now introduce a more general class of indices due to Zhang
and Zhou (2010).

A Generalized Simpson’s Index of order v ∈ N is

ζv =
∑
a∈A

pa(1− pa)v = EM0,v.

Fact: The collection {ζv : n = 1, 2, . . . } determines the
distributions {p1, p2, . . . } up to permutation.
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Generalized Simpson’s Indices

Zhang and Zhou (2010) showed that an unbiased estimator of
the Generalized Simpson’s Indices of order v = 1, 2, . . . , (n− 1)

ζv =
∑
a∈A

pa(1− pa)v.

is given by

Zv =
∑
a∈A

p̂a

v∏
j=1

(
1− np̂a − 1

n− j

)
.

Fact: When v = n− 1, Zn−1 = T0,n reduces to Turing’s formula.
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Generalized Simpson’s Indices

Zhang and Zhou (2010) and Zhang and Grabchak (2016)
established the following for v = 1, 2, . . . , (n− 1):

I Zv is a UMVUE for ζv.
I So long as P is not a uniform distribution

√
n(Zv − ζv)

σ̂v

d→ N(0, 1),

where

σ̂2
v =

∑
a∈A

p̂a(1− p̂a)2v−2 (1− vp̂a − p̂a)2

−

(∑
a∈A

p̂a(1− p̂a)v−1 (1− vp̂a − p̂a)

)2
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An Application to Linguistics

In 1985 the following poem was discovered. It begins...

Shall I die? Shall I fly
Lover’s baits and deceits

sorrow breeding?
Shall I tend? Shall I send?

Shall I sue, and not rue
my proceeding?

In all duty her beauty
Binds me her servant for ever.

If she scorn, I mourn,
I retire to despair, joining never.

***
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Who wrote this poem?

On it the author’s name was written: William Shakespeare.

In 1986 it was added to the Oxford edition of the complete
works of William Shakespeare.

This was very controversial.

Did Shakespeare really write the poem?

Many literary scholars have debated this question.

As have some statisticians, see e.g. Thisted and Efron (1987).
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Our Methodology

Let A = {a1, a2, . . . } be the words in the English language

Let P = {p1, p2, . . . } be the relative frequencies with which an
author uses the words.

We can summarize the information in P by using

ζv =
∑
a∈A

pa(1− pa)v

for various values of v.
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Our Methodology

To test the authorship of “Shall I Die?” we:
I Estimate ζ1, . . . , ζ200 for the poem
I Estimate ζ1, . . . , ζ200 for a corpus consisting of

Shakespeare’s sonnets
I Plot the difference and a confidence interval
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Comparison of Sonnets and Sonnets From Plays
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Comparison of Sonnets and The Raven
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Comparison of Sonnets and Philip Sidney’s Astrophel
and Stella
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Comparison of Sonnets and Shall I Die

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Profile for 'Shall I Die?'

v

E
nt

ro
pi

c 
B

as
is

0 50 100 150 200

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

95% CI for 'Shall I Die?'

v
D
iff
er
en
ce

Michael Grabchak Turing’s Formula



Bibliography

G. Decrouez, M. Grabchak, and Q. Paris (2016). Finite sample
properties of the mean occupancy counts and probabilities. To
appear in Bernoulli.

M. Grabchak, L. Cao, and Z. Zhang (2017). Authorship
Attribution Using Diversity Profiles. To appear in Journal of
Quantitative Linguistics, DOI: 10.1080/09296174.2017.
1343268.

M. Grabchak and Z. Zhang (2017). Asymptotic Properties of
Turing’s Formula in Relative Error. Machine Learning,
106(11):1771–1785.

Michael Grabchak Turing’s Formula



Simulations

To better understand how Turing’s formula works, we perform
simulations. We measure performance by:

1. Expected absolute error:

E |T0,n −M0,n|

2. Expected relative error:

E
∣∣∣∣T0,n −M0,n

M0

∣∣∣∣
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Simulations for Poisson
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Simulations for Geometric
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Simulations for Discrete Pareto
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Conclusions From Simulations

1. Absolute error decays quickly for all distributions. But, as we
have seen, this may not be relevant.

2. Relative error is smaller for heavier tailed distributions. Only
goes to zero for heavy tailed distributions.

Michael Grabchak Turing’s Formula



Extension: Metric Spaces

I (E, d) is a metric space
I P is a probability distribution on E
I X1, . . . , Xn are a random sample of E-valued random

variables with common distribution P

Since E may not be discrete, we need to define analogues of
occupancy probabilities, Mr,n, and the counting function ν.
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Extension: Metric Spaces

Occupancy Probabilities – For δ > 0, n ≥ 1, and x ∈ E,

Lδn(x) :=

n∑
i=1

1{Xn ∈ Bx,δ}

Definition. For n ≥ 1 and 0 ≤ r ≤ n,

M δ
n,r = P(Lδn(Xn+1) = r|X1, . . . , Xn) =

∫
E
1{Lδn(x) = r}P (dx)

Fact: If P has a discrete support with no accumulation point,
then

M δ
n,r −→

δ→0+
Mn,r
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Extension: Metric Spaces

δ-Counting Function: For δ > 0 define

Lδ(ε) = {x ∈ E : P (Bx,δ) ≥ ε}

and
νδ(ε) =

∫
Lδ(ε)

P (Bx,δ)
−1P (dx).

Theorem. If P has a discrete support with no accumulation
point, then for any ε ∈ (0, 1],

νδ(ε) −→
δ→0+

ν(ε).
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Extension: Metric Spaces

Fact: In this framework, most of the results from this section still
hold. We just need to replace ν by νδ.

Future work: Can Turing’s formula and concentration
inequalities be extended to this framework?
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