Quantifying non-monotonicity of functions

Youri Davydov

University of Lille 1, France and St. Petersbourg state university

Snegiri, 2017

(Joint work with R. Zitikis, London, Canada)



Introduction.

In various research areas related to decision making, problems and their solutions frequently rely on certain functions being monotonic. In the case of non-monotonic functions, one would then wish to quantify their lack of monotonicity. In this talk we discuss a method designed specifically for this task, including quantification of the lack of positivity, negativity, or sign-constancy in signed measures.

Problem.

Let

$$f,g:[0,1]\to\mathbb{R}^1.$$

Which of them is more monotone (more increasing)?

Example.

Consider the family $\{\phi_t\},\ t\in(0,1),$ of functions :

$$\phi_t(x) = x/t, \ x \in [0, t] \ \text{ and } \ \phi_t(x) = (1 - x)/(1 - t), \ x \in [t, 1].$$

Approach.

Suppose f, g to be absolutely continuous, f(0) = g(0) = 0. Then it seams reasonable to think that f is more increasing than g if f' is more positive than g'.

Hence we can formulate the problem in the following way. Let

$$K_{+} = \{ h \mid h \geq 0 \text{ a.e.} \}, \ K_{-} = -K_{+},$$

and d be a metric on the space of integrable functions.

Definition

We say that f' is more positive than g' if $d(f', K_+) \leq d(g', K_+)$

First result.

Let $f, g \in K_+$. Denote $d_p(g, h) = \|g - h\|_p$, $1 \le p \le \infty$. The choice p = 1 seams to be the most adequate.

Proposition 1.

Let
$$\Delta_p^+(f) = d_p(f, K_+), \ \ \Delta_p^-(f) = d_p(f, K_-)$$
 and
$$A_+ = \{g \in K_+ \, | \, \|f - g\| = \Delta_p^+(f) \},$$

$$A_- = \{g \in K_- \, | \, \|f - g\| = \Delta_p^-(f) \},$$
 Then $\Delta_p^+(f) = \|f_-\|_p, \ \Delta_p^-(f) = \|f_+\|_p$, and $A_+ = \{f_+\}, \ A_- = \{f_-\}.$

Rem. 1. The sets A_+ , A_- are the same independently on p.

Rem. 2. The decomposition $f = f_+ - f_-$ is minimal in the sense that if f = g - h with $g, h \in K_+$ is another decomposition, then $g \ge f_+$, $h \ge f_-$ a.s.

Example.

Let us come back to our example. We have

$$\Delta_1^+(\phi_t) = 1$$
 for all t ; $\Delta_1^-(\phi_t) = 1$.

$$\Delta_p^+(\phi_t) = (1-t)^{-\frac{p-1}{p}} \quad \text{ for } 1$$

$$\Delta^+_{\infty}(\phi_t) = \frac{1}{1-t}, \quad \Delta^-_{\infty}(\phi_t) = \frac{1}{t}.$$

Index of monotonicity.

The quantity

$$I(f) = 1 - 2\min\left\{\frac{\Delta_1^+(f)}{\|f\|_1}, \frac{\Delta_1^-(f)}{\|f\|_1}\right\}$$

can be considered as an index of monotonicity :

- 1) $0 \le I(f) \le 1$;
- 2) I(cf) = I(f) for c > 0;
- 3) I(f) = 1 iff $f \in K_+$ or $f \in K$.

Functions of bounded variation.

Function f has a bounded variation iff f = g - h, where g, h are nondecreasing functions. The signed measure μ corresponding to f is a difference of two positive measures

$$\mu = \nu - \rho. \tag{1}$$

This representation is not unique. The minimal one is given by the Jordan decomposition $\mu=\mu_+-\mu_-,$ where

$$\mu_{+} = \frac{1}{2}(|\mu| + \mu), \quad \mu_{-} = \frac{1}{2}(|\mu| - \mu),$$

 $|\mu|$ being the total variation measure associated to $\mu.$

Functions of bounded variation.

Proposition 2

Let $\|\mu\|$ be the total variation norm,

 M_{\perp} be the set of all finite positive measures,

$$\Delta_+(\mu) = dist(\mu, M_+)$$
 and $A = \{\nu \mid dist(\nu, M_+) = \Delta_+(\mu)\}.$

Then

$$\Delta_{+}(\mu) = \|\mu_{-}\|, \quad A = \{\mu_{+}\}.$$

Corollary

(Proposition 1, p = 1)

In this case $\mu \ll \lambda$; $\frac{d\mu}{d\lambda} = h$; $\frac{d\mu_+}{d\lambda} = h_+$, $\frac{d\mu_-}{d\lambda} = h_-$, and we have

$$\|\mu_{-}\| = \|h_{-}\|_{1}.$$

Proof of Proposition 2

It is clear that $\Delta_+(\mu) \leq \|\mu_-\|$.

Let E, F be a Hahn decomposition for μ . It means that $E \cap F = \emptyset$, $E \cup F = [0,1]$ and for each $B \subset [0,1]$ $\mu_+(B) = \mu(B \cap E)$, $\mu_-(B) = \mu(B \cap F)$.

Let $\nu \in M_+$. We have

$$\begin{aligned} \|\mu - \nu\| &= \|\mu_{+} - \mu_{-} - \nu\| = \\ &= |\mu_{+} - (\mu_{-} + \nu)|(E) + |\mu_{+} - (\mu_{-} + \nu)|(F) \ge \\ &\ge |\mu_{+} - (\mu_{-} + \nu)|(F) = |\mu_{-} + \nu|(F) \ge \\ &\ge |\mu_{-}|(F) = \|\mu_{-}\|. \end{aligned}$$

Hence $\Delta_+(\mu) \geq \|\mu_-\|$.

General setting

Let B be a Banach space, K be a closed cone in B such that $0 \in K$ and K - K = B, that is $\forall x \in B \ \exists \ y \in K, \ z \in K \text{ s.th. } x = y - z$. We say that $x \geq 0$ if $x \in K$ and we say $x \geq y$ if $y - x \geq 0$.

Questions:

- 1) When there exist a unic "minimal" decomposition of x in difference of two "positive" elements? More exactly, under what conditions for each $x \in B \quad \exists \ ! \quad y_0, z_0 \in K$ such that $x = y_0 z_0$ and from another equality $x = y z, \quad y, z \in K$ it follows that $y_0 \le y, \quad z_0 \le z$?
- 2) Under what conditions on B and on metric d inf $\{d(x,K)\}$ is reached in y_0 (respectively, inf $\{d(x,-K)\}$ is reached in z_0)?

Comments

- 1. Relation between "to be more increasing" and "to be more positive".
- 2. Distance $d_p(f,g) = \|f_g\|_p$ for $p \in (0,1)$.
- 3. Banach space with strictly convex norme.

References

- Yu. Davydov and R. Zitikis, Quantifying non-monotonicity of functions and the lack of positivity in signed measures, Modern Stoch. Theory Appl., 4, 3, (2017), pp. 219–231.
- Yu. Davydov and R. Zitikis, An index of monotonicity and its estimation: a step beyond econometric applications of the Gini index. Metron - International Journal of Statistics, 63 (special issue in memory of Corrado Gini), (2005), pp. 351–372.