Population Dynamics in a Random Environment Mean Field Type Models

S. Molchanov^{1,2} J. Whitmeyer¹

¹University of North Carolina at Charlotte

²Higher School of Economics

LSA Winter Meeting - 2017

Properties of the Random Walk

2 Models in a Stationary Random Environment

- Three cases
- Random walk in random environment
- Random walk with immigration in random environment
- Mean field Bolker-Pacala model in random environment

3 Summary and Discussion

Properties of the random walk in continuous time on \mathbb{Z}_1^+ $_{\text{Ergodicity}}$

The process x(t) with generator (*) is ergodic iff

$$S(0) = 1 + \frac{\beta(0)}{\mu(1)} + \frac{\beta(0)\beta(1)}{\mu(1)\mu(2)} + \dots + \frac{\beta(0)\cdots\beta(n-1)}{\mu(1)\cdots\mu(n)} + \dots < \infty$$

$$\pi(0) = \frac{1}{S(0)}, \quad \pi(n) = \frac{1}{S(0)} \frac{\beta(0)\cdots\beta(n-1)}{\mu(1)\cdots\mu(n)} \text{ for } n \ge 1$$



Figure: Generator for Random Walk

The process x(t) is recurrent iff

$$Z = 1 + \frac{\mu(1)}{\beta(1)} + \frac{\mu(1)\mu(2)}{\beta(1)\beta(2)} + \ldots + \frac{\mu(1)\cdots\mu(n)}{\beta(1)\cdots\beta(n)} + \ldots = +\infty$$

Note that the ergodicity of x(t) is equivalent to positive recurrence: for all $m, n \ge 0, m \ne n$

$$E_m \tau_n < \infty, \quad \tau_n = \min(t : x(t) = n)$$

Properties of the random walk in continuous time on \mathbb{Z}_1^+ Calculation of $E_x \tau_0 = E_x \tau_{x \to 0} = \varphi(x)$

To calculate $E_x \tau_0 = E_x \tau_{x \to 0} = \varphi(x)$

- Start at 0, RW spends $\theta_1 \sim \exp(\beta_0)$ at 0, jumps to 1 at time $\theta_1 + 0$.
- Returns to 0 after random time T_1 , $ET_1 = \varphi(1)$.
- Process repeats.
- *n* cycles cover time interval $[0, \theta_1 + \ldots + \theta_n + T_1 + \ldots + T_n]$.
- Fraction of time chain spends at site 0 tends to

$$\frac{1}{S(0)} = \pi(0) = \lim_{n \to \infty} \frac{n \frac{1}{\beta_0}}{n \frac{1}{\beta_0} + n\varphi(1)} = \frac{\frac{1}{\beta_0}}{\frac{1}{\beta_0} + \varphi(1)}$$

Properties of the random walk in continuous time on \mathbb{Z}_1^+ Calculation of $E_x \tau_0 = E_x \tau_{x \to 0} = \varphi(x)$

This gives

$$egin{aligned} \mathcal{S}(0) &= 1 + eta_0 arphi(1) \Rightarrow \ arphi(1) &= rac{1}{\mu(1)} \left(1 + rac{eta(1)}{\mu(2)} + rac{eta(1)eta(2)}{\mu(2)\mu(3)} + \ldots
ight) = \mathcal{A}(1) \end{aligned}$$

Similarly

$$\varphi(2) = E_2 \tau_{2 \to 1} + E_1 \tau_{1 \to 0} = A(1) + A(2)$$

where

$$A(k) = \frac{1}{\mu(k)} \left(1 + \frac{\beta(k)}{\mu(k+1)} + \frac{\beta(k)\beta(k+1)}{\mu(k+1)\mu(k+2)} + \ldots \right)$$
(1)

• The series A(1), A(2), ... converges if the sum S(0) is finite.

Properties of the random walk in continuous time on \mathbb{Z}_1^+ Calculation of $E_x \tau_0 = E_x \tau_{x \to 0} = \varphi(x)$

Theorem

Let A(k) be as in Eq. 1. Put $\varphi(x) = A(1) + ... + A(x)$ for $x \ge 1$ and $\varphi(0) = 0$. Then, under the condition that $S(0) = 1 + \frac{\beta(0)}{\mu(1)} + \frac{\beta(0)\beta(1)}{\mu(1)\mu(2)} + ... + \frac{\beta(0)\cdots\beta(n-1)}{\mu(1)\cdots\mu(n)} + ... < \infty,$ $\mu(x)\varphi(x-1) - (\mu(x) + \beta(x))\varphi(x) + \beta(x)\varphi(x+1) = -1,$ *i.e.*, $\varphi(x) = E_x \tau_{x\to 0}$. In particular, $\varphi(1) = E\tau_{1\to 0} = A(1) = \frac{1}{\mu(1)} \left(1 + \frac{\beta(1)}{\mu(2)} + \frac{\beta(1)\beta(2)}{\mu(2)\mu(3)} + ... \right).$

S. Molchanov, J. Whitmeyer (Universities of Population Dynamics in a Random Environme LSA Winter Meeting - 2017 7 / 36

Properties of the Random Walk

2 Models in a Stationary Random Environment

- Three cases
- Random walk in random environment
- Random walk with immigration in random environment
- Mean field Bolker-Pacala model in random environment

3 Summary and Discussion

Three cases

- In the case of a random environment, all random variables or probabilities are functions of two variables:
 - ω_m : the environment, i.e., sequences of the r.v.s $\{\mu_x\}$, $\{\beta_x\}$, etc.
 - ω : the trajectory of the random walk for fixed ω_m
- Expectations:
 - We use $E_{\omega_m} \tau = f(\omega_m)$ for the expectation with respect to ω_m .
 - We use $\langle E_{\omega_m} \tau \rangle$ for the total expectation of τ .
- We call a random walk ergodic in the "annealed" sense if $\langle E_{\omega_m} \tau_{x \to y} \rangle < \infty$ for all (x, y).
- We call a random walk ergodic in the "quenched" sense if $E_{\omega_m} \tau_{x \to y} < \infty$, $P_{\omega_m} a.s.$

Three cases

- We similarly distinguish annealed and quenched asymptotics with respect to some parameter, say, time *t*.
- Typically, the quenched and annealed descriptions of processes in a random environment are substantially different.
- The concepts of intermittency and localization are a manifestation of this difference.
- We discuss three cases, all of which are statistically homogeneous.
 - Random walk in a random environment
 - Random walk with immigration in a random environment
 - Mean field Bolker-Pacala model in a random environment

Three cases

a) Random walk in a random environment

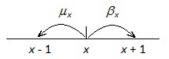


Figure: Random Walk in Random Environment

- Assume that $\beta_x \in [a_1, b_1]$, $0 < a_1 < b_1 < \infty$, $x \ge 0$, are i.i.d. random variables on the underlying probability space $(\Omega_m, \mathcal{F}_m, P_m)$.
- Also assume that $\mu_x \in [a_2, b_2]$, $0 < a_2 < b_2 < \infty$, $x \ge 0$, are i.i.d. random variables, independent of $\{\beta_x, x \ge 0\}$.

Three cases

b) Model with immigration

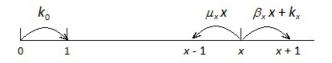


Figure: Random Walk in Random Environment with Immigration

- { μ_x }, { β_x }, and { k_x } are three independent sequences of i.i.d. random variables, $\beta_x \in [a_1, b_1]$, $\mu_x \in [a_2, b_2]$, and $k_x \in [a_3, b_3]$.
- k_x conveys the probability of immigration occurring at some site, independent of the population.
- This is mean field model of population dynamics.

Three cases

c) Mean field Bolker-Pacala model

- Initial population of particles lives on a lattice.
- Each particle can split, die, or migrate in space, at respective rates β_x , μ_x , and κ_x .
- Key process: Death may occur due to presence of other particles (competition or suppression), at rate γ_x .
- A mean field treatment is mathematically tractable, and is equivalent to a kind of random walk.

Three cases

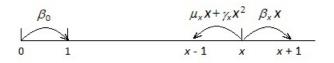


Figure: Mean Field Bolker-Pacala Model in Random Environment

- β_x , μ_x , and γ_x are three independent sequences of i.i.d. random variables, $\beta_x \in [a_1, b_1]$, $\mu_x \in [a_2, b_2]$, and $\gamma_x \in [a_3, b_3]$.
- Migration (rate κ_x) becomes irrelevant in the mean field treatment.
- Quadratic term indicates the negative effect of competition from other members of the population, at rate γ_x .

Properties of the Random Walk

Models in a Stationary Random Environment

- Three cases
- Random walk in random environment
- Random walk with immigration in random environment
- Mean field Bolker-Pacala model in random environment

3 Summary and Discussion

• Start from the random walk

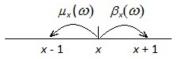


Figure: Random Walk in Random Environment

• Consider the series

$$Z = 1 + \frac{\mu_1}{\beta_1} + \frac{\mu_1 \mu_2}{\beta_1 \beta_2} + \dots$$
$$= 1 + \sum_{n=1}^{\infty} e^{\sum_{i=1}^n \ln \frac{\mu_i}{\beta_i}} = 1 + \sum_{n=1}^{\infty} e^{\sum_{i=1}^n (\ln \mu_i - \ln \beta_i)}$$

Quenched sense

There are three cases

$$\left< \ln \frac{\mu}{\beta} \right> < 0, \ \left< \ln \frac{\mu}{\beta} \right> = 0, \ \left< \ln \frac{\mu}{\beta} \right> > 0.$$

• When
$$\langle \ln \frac{\mu}{\beta} \rangle = 0$$

- Due to the CLT, the sum $\sum_{i=1}^{n} \ln \frac{\mu_i}{\beta_i} = \sqrt{n} S_n$
- Where S_n is an asymptotically Gaussian r.v. that oscillates and is greater than 1 infinitely many times.
- Thus, $\left\langle \ln \frac{\mu}{\beta} \right\rangle \ge 0$ implies the recurrence, P_{ω_m} -a.s., of x(t). • For $\left\langle \ln \frac{\mu}{\beta} \right\rangle < 0$, the random walk is transient, P_{ω_m} -a.s.

Random walk in random environment Quenched sense

• Next, consider the series

$$S_0 = 1 + rac{eta_0}{\mu_1} + rac{eta_0eta_1}{\mu_1\mu_2} + \dots$$

- A similar calculation shows that the random walk is positively recurrent (i.e., ergodic), P_{ω_m} -a.s., iff $\left\langle \ln \frac{\mu}{\beta} \right\rangle > 0$.
- If $\left< \ln \frac{\mu}{\beta} \right> = 0$, then, P_{ω_m} -a.s., the random walk is *zero* recurrent.
- This has been the *quenched* classification. Turn now to the *annealed* classification.

Annealed sense

• Suppose x(t) is ergodic in the annealed sense, that is (for $a = \left\langle \frac{1}{\mu} \right\rangle$, $b = \langle \beta \rangle$)

$$\langle \varphi(1) \rangle = \left\langle \frac{1}{\mu_1} \right\rangle + \left\langle \beta_1 \right\rangle \left\langle \frac{1}{\mu_1} \right\rangle \left\langle \frac{1}{\mu_2} \right\rangle + \dots$$

= $a + ba^2 + b^2 a^3 + \dots = a(1 + ab + (ab)^2 + \dots) < \infty$

• This holds iff $\left< \beta \right> \left< \frac{1}{\mu} \right> < 1$

Annealed sense

• Due to Jensen's inequality

$$\left\langle \ln \frac{\beta}{\mu} \right\rangle < \ln \left\langle \frac{\beta}{\mu} \right\rangle = \ln \left(\left\langle \beta \right\rangle \left\langle \frac{1}{\mu} \right\rangle \right).$$

• If $\langle \beta \rangle \left\langle \frac{1}{\mu} \right\rangle < 1$, then, $\left\langle \ln \frac{\beta}{\mu} \right\rangle < 0$ and x(t) is ergodic also in the quenched sense.

- It is possible that the random walk is ergodic in the quenched sense, i.e., P_{ω_m} -a.s., but $\langle \beta \rangle \left\langle \frac{1}{\mu} \right\rangle \geq 1$ and so it is not ergodic in the annealed sense:
 - $\langle \tau_{1\to 0} \rangle = +\infty.$
 - We have exactly this situation if $\left\langle \frac{1}{\mu} \right\rangle > \frac{1}{\langle \beta \rangle}$ but $\langle \ln \beta \rangle < \langle \ln \mu \rangle$.

Annealed sense

• Consider, finally

$$EZ = 1 + \sum_{j=1}^{\infty} \langle \mu \rangle^j \left\langle \frac{1}{\beta} \right\rangle^j.$$

• Clearly,
$$EZ = \infty$$
 iff $\langle \mu \rangle \left\langle \frac{1}{\beta} \right\rangle \ge 1$.

• Thus, if $\left< \ln \frac{\beta}{\mu} \right> < 0$ we have

$$0 < \left\langle \ln \frac{\mu}{\beta} \right\rangle < \ln \left\langle \frac{\mu}{\beta} \right\rangle = \ln \left(\left\langle \mu \right\rangle \left\langle \frac{1}{\beta} \right\rangle \right)$$

so that $\langle \mu \rangle \left\langle \frac{1}{\beta} \right\rangle > 1.$

• Thus, if x(t) is ergodic in the quenched sense, it is at least recurrent in the annealed sense, although possibly only zero recurrent.

Properties of the Random Walk

Models in a Stationary Random Environment

- Three cases
- Random walk in random environment
- Random walk with immigration in random environment
- Mean field Bolker-Pacala model in random environment

3 Summary and Discussion

Random walk with immigration in random environment Quenched sense

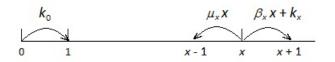


Figure: Random Walk in Random Environment with Immigration

- Rate of increase, $\mu_x(\omega)x + k_x(\omega)$, and rate of decrease, $\mu_x(\omega)$, are random functions of volume of population $x(t) \ge 0$.
- Duplication and mortality rates are multiplied by the population size; immigration rate is not.

Random walk with immigration in random environment Quenched sense

Consider the series

$$S_{0} = 1 + \frac{k_{0}}{\mu_{1}} + \frac{k_{0}(\beta_{1} + k_{1})}{2\mu_{1}\mu_{2}} + \frac{k_{0}(\beta_{1} + k_{1})(2\beta_{2} + k_{2})}{3!\mu_{1}\mu_{2}\mu_{3}} + \ldots + \frac{k_{0}\prod_{i=1}^{n-1}(i\beta_{i} + k_{i})}{n!\prod_{i=1}^{n}\mu_{i}} + \ldots$$

Note that

$$\frac{(n-1)\beta_{n-1}(\omega)+k_{n-1}(\omega)}{n\mu_n(\omega)}=\frac{\beta_{n-1}(\omega)+\frac{k_{n-1}(\omega)-\beta_{n-1}(\omega)}{n}}{\mu_n(\omega)}$$
$$=e^{\ln\beta_{n-1}-\ln\mu_n+o(\frac{1}{n})}.$$

• Thus, using previous analysis for RW, $S_0 < \infty$ and so x(t) is ergodic $(P_{\omega_m}\text{-a.s.})$ iff $\langle \ln \frac{\beta_x(\omega)}{\mu_x(\omega)} \rangle = \langle \ln \beta_x \rangle - \langle \ln \mu_x \rangle < 0.$

Random walk with immigration in random environment Quenched sense

• Next, consider the series

$$Z = \frac{\mu_1}{\beta_1 + k_1} + \frac{2\mu_1\mu_2}{(\beta_1 + k_1)(2\beta_2 + k_2)} + \ldots + \frac{n!\prod_{i=1}^n \mu_i}{\prod_{i=1}^n (i\beta_i + k_i)} + \ldots < \infty.$$

•
$$k_{\cdot}(\omega) \ge a_3 > 0$$
 implies that $\langle \ln \frac{\mu_x(\omega)}{\beta_x(\omega)} \rangle = 0 \Rightarrow \left\langle \ln \frac{\mu_x(\omega)}{\beta_x(\omega) + \frac{k_x(\omega)}{x}} \right\rangle < 0.$

• Thus, for
$$\langle \ln \frac{\mu_x(\omega)}{\beta_x(\omega)} \rangle = 0$$
, $Z < \infty$
• I.e., for $\langle \ln \frac{\beta_x(\omega)}{\mu_x(\omega)} \rangle \ge 0$, the process $x(t)$ is transient $(P_{\omega_m}$ -a.s.).

Random walk with immigration in random environment Annealed sense

• Annealed perspective: x(t) is ergodic iff $\langle \varphi(1) \rangle < \infty$.

۲

$$\begin{split} \langle \varphi(1) \rangle &= \left\langle \frac{1}{\mu} \right\rangle \left(\left(\langle \beta \rangle + \langle k \rangle \right) \left\langle \frac{1}{\mu} \right\rangle + \dots + \\ &+ \left(\langle \beta \rangle + \langle k \rangle \right) \cdots \left(n \langle \beta \rangle + \langle k \rangle \right) \frac{1}{n!} \left\langle \frac{1}{\mu} \right\rangle^n + \dots \right) \\ &= \left\langle \frac{1}{\mu} \right\rangle \sum_{j=1}^{\infty} \left\langle \frac{1}{\mu} \right\rangle^j \prod_{i=1}^j \left(\langle \beta \rangle + \frac{\langle k \rangle}{i} \right) \end{split}$$

• Thus, $\langle \varphi(1) \rangle < \infty$ if and only if $\langle \beta \rangle \left\langle \frac{1}{\mu} \right\rangle < 1$.

• As with random walk, the random walk with immigration can be ergodic in the quenched sense but not in the annealed sense if $\left\langle \frac{1}{\mu} \right\rangle \geq \frac{1}{\langle \beta \rangle}$ but $\langle \ln \beta \rangle < \langle \ln \mu \rangle$.

Random walk with immigration in random environment Annealed sense

Turning to

$$\mathsf{E} Z = 1 + \sum_{j=1}^{\infty} \langle \mu \rangle^j \prod_{i=1}^j \left\langle \frac{1}{\beta + \frac{k}{i}} \right\rangle$$

• Again,
$$EZ = \infty$$
 iff $\langle \mu \rangle \left\langle \frac{1}{\beta} \right\rangle \geq 1$.

• As above, if
$$\left< \ln \frac{\beta}{\mu} \right> < 0$$
, $\left< \mu \right> \left< \frac{1}{\beta} \right> > 1$.

• Thus, as with the random walk without immigration, if x(t) is ergodic in the quenched sense, it is at least recurrent in the annealed sense, although possibly only zero recurrent.

Properties of the Random Walk

Models in a Stationary Random Environment

- Three cases
- Random walk in random environment
- Random walk with immigration in random environment
- Mean field Bolker-Pacala model in random environment

3 Summary and Discussion

Mean field Bolker-Pacala model in random environment Quenched sense

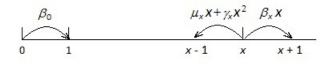


Figure: Mean Field Bolker-Pacala Model in Random Environment

Once more, calculate

$$S_0 = 1 + \frac{\beta_0}{\mu_1 + \gamma_1} + \frac{\beta_0 \beta_1}{(\mu_1 + \gamma_1)(2\mu_2 + 4\gamma_2)} + \dots + \frac{(n-1)! \prod_{i=0}^{n-1} \beta_i}{\prod_{i=1}^n (i\mu_i + i^2\gamma_i)} + \dots$$

• Consider the n + 1th term of S_0 , $n \ge 1$

$$T_{n+1} = \frac{\prod_{i=0}^{n-1} i\beta_i}{\prod_{i=1}^{n} (i\mu_i + i^2\gamma_i)} = \prod_{i=1}^{n} \frac{(\frac{1}{i} - \frac{1}{i^2})\beta_i}{\frac{1}{i}\mu_i + \gamma_i}$$

Mean field Bolker-Pacala model in random environment Quenched sense

- Recalling that the upper bound for β. is b₂ and the lower bound for γ. is a₃, let c = b₂/a₃.
- Then, using Stirling's Formula

$$T_{n+1} \leq \prod_{i=1}^n \frac{c^n}{n!} < \frac{c^n e^n}{\sqrt{2\pi n} n^n} = \left(\frac{c \cdot e}{n}\right)^n \frac{1}{\sqrt{2\pi n}}$$

- Clearly, then, $S_0 = 1 + \sum_{i=1}^{\infty} T_{i+1} < \infty$ and x(t) is ergodic, P_{ω_m} -a.s.
- In other words, as long as the random variable parameters β_{\cdot} , μ_{\cdot} , and γ_{\cdot} are bounded, x(t) is ergodic in the quenched sense.

Mean field Bolker-Pacala model in random environment Annealed sense

• Turning to the annealed perspective,

$$\begin{split} \langle \varphi(1) \rangle &= \left\langle \frac{1}{\mu} \right\rangle \left(\langle \beta \rangle \left\langle \frac{1}{2\mu + 4\gamma} \right\rangle + \ldots + \\ &+ \left\langle \beta \right\rangle \cdots \left\langle (n-1)\beta \rangle \left\langle \frac{1}{(2\mu + 4\gamma) \cdots (n\mu + n^2\gamma)} \right\rangle + \ldots \right) \end{split}$$

• The (n-1)th term inside the parentheses can be written

$$\frac{1}{n \cdot n!} \langle \beta \rangle^{n-1} \prod_{j=2}^n \left\langle \frac{1}{\gamma_j + \frac{\mu_j}{j}} \right\rangle.$$

- Clearly, again for all β_{\cdot} , μ_{\cdot} , and γ_{\cdot} bounded as given, $\varphi(1) < \infty$.
- The B-P model is ergodic in both annealed and quenched senses.

Summary and discussion

Models and Recurrence Properties

		RW Constant	RW RE	RW I RE	B-P RE
$\langle \ln rac{eta}{\mu} angle < 0$ $\langle \ln rac{eta}{\mu} angle = 0$	Q	E	Ergodic	Ergodic	Ergodic
	A	Ergodic	E or ZR	E or ZR	Ergodic
	Q	7 Recurrent	Z Recurrent	Transient	Ergodic
	A		Z Recurrent	Transient	Ergodic
$\langle \ln rac{eta}{\mu} angle > 0$	Q	Transiant	Transient	Transient	Ergodic
	А	Transient	Transient	Transient	Ergodic

Summary and discussion

- The quenched vs. annealed differences for the random walks are worth exploring.
- One phenomenon that may appear with a stationary random environment is *traps*.

Figure: Random Trap in Random Walk in Random Environment

Figure:

Traps

- Let *c* be the center of [*a*, *b*].
- For $x \in [a, b]$, if x > c, $\beta_x < \mu_x$ (blue).
- If x < c, $\beta_x > \mu_x$ (red).

- Random trap: random interval $[a_n, b_n]$ where the drift locally is toward the center of the interval.
- Consider situation where $\langle \ln \frac{\beta}{\mu} \rangle < 0$.
 - If $\beta_x < \mu_x$ *P*-a.s., then, the random walk is ergodic much like the random walk in a constant environment.
 - But if P{β_x > μ_x} ≥ δ > 0, then, traps will exist, giving ergodicity in the quenched sense.
 - Here, however, in the annealed sense, traps will not exist.
- To leave a trap, x(t) will take time which is the exponential of the size of the trap.

Summary and discussion $_{\mathsf{Traps}}$

- Traps were explored for a simple random walk in discrete time in the Sinai model (1982).
 - It is well known that a simple symmetric ($\beta = \mu$) random walk in a constant environment in time t is expected to move distance \sqrt{t} from its starting point.
 - Sinai showed that in a stationary random environment, still with $\left\langle \ln \frac{\beta}{\mu} \right\rangle = 0$, that expected time was drastically reduced to $\ln^2 t$.
- For our random walks in random environment with $\left\langle \ln \frac{\beta}{\mu} \right\rangle < 0$ there will be random traps of any width.
- The centers, c_1, c_2, \ldots will be local equilibria.
- x(t) will undergo Gaussian fluctuations around those centers, eventually breaking free, only to end up in another trap.

- For homogenization of (1-dimensional) RW in RE, some inner symmetry is necessary.
 - For example, the rates of increase and decrease can be equal on the "edges" of the RW: $\beta_x^* = \mu_{x+1}^*$.
 - This gives a symmetric transition matrix, which is a self-adjoint operator.
 - This RW in random environment becomes like RW in constant environment.
- Another alternative is a *non-stationary* random environment.
 - Above we have considered a *stationary* RE.
 - A non-stationary RE is unlikely to produce traps, because the configuration of rates that produces traps, described above, will evaporate with time.