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Properties of the random walk in continuous time on Z+
1

Ergodicity

The process x(t) with generator (*) is ergodic iff

S(0) = 1 +
β(0)

µ(1)
+
β(0)β(1)

µ(1)µ(2)
+ . . .+

β(0) · · ·β(n − 1)

µ(1) · · ·µ(n)
+ . . . <∞

π(0) =
1

S(0)
, π(n) =

1

S(0)

β(0) · · ·β(n − 1)

µ(1) · · ·µ(n)
for n ≥ 1

Figure: Generator for Random Walk
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Properties of the random walk in continuous time on Z+
1

Recurrence

The process x(t) is recurrent iff

Z = 1 +
µ(1)

β(1)
+
µ(1)µ(2)

β(1)β(2)
+ . . .+

µ(1) · · ·µ(n)

β(1) · · ·β(n)
+ . . . = +∞

Note that the ergodicity of x(t) is equivalent to positive recurrence: for all
m, n ≥ 0, m 6= n

Emτn <∞, τn = min(t : x(t) = n)
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Properties of the random walk in continuous time on Z+
1

Calculation of Exτ0 = Exτx→0 = ϕ(x)

To calculate Exτ0 = Exτx→0 = ϕ(x)

Start at 0, RW spends θ1 ∼ exp(β0) at 0, jumps to 1 at time θ1 + 0.

Returns to 0 after random time T1, ET1 = ϕ(1).

Process repeats.

n cycles cover time interval [0, θ1 + . . .+ θn + T1 + . . .+ Tn].

Fraction of time chain spends at site 0 tends to

1

S(0)
= π(0) = lim

n→∞

n 1
β0

n 1
β0

+ nϕ(1)
=

1
β0

1
β0

+ ϕ(1)

.
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Properties of the random walk in continuous time on Z+
1

Calculation of Exτ0 = Exτx→0 = ϕ(x)

This gives

S(0) = 1 + β0ϕ(1)⇒

ϕ(1) =
1

µ(1)

(
1 +

β(1)

µ(2)
+
β(1)β(2)

µ(2)µ(3)
+ . . .

)
= A(1)

Similarly
ϕ(2) = E2τ2→1 + E1τ1→0 = A(1) + A(2)

where

A(k) =
1

µ(k)

(
1 +

β(k)

µ(k + 1)
+

β(k)β(k + 1)

µ(k + 1)µ(k + 2)
+ . . .

)
(1)

The series A(1), A(2), ... converges if the sum S(0) is finite.
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Properties of the random walk in continuous time on Z+
1

Calculation of Exτ0 = Exτx→0 = ϕ(x)

Theorem

Let A(k) be as in Eq. 1. Put ϕ(x) = A(1) + . . .+ A(x) for x ≥ 1 and
ϕ(0) = 0. Then, under the condition that

S(0) = 1 + β(0)
µ(1) + β(0)β(1)

µ(1)µ(2) + . . .+ β(0)···β(n−1)
µ(1)···µ(n) + . . . <∞,

µ(x)ϕ(x − 1)− (µ(x) + β(x))ϕ(x) + β(x)ϕ(x + 1) = −1,

i.e., ϕ(x) = Exτx→0. In particular,

ϕ(1) = Eτ1→0 = A(1) =
1

µ(1)

(
1 +

β(1)

µ(2)
+
β(1)β(2)

µ(2)µ(3)
+ . . .

)
.
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Models in a stationary random environment
Three cases

In the case of a random environment, all random variables or
probabilities are functions of two variables:

ωm: the environment, i.e., sequences of the r.v.s {µx}, {βx}, etc.
ω: the trajectory of the random walk for fixed ωm

Expectations:

We use Eωmτ = f (ωm) for the expectation with respect to ωm.
We use 〈Eωmτ〉 for the total expectation of τ .

We call a random walk ergodic in the “annealed” sense if
〈Eωmτx→y 〉 <∞ for all (x , y).

We call a random walk ergodic in the “quenched” sense if
Eωmτx→y <∞, Pωm − a.s.
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Models in a stationary random environment
Three cases

We similarly distinguish annealed and quenched asymptotics with
respect to some parameter, say, time t.

Typically, the quenched and annealed descriptions of processes in a
random environment are substantially different.

The concepts of intermittency and localization are a manifestation of
this difference.

We discuss three cases, all of which are statistically homogeneous.

Random walk in a random environment
Random walk with immigration in a random environment
Mean field Bolker-Pacala model in a random environment

S. Molchanov, J. Whitmeyer (Universities of Somewhere and Elsewhere)Population Dynamics in a Random EnvironmentLSA Winter Meeting - 2017 10 / 36



Models in a stationary random environment
Three cases

a) Random walk in a random environment

Figure: Random Walk in Random Environment

Assume that βx ∈ [a1, b1], 0 < a1 < b1 <∞, x ≥ 0, are i.i.d. random
variables on the underlying probability space (Ωm,Fm,Pm).

Also assume that µx ∈ [a2, b2], 0 < a2 < b2 <∞, x ≥ 0, are i.i.d.
random variables, independent of {βx , x ≥ 0}.
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Models in a stationary random environment
Three cases

b) Model with immigration

Figure: Random Walk in Random Environment with Immigration

{µx}, {βx}, and {kx} are three independent sequences of i.i.d.
random variables, βx ∈ [a1, b1], µx ∈ [a2, b2], and kx ∈ [a3, b3].

kx conveys the probability of immigration occurring at some site,
independent of the population.

This is mean field model of population dynamics.
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Models in a stationary random environment
Three cases

c) Mean field Bolker-Pacala model

Initial population of particles lives on a lattice.

Each particle can split, die, or migrate in space, at respective rates
βx , µx , and κx .

Key process: Death may occur due to presence of other particles
(competition or suppression), at rate γx .

A mean field treatment is mathematically tractable, and is equivalent
to a kind of random walk.
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Models in a stationary random environment
Three cases

Figure: Mean Field Bolker-Pacala Model in Random Environment

βx , µx , and γx are three independent sequences of i.i.d. random
variables, βx ∈ [a1, b1], µx ∈ [a2, b2], and γx ∈ [a3, b3].

Migration (rate κx) becomes irrelevant in the mean field treatment.

Quadratic term indicates the negative effect of competition from
other members of the population, at rate γx .
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Random walk in random environment

Start from the random walk

Figure: Random Walk in Random Environment

Consider the series

Z =1 +
µ1
β1

+
µ1µ2
β1β2

+ . . .

=1 +
∞∑
n=1

e
∑n

i=1 ln
µi
βi = 1 +

∞∑
n=1

e
∑n

i=1(lnµi−lnβi )

S. Molchanov, J. Whitmeyer (Universities of Somewhere and Elsewhere)Population Dynamics in a Random EnvironmentLSA Winter Meeting - 2017 16 / 36



Random walk in random environment
Quenched sense

There are three cases〈
ln
µ

β

〉
< 0,

〈
ln
µ

β

〉
= 0,

〈
ln
µ

β

〉
> 0.

When 〈ln µ
β 〉 = 0

Due to the CLT, the sum
n∑

i=1

ln
µi

βi
=
√
nSn

Where Sn is an asymptotically Gaussian r.v. that oscillates and is
greater than 1 infinitely many times.

Thus,
〈

ln µ
β

〉
≥ 0 implies the recurrence, Pωm -a.s., of x(t).

For
〈

ln µ
β

〉
< 0, the random walk is transient, Pωm -a.s.
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Random walk in random environment
Quenched sense

Next, consider the series

S0 = 1 +
β0
µ1

+
β0β1
µ1µ2

+ . . .

A similar calculation shows that the random walk is positively

recurrent (i.e., ergodic), Pωm -a.s., iff
〈

ln µ
β

〉
> 0.

If
〈

ln µ
β

〉
= 0, then, Pωm -a.s., the random walk is zero recurrent.

This has been the quenched classification. Turn now to the annealed
classification.
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Random walk in random environment
Annealed sense

Suppose x(t) is ergodic in the annealed sense, that is (for a =
〈

1
µ

〉
,

b = 〈β〉)

〈ϕ(1)〉 =

〈
1

µ1

〉
+ 〈β1〉

〈
1

µ1

〉〈
1

µ2

〉
+ . . .

= a + ba2 + b2a3 + . . . = a(1 + ab + (ab)2 + . . .) <∞

This holds iff 〈β〉
〈

1
µ

〉
< 1
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Random walk in random environment
Annealed sense

Due to Jensen’s inequality〈
ln
β

µ

〉
< ln

〈
β

µ

〉
= ln

(
〈β〉
〈

1

µ

〉)
.

If 〈β〉
〈

1
µ

〉
< 1, then,

〈
ln β

µ

〉
< 0 and x(t) is ergodic also in the

quenched sense.

It is possible that the random walk is ergodic in the quenched sense,

i.e., Pωm -a.s., but 〈β〉
〈

1
µ

〉
≥ 1 and so it is not ergodic in the

annealed sense:

〈τ1→0〉 = +∞.

We have exactly this situation if
〈

1
µ

〉
> 1
〈β〉 but 〈lnβ〉 < 〈lnµ〉.
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Random walk in random environment
Annealed sense

Consider, finally

EZ = 1 +
∞∑
j=1

〈µ〉j
〈

1

β

〉j

.

Clearly, EZ =∞ iff 〈µ〉
〈

1
β

〉
≥ 1.

Thus, if
〈

ln β
µ

〉
< 0 we have

0 <

〈
ln
µ

β

〉
< ln

〈
µ

β

〉
= ln

(
〈µ〉
〈

1

β

〉)
so that 〈µ〉

〈
1
β

〉
> 1.

Thus, if x(t) is ergodic in the quenched sense, it is at least recurrent
in the annealed sense, although possibly only zero recurrent.
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Random walk with immigration in random environment
Quenched sense

Figure: Random Walk in Random Environment with Immigration

Rate of increase, µx(ω)x + kx(ω), and rate of decrease, µx(ω), are
random functions of volume of population x(t) ≥ 0.

Duplication and mortality rates are multiplied by the population size;
immigration rate is not.
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Random walk with immigration in random environment
Quenched sense

Consider the series

S0 = 1+
k0
µ1

+
k0(β1 + k1)

2µ1µ2
+
k0(β1 + k1)(2β2 + k2)

3!µ1µ2µ3
+. . .+

k0

n−1∏
i=1

(iβi + ki )

n!
n∏

i=1

µi

+. . .

Note that

(n − 1)βn−1(ω) + kn−1(ω)

nµn(ω)
=
βn−1(ω) + kn−1(ω)−βn−1(ω)

n

µn(ω)

= e lnβn−1−lnµn+o( 1
n
).

Thus, using previous analysis for RW, S0 <∞ and so x(t) is ergodic

(Pωm -a.s.) iff 〈ln βx (ω)
µx (ω)

〉 = 〈lnβx〉 − 〈lnµx〉 < 0.

S. Molchanov, J. Whitmeyer (Universities of Somewhere and Elsewhere)Population Dynamics in a Random EnvironmentLSA Winter Meeting - 2017 24 / 36



Random walk with immigration in random environment
Quenched sense

Next, consider the series

Z =
µ1

β1 + k1
+

2µ1µ2
(β1 + k1)(2β2 + k2)

+ . . .+
n!
∏n

i=1 µi∏n
i=1(iβi + ki )

+ . . . <∞.

k·(ω) ≥ a3 > 0 implies that 〈ln µx (ω)
βx (ω)

〉 = 0⇒
〈

ln µx (ω)

βx (ω)+
kx (ω)

x

〉
< 0.

Thus, for 〈ln µx (ω)
βx (ω)

〉 = 0, Z <∞

I.e., for 〈ln βx (ω)
µx (ω)

〉 ≥ 0, the process x(t) is transient (Pωm -a.s.).
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Random walk with immigration in random environment
Annealed sense

Annealed perspective: x(t) is ergodic iff 〈ϕ(1)〉 <∞.

〈ϕ(1)〉 =

〈
1

µ

〉((
〈β〉+ 〈k〉

)〈 1

µ

〉
+ . . .+

+
(
〈β〉+ 〈k〉

)
· · ·
(
n〈β〉+ 〈k〉

) 1

n!

〈
1

µ

〉n

+ . . .
)

=

〈
1

µ

〉 ∞∑
j=1

〈
1

µ

〉j j∏
i=1

(
〈β〉+

〈k〉
i

)
.

Thus, 〈ϕ(1)〉 <∞ if and only if 〈β〉
〈

1
µ

〉
< 1.

As with random walk, the random walk with immigration can be
ergodic in the quenched sense but not in the annealed sense if〈

1
µ

〉
≥ 1
〈β〉 but 〈lnβ〉 < 〈lnµ〉.
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Random walk with immigration in random environment
Annealed sense

Turning to

EZ = 1 +
∞∑
j=1

〈µ〉j
j∏

i=1

〈
1

β + k
i

〉
.

Again, EZ =∞ iff 〈µ〉
〈

1
β

〉
≥ 1.

As above, if
〈

ln β
µ

〉
< 0, 〈µ〉

〈
1
β

〉
> 1.

Thus, as with the random walk without immigration, if x(t) is ergodic
in the quenched sense, it is at least recurrent in the annealed sense,
although possibly only zero recurrent.
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Mean field Bolker-Pacala model in random environment
Quenched sense

Figure: Mean Field Bolker-Pacala Model in Random Environment

Once more, calculate

S0 = 1+
β0

µ1 + γ1
+

β0β1
(µ1 + γ1)(2µ2 + 4γ2)

+. . .+
(n − 1)!

∏n−1
i=0 βi∏n

i=1(iµi + i2γi )
+. . . .

Consider the n + 1th term of S0, n ≥ 1

Tn+1 =

∏n−1
i=0 iβi∏n

i=1(iµi + i2γi )
=

n∏
i=1

(1i −
1
i2

)βi
1
i µi + γi
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Mean field Bolker-Pacala model in random environment
Quenched sense

Recalling that the upper bound for β· is b2 and the lower bound for γ·
is a3, let c = b2

a3
.

Then, using Stirling’s Formula

Tn+1 ≤
n∏

i=1

cn

n!
<

cnen√
2πnnn

=
(c · e

n

)n 1√
2πn

Clearly, then, S0 = 1 +
∑∞

i=1 Ti+1 <∞ and x(t) is ergodic, Pωm -a.s.

In other words, as long as the random variable parameters β·, µ·, and
γ· are bounded, x(t) is ergodic in the quenched sense.
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Mean field Bolker-Pacala model in random environment
Annealed sense

Turning to the annealed perspective,

〈ϕ(1)〉 =

〈
1

µ

〉(
〈β〉
〈

1

2µ+ 4γ

〉
+ . . .+

+ 〈β〉 · · · 〈(n − 1)β〉
〈

1

(2µ+ 4γ) · · · (nµ+ n2γ)

〉
+ . . .

)
.

The (n − 1)th term inside the parentheses can be written

1

n · n!
〈β〉n−1

n∏
j=2

〈
1

γj +
µj
j

〉
.

Clearly, again for all β·, µ·, and γ· bounded as given, ϕ(1) <∞.

The B-P model is ergodic in both annealed and quenched senses.
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Summary and discussion
Models and Recurrence Properties

RW Constant RW RE RW I RE B-P RE

Q Ergodic Ergodic Ergodic

〈ln β
µ〉 < 0 Ergodic

A E or ZR E or ZR Ergodic

Q Z Recurrent Transient Ergodic

〈ln β
µ〉 = 0 Z Recurrent

A Z Recurrent Transient Ergodic

Q Transient Transient Ergodic

〈ln β
µ〉 > 0 Transient

A Transient Transient Ergodic
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Summary and discussion
Traps

The quenched vs. annealed differences for the random walks are
worth exploring.

One phenomenon that may appear with a stationary random
environment is traps.

Figure: Random Trap in Random Walk in Random Environment

Figure:
Let c be the center of [a, b].
For x ∈ [a, b], if x > c , βx < µx (blue).
If x < c , βx > µx (red).

S. Molchanov, J. Whitmeyer (Universities of Somewhere and Elsewhere)Population Dynamics in a Random EnvironmentLSA Winter Meeting - 2017 33 / 36



Summary and discussion
Traps

Random trap: random interval [an, bn] where the drift locally is
toward the center of the interval.

Consider situation where 〈ln β
µ〉 < 0.

If βx < µx P-a.s., then, the random walk is ergodic much like the
random walk in a constant environment.
But if P{βx > µx} ≥ δ > 0, then, traps will exist, giving ergodicity in
the quenched sense.
Here, however, in the annealed sense, traps will not exist.

To leave a trap, x(t) will take time which is the exponential of the
size of the trap.
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Summary and discussion
Traps

Traps were explored for a simple random walk in discrete time in the
Sinai model (1982).

It is well known that a simple symmetric (β = µ) random walk in a
constant environment in time t is expected to move distance

√
t from

its starting point.
Sinai showed that in a stationary random environment, still with〈

ln β
µ

〉
= 0, that expected time was drastically reduced to ln2 t.

For our random walks in random environment with
〈

ln β
µ

〉
< 0 there

will be random traps of any width.

The centers, c1, c2, . . . will be local equilibria.

x(t) will undergo Gaussian fluctuations around those centers,
eventually breaking free, only to end up in another trap.
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Summary and discussion
Other conditions

For homogenization of (1-dimensional) RW in RE, some inner
symmetry is necessary.

For example, the rates of increase and decrease can be equal on the
“edges” of the RW: β∗x = µ∗x+1.
This gives a symmetric transition matrix, which is a self-adjoint
operator.
This RW in random environment becomes like RW in constant
environment.

Another alternative is a non-stationary random environment.

Above we have considered a stationary RE.
A non-stationary RE is unlikely to produce traps, because the
configuration of rates that produces traps, described above, will
evaporate with time.
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