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1 Maximum entropy principle

Suppose you would like to estimate probabilities p = (p1, p2, . . . , p6) for a die based on the mean score
y = E[X]. MEP suggests to take the distribution with maximal entropy consistent with the available
information. Let N = (1, 2, 3, 4, 5, 6)T . Define the Lagrangian

L = −pT logp+ λ(y −NTp) + µ(1− pT1). (1.1)

This analysis implies

p̂j =
e−jλ̂(y)

Z(λ̂(y))
, j = 1, 2, . . . , 6, Z(λ̂) =

6∑
k=1

e−kλ̂. (1.2)

For y = 3.5 we have λ̂(3.5) = 0 and distribution is uniform. For y > 3.5 we have λ̂(y) < 0 and
probabilities increase with the increase of the face number.

Many applied papers argue for that the severity of different factors (as well as probability) should be
taken into account. This leads to

Weighted Maximum entropy principle: maximize −
K∑
k=1

wkpk log pk. with restrictions.

Suppose you would like to estimate the probability distribution of different attacks on computer system
based on the mean damage and some additional information. Applications of the WE and WDE to the
security quantification of information systems are discussed in:
Paksakis C., Mermigas S., Pirourias S., Chondrokoukis G., The role of weighted entropy in security
quantification, Int. Journ. of Information and Electronics Engineering (2013), 3, 2, 156-159

Other domains range from the stock market to the image processing. We concentrate on the so-called
Kelly investments. In real financial market the investment strategy depends not only on the current
values of stocks but also on their dynamics. For simplicity, we start with the static market.

2 Numerical example
Initial capital $1000. Five risky assets.
Toss a coin 700 times, 1000 realizations:
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P(head) Odds P(choose) Kelly bets
0.57 1-1 0.1 0.14
0.38 1-2 0.3 0.07
0.285 1-3 0.3 0.047
0.228 1-4 0.2 0.035
0.19 1-5 0.1 0.028

(2.1)

... Min Max Mean Median
Kelly 18 483,883 48.135 17.269

1/2 Kelly 145 111,770 13.019 8.013
(2.2)

final > 500 > 1000 > 5000 > 50, 000 > 100, 000
Kelly 916 870 598 302 166

1/2 Kelly 990 969 480 30 1
(2.3)

3 The cautious Kelly investments with a single risky asset
An investor is betting on results εn of subsequent random trials, n = 0, 1, 2, . . .. Suppose that the εn
are generated by a Markov chain with a finite or countable state space M . The transition matrix is
P = (p(i, k), i, k ∈M). The recursion for Zn is

Zn = Zn−1 + Cn−1g(εn−1, εn) = Zn−1

[
1 +

Cn−1g(εn−1, εn)

Zn−1

]
; (3.1)

it shows that Zn ∈Wn: Zn = Zn(ε
n
0 ). For the return function g we will use the acronym RF.

Next, let us consider another function, (i, k) 7→ ϕ(i, k) ≥ 0, representing a ‘utility’ value assigned to
outcome k when it succeeds outcome i. If ϕ(i, k) ≡ 1, all outcomes are treated entirely in terms of their
returns, and if ϕ(i, k) does not depend on i, the value does not take into account the history. We say
that ϕ is a weight function (WF); including one-step history i agrees with the Markovian assumption for
εn.

We wish to maximize, in C0, . . . , Cn−1, the mean value ESn where

Sn :=

n∑
j=1

ϕ(εj−1, εj) ln
Zj
Zj−1

, (3.2)

and determine, when possible, a sequence of optimal startegies {CO
j }, within a ‘natural’ classes {Cj} of

predictable strategies defined by recursive inequalities (3.6) below:

(CO
0 , . . . , C

O
n−1) = argmax

[
ESn : Cj ∈ Cj , 0 ≤ j ≤ n− 1

]
. (3.3)

The classes Cj are described through conditions (a0)–(a2) or (a0)–(a3) listed in Eqn (3.6) below. Under
our assumptions, the optimum is at a proportional betting, where CO

j−1 = DO
j−1(εj−1)Zj−1. Here Zj−1

is the capital after j−1 trials and DO
j−1(i) is the proportionality coefficient indicating the fraction of the

capital to be invested into the jth trial.
Quantity Sn/n can be considered as a weighted log-capital rate after n trials. When ϕ(i, k) ≡ 1, the

sum in (3.2) becomes telescopic, and Sn equals ln
Zn
Z0

(a standard quantity in financial calculations,

particularly in relation to the Kelly-type investments).
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The form of summation in Eqn (3.2) suggests the use of the weighted Kullback–Leibler (KL) entropy
of the row probability vector

(
p(i, k), k ∈M

)
relative to chosen ‘calibrating’ functions (i, k) ∈M×M 7→

qj(i, k) > 0, j = 0, 1, . . .. To this end, set:

αj(i) =
∑
l∈M

ϕ(i, l)p(i, l) ln
p(i, l)

qj(i, l)
, i ∈M, j ≥ 0. (3.4)

The choice of calibrating functions (CFs) qj(i, k) is a part of the optimization procedure and is
discussed below: see (3.6) and (3.7). We consider the random process (RP) of the cumulative weighted
KL entropy

An =

n∑
j=1

αj−1(εj−1), with EAn =

n∑
j=1

Eαj−1(εj−1). (3.5)

Also fix a value b > 0 (a proportional ruin threshold).
Let us summarize conditions on the class of policies and involved functions: ∀ j ≥ 0,

(a0) Cj ∈Wj , (a1) 0 ≤ Cj < Zj , (a2) 1 +
Cjg(εj , εj+1)

Zj
≥ b, and

(a3) Cj(ε
j
0)
∑
l∈M

ϕ(εj , l)qj+1(εj , l)g(εj , l) = 0.
(3.6)

Also, ∀ i ∈M, j ≥ 0, we assume the condition labelled as (q–p) in Eqn (3.7):

(q− p)
∑
l∈M

ϕ(i, l)
[
qj(i, l)− p(i, l)

]
≤ 0. (3.7)

Theorem 1.1. Suppose the recursion (3.1) holds true.
(a) Suppose a sequence of CFs qn is given, obeying (3.7). Take any sequence {Cn, n ≥ 0} of random

variables (RVs) Cn satisfying properties (a0)–(a3) in Eqn (3.6). Consider RVs Sn and An defined in (3.2)
and (3.4)–(3.5). Then the sequence of differences {Sn −An, n ≥ 1} is a supermartingale; consequently,
ESn ≤ EAn ∀ n ≥ 1.

(b) To achieve equality ESn = EAn: the sequence {Sn − An} is a martingale for a sequence of RVs
Cn satisfying (a0)–(a3) in (3.6) iff the following conditions (i)–(ii) hold.

(i) There exists a function D : M → R such that, ∀ i, k ∈M ,

(i1) 0 ≤ D(i) < 1, (i2) 1 +D(i)g(i, k) ≥ b, (i3) D(i)
∑
l∈M

p(i, l)ϕ(i, l)g(i, l)

1 +D(i)g(i, l)
= 0,

i.e., either (i3A)
∑
l∈M

p(i, l)ϕ(i, l)g(i, l)

1 +D(i)g(i, l)
= 0 or (i3B) D(i) = 0, and

(i4) the CFs qj are of the form qj(i, k) =
p(i, k)

1 +D(i)g(i, k)
, j = 0, 1, . . . .

(3.8)

(ii) ∀ n ≥ 1, the policy Cn−1 produces a proportional investment: Cn−1(εn−10 ) = D(εn−1)Zn−1.

Furthermore, the CF values qn(i, k) given in (i4) satisfy
∑
l∈M

qn(i, l) = 1 (which yields a transition

probability matrices) iff, in addition to (i3), we have that

D(i) = 0 or
∑
l∈M

p(i, l)g(i, l)

1 +D(i)g(i, l)
= 0, i ∈M. (3.9)

(c) Define the map i ∈ M 7→ DO(i) as follows. Given i, consider Eqn (i3A): it has at most one
solution D(i) > 0. If (i3A) has a solution D(i) > 0 obeying conditions (i1)–(i2), set DO(i) = D(i);
otherwise DO(i) = 0. Then the policy CO

n−1 = DO(εn−1)Zn−1 yields the following value En for the
expectation ESn:

En =

n∑
j=1

βj−1 where βj−1 = E
{
ϕ(εj−1, εj) ln

[
1 +DO(εj−1)g(εj−1, εj)

]}
. (3.10)
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Moreover, the value En gives the maximum of ESn over all strategies satisfying conditions (a0)–(a3)
in (3.6).

(d) Suppose that the map i ∈ M 7→ DO(i) from assertion (c) is such that DO(i) > 0 (so the
alternative (i3A) holds), ∀ i ∈ M . Then the policy CO

n−1 = DO(εn−1)Zn−1 maximises each summand
αj−1 in (3.10), and therefore yields the maximum of the whole sum ESn, among strategies satisfying
properties (a0)–(a2) in Eqn (3.6).

Example 1.2: A two-state Markov chain. In the Markov case, when the trader observes the current
state i, he/she uses the similar optimization procedure for the ith row of the 2 × 2 transition matrix
P = (p(i, k)). Again suppose for simplicity that M = {0, 1}, the WF ϕ(i, j) ≡ 1 and the RF g has
g(1) = −g(0) = γ > 0. Also suppose that b ∈ (0, 1) is given. Then an analog of the previous picture
emerges. Namely, set, for i = 1, 0,

DO(i) =


p(i, 1)− p(i, 0)

γ
, if

b

2
≤ p(i, 0) ≤ p(i, 1), and γ ≥ p(i, 1)− p(i, 0),

0, otherwise.
(3.11)

The policy CO
n = D(εn)Zn(ε

n
0 ) is optimal, under similar constraints. That is, if DO(i) > 0 for both i =

0, 1 then the maximum is attained over strategies satisfying (a0) Cj ∈Wj and (a1,2) 0 ≤ Cj ≤ (1−b)Zj ,
∀ j ≥ 0. Otherwise, if DO(i) = 0 for some i then it is among the strategies obeying (a0)–(a1,2) plus
property (a3): Cj(ε

j
0)
[
p(εn, 1)− p(εn, 0)

]
= 0 ∀ j ≥ 0.

Viz., assume that the Markov chain (MC) is in the stationary regime, with stationary probabilities
π(1), π(0). Then the maximal growth of ESn is

En = n

(
π(1)1

(
b

2
≤ p(1, 0) ≤ p(1, 1) ≤ γ + p(1, 0)

)
×
{
p(1, 1) ln

[
1 + p(1, 1)− p(1, 0)

]
+ p(1, 0) ln

[
1− p(1, 1) + p(1, 0)

]}
+π(0)1

(
b

2
≤ p(0, 0) ≤ p(0, 1) ≤ γ + p(0, 0)

)
×
{
p(0, 1) ln

[
1 + p(0, 1)− p(0, 0)

]
+ p(0, 0) ln

[
1− p(0, 1) + p(0, 0)

]})
.

The last observation can be extended to general MCs. Indeed, suppose the trial MC starts with an
invariant distribution (π(i), i ∈ M). In this case the statements (c,d) of Theorem 1.1 assert that the
maximum for ESn is given as n

∑
i,k∈M

πip(i, k)ϕ(i, k) ln
[
1 +DO(i)g(i, k)

]
. Note that we do not need

assumptions of irreducibility or aperiodicity: the invariant distribution is not assumed to be unique.

4 The cautious Kelly investments with a single riskless and sev-
eral risky asset

The recursion for Zn is similar to (3.1), with replacing scalar random variables by random vectors (RVs):

Zn = Zn−1 + Cn−1 · g(εn−1, εn) = Zn−1

[
1 +

Cn−1 · g(εn−1, εn)
Zn−1

]
, n ≥ 1. (4.1)

Here and below,

Cn−1 · g(εn−1, εn) =
K∑
s=1

C
(s)
n−1g

(s)(εn−1, εn).

Also, |Cj | =
K∑
s=1

C
(s)
j = Cn−1 · 1 where 1 = (1, . . . , 1), and we write Cj ≥ 0 if C(s)

j ≥ 0 ∀ s

As above, we set Sn :=
n∑
j=1

ϕ(εj−1, εj) ln
Zj
Zj−1

and aim at maximizing the mean value ESn in

C0, . . . , Cn−1, under certain restrictions. Fix b > 0 and re-write the conditions outlining the portfolio
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classes under consideration: ∀ j ≥ 0,

(a0) Cj ∈Wj , (predictability), (a1) Cj ≥ 0, |Cj | < Zj , (sustainability),

(a2) 1 +
Cj · g(εj , εj+1)

Zj
≥ b, (no ruin), and

(a3)
∑
l∈M

ϕ(εj , l)qj+1(εj , l)
[
Cj(ε

j
0) · g(εj , l)

]
= 0 (weighted q,g-balance).

(4.2)

We also assume, ∀ i ∈M , the (q–p) bound (3.7).
Consider the following conditions (i1)–(i4) which are vector counterparts of their scalar predecessors

from (3.8). For convenience, we use the same labelling system as above.
(i) There exists a map i ∈ M 7→ D(i) where vector D(i) =

(
D(1)(i), . . . , D(K)(i)

)
is such that ∀

i, k ∈M ,

(i1) D(i) ≥ 0, and |D(i)| < 1 (D-sustainability),
(i2) 1 +D(i) · g(i, k) ≥ b (D-no-ruin),

(i3)
∑
l∈M

ϕ(i, l)p(i, l)
D(i) · g(i, l)

1 +D(i) · g(i, l)
= 0 (WE D,g-balance), and

(i4) the CFs qj are qj(i, k) =
p(i, k)

1 +D(i) · g(i, k)
, j ≥ 0 (q-representation).

(4.3)

Here the analog of the first alternative in (i3) is that D(i) satisfies a system of equations:

(i3A)
∑
l∈M

p(i, l)
ϕ(i, l)g(s)(i, l)

1 +D(i) · g(i, l)
= 0

∀ i ∈M and 1 ≤ s ≤ K (strong WE D,g-balance).
(4.4)

Cf. (i3A) in Eqn (3.8).

Theorem 3.1. Assume the above setting (4.1)–(4.4). The following assertions hold true.
(a) Take any sequence {Cj , j ≥ 0} obeying (a0)–(a3) in (4.2). Then the sequence {Sn −An, n ≥ 1}

is a supermartingale; hence ESn ≤ EAn ∀ n ≥ 1.

(b) To reach equality ESn =
n∑
j=1

Eα(εj−1): the sequence {Sn−An} is a martingale for a sequence of

RVs {Cj}, satisfying (a0)–(a3) iff the additional properties (i), (ii) below are fulfilled.

(i) There exists a map i ∈ M 7→ D(i) where vector D(i) =
(
D(1)(i), . . . , D(K)(i)

)
is such that ∀

i, k ∈M , properties (i1)–(i3) in (4.3) are fulfilled, and the CFs qj are as in (i4).
(ii) The portfolio vectors Cj have components C(s)

j (εj0) = D(s)(εj)Zj , 1 ≤ s ≤ K, j ≥ 0. That is,
the prescribed fractions of the capital value Zj are invested in the available returns.

(c) Suppose there exists a map i ∈ M 7→ D(i) =
(
D(1)(i), . . . , D(K)(i)

)
fulfilling conditions (i1)–(i3)

in Eqn (4.3). Let D stand for the array of values D(s)(i), i ∈ M , 1 ≤ s ≤ K, and define the quantity
En = En(D) by

En =
n∑
j=1

βj−1 where βj−1 = E
{
ϕ(εj−1, εj) ln

[
1 +D(εj−1) · g(εj−1, εj)

]}
. (4.5)

Consider the optimization problem

max En(D) subject to (i1)− (i3). (4.6)

Let D∗ = arg max En be a (possibly, non-unique) optimizer, and E∗n = En(D
∗) denote the optimal

value for (4.6). Then E∗n defines the maximum of the expectation ESn among all portfolios {Cj}
satisfying the properties (a0)–(a3) in Eqn (4.2). The optimizer D∗ written as a collection of vectors
D∗(i), i ∈M , yields a proportional investment portfolio where Cj(ε

j
0) = D∗(εj)Zj(ε

j
j).

(d) Suppose there exists a map i ∈ M 7→ D(i) fulfilling conditions (i1)–(i2) and (i3A) in Eqns
(4.3) and (4.4), respectively. Then such a map is unique, and the proportional investment portfolio
CO
j−1 = D∗(εj−1)Zj−1 maximises each summand βj−1 in (4.5). Therefore, it yields the maximum of the

whole sum ESn, among strategies satisfying properties (a0)–(a2) in Eqn (4.2).

Finally, we study the general non-Markov trading with utility functions ϕ(εj−10 , εj).
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