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In this talk we consider the following space-time fractional equation

m∑
j=1

λj
∂νj

∂tνj
w(x1, . . . , xn; t) = − c2 (−∆)β w(x1, . . . , xn, t) (1)

subject to the initial condition

w(x1, . . . , xn; 0) =
m∏
j=1

δ(xj) (2)

and where 0 < νj < 1, 0 < β ≤ 1.
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The time-fractional derivatives must be understood in the sense of

Dzerbayshan-Caputo and, in our case, writes

∂νj

∂tνj
w(x1, . . . , xn; t) =

1

Γ(1− νj)

∫ t

0

∂
∂sw(x1, . . . , xn; s)

(t − s)νj
ds (3)

The fractional Laplacian appearing in (1) is de�ned in terms of Fourier

transforms for a function u(~x) = u(x1, . . . , xn) as

−(−∆)βu(~x) = − 1

(2π)n

∫
Rn

e−i~x ·
~ξ ‖~ξ‖2β û(~ξ) d~ξ (4)

where û(~ξ) is the Fourier transform of u(~x).
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Equation (1) includes as special cases the following time-fractional

one-dimensional telegraph equation(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
u(x , t) = c2

∂2

∂x2
u(x , t), x ∈ R, t > 0, 0 < ν ≤ 1

(5)

which itself generalises the telegraph equation (ν = 1) which is the

governing equation of the distribution of the telegraph process.
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We have been able to write down the Fourier transform u(ξ, t) of the

solution of (5) subject to the initial conditions

u(x , 0) = δ(x) 0 < ν ≤ 1

2

u(x , 0) = 0
1

2
< ν ≤ 1

as

u(ξ, t) =
1

2

[(
1 +

λ√
λ2 − c2ξ2

)
Eν,1(r1t

ν)

+

(
1− λ√

λ2 − c2ξ2

)
Eν,1(r2t

ν)

]
(6)

where r1 = −λ+
√
λ2 − c2ξ2, r2 = −λ−

√
λ2 − c2ξ2 and

Eν,1(x) =
∑∞

k=0

xk

Γ(νk+1) is the one-parameter Mittag-Le�er function.

Generalized Space-Time Fractional Equation and the Related Stochastic Processes 5of 33



A special and interesting subcase of (5) is when ν = 1

2
, for which (6)

can be inverted explicitly and coincides with the distribution of

T (|B(t)|)

where T is a telegraph process independent from |B(t)|, which is a

re�ecting Brownian motion.
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For λ→∞, c →∞ in such a way that c2

λ → 1, equation (5) becomes

∂ν

∂tν
u(x , t) =

∂2

∂x2
u(x , t) (7)

and for ν = 1

2
its fundamental solution coincides with the distribution

of the iterated Brownian motion

I (t) = B1 (|B2(t)|) (8)

Bj(t), j = 1, 2 being independent Brownian motions.
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By the way, the distribution of (8) coincides with the fundamental

solution of the non-homogeneous fourth-order equation

∂

∂t
u(x , t) =

1

23
∂4

∂x4
u(x , t) +

1

2
√
2πt

d2

dx2
δ(x) (9)

where δ(x) is the Dirac delta function.

We now return to the general equation (1), of which we are able to

give a probabilistic solution as the distribution of a time-changed

isotropic stable process.

Let us now formulate this result explicitly.

Generalized Space-Time Fractional Equation and the Related Stochastic Processes 8of 33



The solution of the Cauchy problem

m∑
j=1

λj
∂νj

∂tνj
w(x1, . . . , xn; t) = − c2 (−∆)β w(x1, . . . , xn; t)

w(x1, . . . , xn; 0) = δ(x1, . . . , xn) =
m∏
j=1

δ(xj)

(10)

for 0 < νj ≤ 1, 0 < β ≤ 1 coincides with the distribution of the

process

W ν1, ..., νn
n (t) = S2β

n

(
c2Lν1, ..., νm(t)

)
(11)

where S2β
n is an isotropic stable process and Lν1, ..., νm(t) is now

de�ned as the inverse of a suitable combination of stable

subordinators.
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The process S2β
n (t) has distribution

vβ(~x , t) =
1

(2π)n

∫
Rn

e−i
~ξ·~xe−t‖ξ‖

2β
d~ξ (12)

and therefore has characteristic function

v̂β(~ξ, t) = e−t‖ξ‖
2β

A bit more complicated is the de�nition of Lν1, ..., νm(t).
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We �rst consider

Hν1, ..., νm(t) =
m∑
j=1

λ
1
νj

j H
νj
j (t), 0 < νj < 1 (13)

where H
νj
j (t) are independent, stable subordinators of order

0 < νj < 1.

The process Lν1, ..., νm(t) is the inverse of Hν1, ..., νm(t) and is de�ned

as

Lν1, ..., νm(t) = inf

s > 0 : Hν1, ..., νm(t) =
m∑
j=1

λ
1
νj

j H
νj
j (s) ≥ t

 (14)

The distribution of Hν1, ..., νm(t) and Lν1, ..., νm(t) are related as

Pr {Lν1, ..., νm(t) < x} = Pr {Hν1, ..., νm(x) > t} (15)
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As far as the distributions `ν1, ..., νm(t) of Lν1, ..., νm(t) and hν1, ..., νm(t)
of Hν1, ..., νm(t) we have the following theorem.

Theorem

(i) For x > 0, t > 0 and 0 < νj < 1, the solution to the problem
∂

∂t
hν1, ..., νm(x , t) = −

m∑
j=1

λj
∂νj

∂xνj
hν1, ..., νm(x , t)

hν1, ..., νm(x , 0) = δ(x)

hν1, ..., νm(0, t) = 0

is given by the density of Hν1, ..., νm(t), t > 0.
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Theorem

(ii) For x > 0, t > 0, the solution to the problem

m∑
j=1

λj
∂νj

∂tνj
`ν1, ..., νm(x , t) = − ∂

∂x
`ν1, ..., νm(x , t)

`ν1, ..., νm(0, t) =
m∑
j=1

λj
t−νj

Γ(1− νj)

is given by the density of Lν1, ..., νm(t), t > 0.

The fractional derivatives appearing above must be understood in the

Riemann-Liouville sense.
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The technique used for the proof of both statements is based on

Laplace transforms in case (ii) and Fourier transforms in case (i).

The combination of Fourier-Laplace transforms is the key tool for

proving the main statement about the solution of the Cauchy

problem (10), which produces for

ˆ̂wν1, ..., νn(ξ1, . . . , ξn; µ) = ˆ̂w(~ξ, µ) =

∫ ∞
0

e−µtdt

∫
Rn

e i
~ξ·~xw(~x , t) d~x

ˆ̂w(~ξ, µ) =

∑m
j=1

λj µ
νj−1∑m

j=1
λj µνj + c2‖ξ‖2β

(16)
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If now we take the Fourier-Laplace transform of the process

S2β
n

(
c2Lν1, ..., νm(t)

)
(17)

this check can be by �rst evaluating the characteristic function of the

process (17) as

E
[
e i
~ξ·S2β

n (c2Lν1, ..., νm (t))
]

=E
[
E
(
e i
~ξ·S2β

n (c2Lν1, ..., νm (t)) | Lν1, ..., νm(t)
)]

=E
[
e−c

2‖ξ‖2βLν1, ..., νm (t)
]

=

∫ ∞
0

e−c
2s‖ξ‖2β`ν1, ..., νm(s, t) ds (18)
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Consider now

Pr {Lν1, ..., νm(t) < s} = Pr {Hν1, ..., νm(s) > t}

=

∫ ∞
t

Pr {Hν1, ..., νm(s) ∈ dz}

=

∫ ∞
t

hν1, ..., νm(z , s) dz (19)

so that

`ν1, ..., νm(s, t) = − ∂

∂s

∫ t

0

hν1, ..., νm(z , s) dz

By plugging (19) into (18) we get

E
[
e i
~ξ·S2β

n (c2Lν1, ..., νm (t))
]

=

=

∫ ∞
0

e−c
2s‖ξ‖2β

[
− ∂

∂s

∫ t

0

hν1, ..., νm(z , s) dz

]
ds (20)
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We now take the Laplace transform of (20); we have that∫ ∞
0

e−µt E
[
e i
~ξ·S2β

n (c2Lν1, ..., νm (t))
]
dt =

=

∫ ∞
0

e−µtdt

∫ ∞
0

e−c
2s‖ξ‖2β

[
− ∂

∂s

∫ t

0

hν1, ..., νm(z , s) dz

]
ds

=

∫ ∞
0

e−c
2s‖ξ‖2β

[
− ∂

∂s

∫ ∞
0

hν1, ..., νm(z , s) dz

∫ ∞
z

e−µtdt

]
ds

=

∫ ∞
0

e−c
2s‖ξ‖2β

(
− 1

µ

)
∂

∂s

[∫ ∞
0

e−µzhν1, ..., νm(z , s) dz

]
ds

=− 1

µ

∫ ∞
0

e−c
2s‖ξ‖2β ∂

∂s
E

[
e−µ

∑m
j=1 λ

1
νj
j H

νj
j (s)

]
ds (21)
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For the independence of the stable subordinators H
νj
j we have that

E

[
e−µ

∑m
j=1 λ

1
νj
j H

νj
j (s)

]
=

m∏
j=1

E

[
e−µλ

1
νj
j H

νj
j (s)

]
= e−s

∑m
j=1 λjµ

νj
(22)

and thus, by inserting (22) into (21) we get∫ ∞
0

e−µt E
[
e i
~ξ·S2β

n (c2Lν1, ..., νm (t))
]
dt =

=

∑m
j=1

λjµ
νj

µ

∫ ∞
0

e−c
2s‖ξ‖2β−s

∑m
j=1 λj µ

νj
ds

=

∑m
j=1

λj µ
νj−1∑m

j=1
λj µνj + c2‖ξ‖2β

which coincides with (16). This proves the statement of the theorem.
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For β = 1 we have that
m∑
j=1

λj
∂νj

∂tνj
w(x1, . . . , xn; t) = c2∆w(x1, . . . , xn; t)

w(x1, . . . , xn; 0) = δ(x1, . . . , xn)

(23)

and the fundamental solution coincides with the law of a subordinated

n-dimensional Brownian motion

Bn

(
c2Lν1, ..., νm(t)

)
(24)
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For m = 2, ν1 = 2ν, ν2 = ν we have the equation(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
w(x1, . . . , xn; t) = −c2(−∆)βw(x1, . . . , xn; t)

(25)

which is the most immediate space-time extension of the classical

telegraph equation.

In this case the fundamental solution of (23) coincides with the

distribution of

Wn(t) = S2β
n

(
c2Lν(t)

)
(26)

where

Lν(t) = inf
(
s ≥ 0 : H(s) = H2ν

1 (s) + (2λ)
1
νHν

2 (s)
)

for 0 < ν < 1

2
, β ∈ (0, 1], where H2ν

1
and Hν

2
are independent

subordinators.
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The Fourier transform of Wn(t) has the following expression

E
[
e i
~ξ·Wn(t)

]
=

1

2

[(
1 +

λ√
λ2 − c2‖ξ‖2β

)
Eν,1(r1t

ν)

+

(
1− λ√

λ2 − c2‖ξ‖2β

)
Eν,1(r2t

ν)

]
(27)

where

r1 = −λ+
√
λ2 − c2‖ξ‖2β

r2 = −λ−
√
λ2 − c2‖ξ‖2β

and Eν,1(x) =
∑∞

k=0

xk

Γ(νk+1) is the one-parameter Mittag-Le�er

function.
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The technique which permits to obtain (27) consists in the

decomposition of the Fourier-Laplace transform as follows∫ ∞
0

e−µt
∫ +∞

−∞
e i
~ξ·~xu(~x , t) d~x dt =

µ2ν−1 + 2λµν−1

µ2ν + 2λµν + c2‖ξ‖2β
(28)

=
µν−1

µν − r1
+

µν−1

µν − r2
−

[
µν−(1−ν)

µν − r1
− µν−(1−ν)

µν − r2

]
1

2
√
λ2 − c2‖ξ‖2β

and then consider that∫ ∞
0

e−µtEν,1(rj t
ν) dt =

µν−1

µν − rj
(29)∫ ∞

0

e−µtt(1−ν)−1Eν,1−ν(rj t
ν) dt =

µ2ν−1

µν − rj
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Therefore, in view of (29), the inverse Laplace transform of (28)

becomes∫ +∞

−∞
e i
~ξ·~xu(~x , t) d~x =Eν,1(r1t

ν) + Eν,1(r2t
ν)− t−ν

2
√
λ− c2‖ξ‖2β

(30)

× [Eν,1−ν(r1t
ν)− Eν,1−ν(r2t

ν)]

Since

Eν,1−ν(z) = z Eν,1(z) +
1

Γ(1− ν)

with some further calculations we obtain (27).
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Note that for β = 1, ν = 1 the expression (27) coincides with the

characteristic function of the symmetric telegraph process T (t).

For β = 1, ν = 1

2
we have instead that (27) is the characteristic

function of the time-changed telegraph process T (|B(t)|), where
|B(t)| is a re�ecting Brownian motion independent from T .

It is also true that for β = 1, ν = 1

2
the expression (27) is the

characteristic function of the time-changed Brownian motion

W1(t) = B
(
c2L

1
2 (t)

)
(31)

where L
1
2 (t) is the inverse of H

1
2 (t) = t + (2λ)2H

1
2 (t) and H

1
2 (t) is

the stable subordinator of order 1

2
.

Thus we have the following equality in distribution

T (|B(t)|) i .d .
= B

(
c2L

1
2 (t)

)
(32)

(see D'Ovidio et al. (2014)).
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A similar relationship can be developed for the planar random motion

evolving with velocity c , changing direction at Poisson-paced times

and with uniformly distributed orientation of the deplacements.

This process T (t) = (X (t),Y (t)) has distribution, at time t,
concentrated in the circle {x , y : x2 + y2 ≤ c2t2}. The circumference

∂Cct of radius ct is attained with probability e−λt (distributed
uniformly on ∂Cct) and the inner points are reached with probability

r(x , y ; t) =
λ

2πc

e−λt+λ
c

√
c2t2−x2−y2√

c2t2 − x2 − y2
, x2 + y2 < c2t2, t > 0 (33)

The function r(x , y ; t) satis�es(
∂2

∂t2
+ 2λ

∂

∂t

)
r(x , y ; t) = c2

(
∂2

∂x2
+

∂2

∂y2

)
r(x , y ; t) (34)
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Instead the process

Q(t) = T (|B(t)|)

satis�es the two-dimensional time-fractional equation(
∂

∂t
+ 2λ

∂
1
2

∂t
1
2

)
q(x , y ; t) = c2

(
∂2

∂x2
+

∂2

∂y2

)
q(x , y ; t) (35)

It is also true that Q(t) = B2

(
c2L

1
2 (t)

)
, where B2 is the planar

Brownian motion, and thus we have that

B2

(
c2L

1
2 (t)

)
i .d .
= T (|B(t)|) (36)

In higher dimensions we are not able to provide results similar to the

above ones because (with the exception of the space R4) we cannot

give explicit and reasonable expressions for the distribution of

n-dimensional random �ights.
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Iterated Brownian motions

The iterated Brownian motion

I (t) = B1(|B2(t)|) (37)

has distribution solving the fractional equation

∂
1
2

∂t
1
2

p(x , t) =
1

2
3
2

∂2

∂x2
p(x , t) (38)

The n-times iterated Brownian motion

In(t) = B1 (|B2 (. . . |Bn+1(t)| . . .) |) (39)

has distribution pn(x , t) satisfying

∂
1
2n

∂t
1
2n
pn(x , t) = 2

1
2n
−2 ∂

2

∂x2
pn(x , t) (40)
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The n-times iterated telegraph process

Tn(t) = T (|B1 (|B2 (. . . |Bn+1(t)| . . .) |) |) (41)

has distribution qn(x , t) satisfying the equation

∂
2
2n

∂t
2
2n
qn(x , t) + 2λ

∂
1
2n

∂t
1
2n
qn(x , t) = c2

∂2

∂x2
qn(x , t) (42)
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For n→∞ the distribution of In(t) becomes

lim
n→∞

pn(x , t) = e−2|x | (43)

independent of t.

The distribution qn(x , t) converges as n→∞

lim
n→∞

qn(x , t) =

√
1 + 2λ

2c
e−
|x|
c

√
1+2λ (44)
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In the n-dimensional case we can reformulate the problem as follows.

We take n-dimensional time-changed isotropic stable process

(Brownian motion for β = 1) S2β
n (Lν1, ..., νmr (t)), where

Lν1, ..., νmr (t) = inf (s : Hν1, ..., νmr (s) ≥ t)

and

Hν1, ..., νmr (t) =
m∑
j=1

λ
1
νj

j 1H
νj (2H

νj (. . . rH
νj (t)))

is a combination of r -times iterated subordinators.

The law wν1, ..., νm(~x , t) of S2β
n (Lν1, ..., νmr (t)) satis�es

m∑
j=1

λj
∂νj

∂tνj
wβ,r
ν1, ..., νm(~x , t) = −c2(−∆)βwβ,r

ν1, ..., νm(~x , t)

wβ,r
ν1, ..., νm(~x , 0) = δ(~x)
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For r →∞,

lim
r→∞

S2

n (Lν1, ..., νmr (t)) = lim
r→∞

Bn (Lν1, ..., νmr (t)) (45)

converges to the distribution

wn(~x) =
1

(2π)
n
2


√∑m

j=1
λj

c


n+2
2

‖x‖−
n−2
2 K n−2

2


√∑m

j=1
λj

c
‖x‖


(46)

where Kν(z) =
∫∞
0

e−z cosh t cosh νt dt is the modi�ed Bessel function.
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The function wn(~x) satis�es m∑
j=1

λj

wn(x1, . . . , xn) = c2
n∑

j=1

∂2

∂x2j
wn(x1, . . . , xn) (47)

For n = 1, formula (46) becomes

wm(x) =

√∑m
j=1

λj

2c
e−
√∑m

j=1
λj

c
|x | (48)

which con�rms the previous results.
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