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In this talk we consider the following space-time fractional equation

m

SN o wla, o ) =~ (A wla, e 1) (1)
j=1

subject to the initial condition

w(x1, ..., Xn; 0) = H(S(XJ) (2)

and where 0 <7, <1,0< 8 < 1.
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The time-fractional derivatives must be understood in the sense of
Dzerbayshan-Caputo and, in our case, writes

ovi 1 | /t %W(Xl, cevy Xns S) s (3)
0

) =
g WO Xei 1) r(1—y; (t—s)

The fractional Laplacian appearing in (1) is defined in terms of Fourier
transforms for a function u(X) = u(xi, ..., x,) as

AV U =~ s [ AP (o

—
—

where (&) is the Fourier transform of u(X)
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Equation (1) includes as special cases the following time-fractional
one-dimensional telegraph equation

o —1—2/\ﬁ u(x t)—cza—2u(x t), xeR, t>0,0<v<1
ot otV T X2 ’ ’ -
(5)

which itself generalises the telegraph equation (v = 1) which is the
governing equation of the distribution of the telegraph process.
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We have been able to write down the Fourier transform u(¢, t) of the
solution of (5) subject to the initial conditions

u(x,0) = d(x)

0
1
u(x,0)=0 §<V§

as

where r = —\+ m r=—A— /3 — 2 and

E,i(x) =3 %0 FokTD) k+1) is the one-parameter Mittag-Leffler function.
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A special and interesting subcase of (5) is when v = % for which (6)
can be inverted explicitly and coincides with the distribution of

T(18(t)])

where T is a telegraph process independent from |B(t)
reflecting Brownian motion.

, which is a
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For X — 00, ¢ — oo in such a way that S — 1, equation (5) becomes
o 0?
@U(X t) = %) u(x, t) (7)

and for v = % its fundamental solution coincides with the distribution
of the iterated Brownian motion

I(t) = By (|B2(t)]) (8)

B;(t), j = 1,2 being independent Brownian motions.
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By the way, the distribution of (8) coincides with the fundamental
solution of the non-homogeneous fourth-order equation

ot 1 d?

x,t) = 3 WU(X’ t)+ Wz W(S(X) (9)

ol
where 6(x) is the Dirac delta function.

We now return to the general equation (1), of which we are able to
give a probabilistic solution as the distribution of a time-changed
isotropic stable process.

Let us now formulate this result explicitly.
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The solution of the Cauchy problem

m U
Z)\j ({?t:jw(xl, cey Xpy ) = —c? (—A)ﬁ w(xi, ..., Xp; t)
Jj=1

. (10
w(xi, ..., Xn; 0) =0(x1, ..., Xp) = H5(’9)
j=1

for 0 <v; <1, 0 < 8 <1 coincides with the distribution of the
process

Wy va(t) = S22 (2L v (1)) (11)

where 527 is an isotropic stable process and L7 Ym(t) is now
defined as the inverse of a suitable combination of stable
subordinators.
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The process S2°(t) has distribution

1 2o .
vs(%,t) = - )n/ e iR g tlEl? g (12)
T n
and therefore has characteristic function
Lo —¢ll£l28
os(Et)=e tllEll

A bit more complicated is the definition of £ ¥m(t).
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We first consider

HVL e Vm(t) = Z)\JJ HA(t), 0<y<1 (13)
Jj=1
where I-Ifj(t) are independent, stable subordinators of order
0< v < 1.
The process L1V (t) is the inverse of H"*>~»¥(t) and is defined
as
moo1
Lrovm(t) =inf [ s> 0 HD () =Y ATHI(s) > t] (14)
j=1

The distribution of H**~¥m(t) and L -~¥m(t) are related as

Pr{ L7 ¥m(£) < x} = Pr {H0 " (x) > t} (15)
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As far as the distributions ¢,, . (t) of L+ "(t) and hy,, ., (t)
of H"1»-~¥m(t) we have the following theorem.

Theorem
(i) For x >0, t > 0 and 0 < v; < 1, the solution to the problem

) NN
ahlll,...,l/m()g t) = _le )\_I Whl/l,m,’/m(x’ t)
hyl,...,Vm(X7 O) = 5(X)

hV1>-~~7Vm(O’ t) =0

is given by the density of H"*:~-¥m(t), t > 0.
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(ii) For x > 0, t > 0, the solution to the problem

m 8Vj 8
Z >‘j W&/l, ...,l/m(Xy t) = _aglll,---al’m(x’ t)
=1

is given by the density of L*-~¥m(t), t > 0.

The fractional derivatives appearing above must be understood in the
Riemann-Liouville sense.
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The technique used for the proof of both statements is based on
Laplace transforms in case (ii) and Fourier transforms in case (i).
The combination of Fourier-Laplace transforms is the key tool for
proving the main statement about the solution of the Cauchy
problem (10), which produces for

B (€1 oo €t 1) = () = / ettt / 7w (%, t) di
0 n

=L S A u (16)
S A+ 2|12
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If now we take the Fourier-Laplace transform of the process
S (PLv o vm(t) (17)

this check can be by first evaluating the characteristic function of the
process (17) as

iE. SZE c2rvns m,um(t)):|

E|e
IE[ ( i€.528 (2L vm (1)) | ﬁ”l""”’m(t)>]
E[

o—clielPP Ly (t)]

o0

e slEP?y, L, (s,t)ds (18)
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Consider now
Pr{L""m(t) < s} =Pr{H"""(s) >t}
= / Pr{#H""(s) € dz}
t
- / hyl, ...,Vm(za 5) dz (19)
t

so that
€V17 -~~7Vm(5a t) = - 75 hl/l, .--,Vm(z7 5) dz
0

By plugging (19) into (18) we get

E [eigs,%ﬂ(czﬁ”l’""”m(t))] _

0 t
:A e—525||§||2ﬁ |:_8as/0 hyh.“’l,m(z,s) dZ:| ds (20)
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We now take the Laplace transform of (20); we have that

/oo e MR [ef5555(625”1’“"”m(f))] dt =
0

o0 [e'e} t

:/ e"”dt/ e—c2sliel?? —8/ hy,....vm(2,8) dz| ds
0 0 ds Jo T

= / A [—8 / hys....om(2,5) dz / e—f“dt} ds
0 ds Jo z
o0 1 o0

:/0 e—csligl*” (— H) 885 {/0 e " hy . un(z,5) dz] ds

1
__1 / - e—czsugnwaﬁﬁ e ”j’(s)] ds (21)
mJo s
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For the independence of the stable subordinators I-IJ’-/j we have that

5o m % -
E|e#Xi )\jJHjJ(S)] =[]E [e“AfJHfj(S)] = e XL (22)

j=1

and thus, by inserting (22) into (21) we get
/oo e—ut o {eiésﬁﬁ(czﬁ”l’ e um(t)):| di —
0
m Vi
_ LAY / % el s S Ay g
H 0
DY R
Doy A+ €18

which coincides with (16). This proves the statement of the theorem.
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For 5 =1 we have that

. _ 2 .
Zjat” Xiy oovy Xy t) = CCAW(X1, ..., Xp; t) (23)

W(Xl, ceey X 0) = 0(x1, ..., Xn)

and the fundamental solution coincides with the law of a subordinated
n-dimensional Brownian motion

A (C2£V1,...,I/m(t)) (24)
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For m =2, v1 = 2v, v» = v we have the equation

872V + 2 - w(x X t) = —c2(—=A)w(x Xp; t)
atzy (9t” 1y -0y Xmy - 1y =« Xm

(25)
which is the most immediate space-time extension of the classical
telegraph equation.

In this case the fundamental solution of (23) coincides with the
distribution of
W,(t) = §%° (c2£”(t)) (26)

where
£Y(t) = inf (s >0 H(s) = H¥(s) + (2)\)%H§’(s))

for0 <v < % B € (0,1], where H?V and HY are independent
subordinators.
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The Fourier transform of W, (t) has the following expression

slocwe -}

)\ 174
(1 Vo= anguﬁ) )

4 (1 - W) Ey,l(rzt”)] (27)
where
NN ey
SN vy

and E,1(x) = > 72, r(#kﬂ) is the one-parameter Mittag-Leffler
function.
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The technique which permits to obtain (27) consists in the
decomposition of the Fourier-Laplace transform as follows

—+o00 2v—1 v—1
3 + 2\
X u(R, t) dX dt = — 1 28
/ L : o+ g %Y

Iul/—(].—lj) Iul/—(].—lj) 1

T n M—fz_lu”—fl = | 24/02 — c2|[€]|28

and then consider that

0 Ml/—l
/ e_“tE,,yl(rjt”) dt = (29)
0 w—r
fo'e) Iul21/71
/ e Mt ITLE, L (tY) dt =
0 we = r
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Therefore, in view of (29), the inverse Laplace transform of (28)
becomes

+oo L tv
i&-X, (z o v v
e u(x,t)dX = E,1(nt") + E,1(nt") —
/ (x1) Unt") + B (nt”) = pNpTTIEE

(30)
X [Eu,l—u(rl tl/) - El/,l—u(thV)]

Since

Evi—v(2)=zE,1(2) + r(ll_y)

with some further calculations we obtain (27).
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Note that for =1, v = 1 the expression (27) coincides with the
characteristic function of the symmetric telegraph process T(t).
For 3 =1, v =1 we have instead that (27) is the characteristic
function of the time-changed telegraph process T(|B(t)|), where
|B(t)| is a reflecting Brownian motion independent from T.

It is also true that for 3 =1, v = 1 the expression (27) is the

characteristic function of the time-changed Brownian motion

Wi(t) = B (c2£%(t)) (31)

where E%(t) is the inverse of H%(t) =t+ (2)\)2H%(t) and H%(t) is
the stable subordinator of order %
Thus we have the following equality in distribution

T(B(e)l) 2 B (L3 (1)) (32)

(see D'Ovidio et al. (2014)).
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A similar relationship can be developed for the planar random motion
evolving with velocity ¢, changing direction at Poisson-paced times
and with uniformly distributed orientation of the deplacements.

This process T(t) = (X(t), Y(t)) has distribution, at time t,
concentrated in the circle {x,y : x? + y? < c?t?}. The circumference
OCy of radius ct is attained with probability et (distributed
uniformly on 9C.) and the inner points are reached with probability

oy o A€V
rX7y1 - 27TC /—C2t2—X2—y2 9

The function r(x, y; t) satisfies

x>+ y? <Pt t>0 (33)

% ) L[
(81?2 22 8t> rboyit)=c <8x2 + 8y2> rbyit) (34)
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Instead the process

Q(t) = T(IB(t)])
satisfies the two-dimensional time-fractional equation
0 2 L[ 02 8P
<8t+2)\8t;> glx,yit)=c <8X2+8y2> q(x,yit)  (35)

It is also true that Q(t) = B» (c2£%(t)>, where By is the planar
Brownian motion, and thus we have that

B> (L3 (1)) 2 T(IB(1)) (36)

In higher dimensions we are not able to provide results similar to the
above ones because (with the exception of the space R*) we cannot
give explicit and reasonable expressions for the distribution of
n-dimensional random flights.
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[terated Brownian motions

The iterated Brownian motion
I(t) = Bi(|B2(t)) (37)

has distribution solving the fractional equation

2 1 02
t)= - —= t 38
at%p(& ) . aX2p(><, ) (38)
The n-times iterated Brownian motion
In(t) = B (|B2 (- - |Bnta(t)]---) ]) (39)

has distribution p,(x, t) satisfying

o 1, 07
&?Pn(xa t) = 22" 2@%(’@ t) (40)
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The n-times iterated telegraph process

Ta(t) = T(IB1(IB2(- - [Bata(t)] - ) ) ]) (41)

has distribution gn(x, t) satisfying the equation

1
027 9?2
gn(x,t) = c2ﬁqn(x, t) (42)

Q
eI

qn(x, t) + 2\ —

1
7

ot2

QD
o~
"é\N

Generalized Space-Time Fractional Equation and the Related Stochastic Processes 280f33



For n — oo the distribution of /,(t) becomes

: —2|x]|
nllm pa(x,t) =e (43)
independent of t.

The distribution gn(x, t) converges as n — o0

VI+2XN X 479y
lim gn(x,t) = ;e_% 122

n—00 2c
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In the n-dimensional case we can reformulate the problem as follows.
We take n-dimensional time-changed isotropic stable process
(Brownian motion for 8 = 1) S27 (L™ (t)), where

£1;17...,Vm(t) — inf (S : ,HI’{17”"Vm(S) 2 t)

and

m

() = SN HY (- (1))

is a combination of r-times iterated subordinators.
The law wy,, . (X, t) of 537 (LV¥™ (1)) satisfies

m

o0Yi
Zt) = — BBt ¥4
Z \j 6tVJ Vl,...,u (X7 t) - c ( A) l/l,...,um(X7 t)
fl vm(X,0) = 0(X)

Generalized Space-Time Fractional Equation and the Related Stochastic Processes 300f33



For r — oo,

lim S2 (L0 n(1) = lim B, (L0 (1) (45)

r—o0

converges to the distribution

n+2

2
; 1 PR - PR
wn(X) = 7 77 Koz | ———
(27r)2 C 2 c

N

]

(46)
where K, (z) = [;° e72<°s"t cosh vt dt is the modified Bessel function.
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The function w,(X) satisfies

"9
Z)\ Whn X1,...,X,,)=C22ﬁwn(xla-'-aXn) (47)
J

Jj=1

For n =1, formula (46) becomes

ijzl J V2 AJIX\
Wn(x) = +———e c

e (48)

which confirms the previous results.
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