1/16

HSE

Distribution of maximal deviation for Lévy density estimators

Vladimir Panov

Higher School of Economics (Moscow, Russia)

Joint work with Valentin Konakov

LSA Winter meeting - 2017 Snegiri, 4. December

<ロト <問 > < 注 > < 注 >

Vladimir Panov

Jump-type dynamics

How to describe jumps $\Delta X_t = X_t - X_{t-} \neq 0$ of a Lévy process $X = (X_t)_{t>0}$:

Lévy measure of X_t is defined by

$$u(B) := \mathbb{E} iggl[\sharp iggl\{ t \in [0,1] : \Delta X_t \in B, \ \Delta X_t
eq 0 iggr\} iggr], \qquad B \subset \mathbb{R}.$$

Blumenthal-Getoor index is equal to

$$BG(X) := \inf \left\{ r > 0 : \int_{|x| \le 1} |x|^r \nu(dx) < \infty \right\} \in [0, 2].$$

Vladimir Panov

Setup

Let $(X_t)_{t\geq 0}$ be a Lévy process with Lévy triplet (μ, σ, ν) , and assume that ν has a density s, that is,

$$u(B) = \int_B s(u) du, \quad B \in \mathcal{B}(\mathbb{R}).$$

Data: assume that some discrete equidistant observations $X_0, X_{\Delta}, ..., X_{n\Delta}$ of the process X_t are available.

<u>Aim</u>: $(X_{\Delta},...,X_{n\Delta}) \Longrightarrow \{s(x), x \in D\}, \quad D = [a,b] \subset \mathbb{R}/\{0\}.$

<u>High-frequency data</u>: $\Delta = \Delta_n \rightarrow 0$, $T = n\Delta_n \rightarrow \infty$ as $n \rightarrow \infty$. *Comte & Genon-Catalot (2013), Figueroa-López (2011), Figueroa-Lopéz & Houdré (2006)*

Low-frequency data: Δ – fixed , $T = n\Delta$. Nickl & Reiss (2013), Gugushvili (2012), Belomestny (2011), Comte & Genon-Catalot (2010), Chen, Delaigle & Hall (2010), Neumann & Reiss (2009), van Es, Gugushvili & Spreij (2007)

э

Aim of the research

Bounds for quadratic risk: for an estimate $\hat{s}_n^{\circ}(x)$ and a collection of Lévy processes \mathcal{T} ,

$$\sup_{\mathcal{T}} \mathbb{E} \left(\hat{s}_n^{\circ}(x) - s(x) \right)^2 \leq f(n) \to 0, \qquad \forall x \in D,$$

$$\inf_{\hat{s}_n(x)\}} \sup_{\mathcal{T}} \mathbb{E} \left(\hat{s}_n(x) - s(x) \right)^2 \geq g(n) \to 0, \qquad \forall x \in D,$$

where by $\{\hat{s}_n(x)\}\$ we denote the set of all estimates of the Lévy density s(x).

Our aim: find the distribution of maximal deviation of $\hat{s}_n^{\circ}(x)$, that is, the cdf of

$$MD_n := \sup_{x \in D} \left(\frac{|\hat{s}_n^{\circ}(x) - s(x)|}{\sqrt{s(x)}} \right).$$

Source of inspiration: V.Konakov and V.Piterbarg' 84

- study the kernel estimator of the regression function;
- prove that the rate of convergence to the asymptotic distribution given in
- P.Bickel and M.Rosenblatt' 73 is very slow (of logarithmic order);
- obtain a sequence of distribution laws which approximate the MD distribution with power rate of convergence.

Vladimir Panov

Collections of basis functions

Consider $\{\varphi_r(x) : D \to \mathbb{R}, r = 1..d\}$ - an orthonormal collection in $\mathcal{L}^2(D)$. Project s(x) on the space $S := \text{span} < \varphi_1(x), ..., \varphi_d(x) >:$

$$\tilde{s}(x) := \sum_{r=1}^{d} \beta_r \varphi_r(x), \quad \text{where} \quad \beta_r = \beta(\varphi_r) = \int_D \varphi_r(u) s(u) du.$$

For any $m \in \mathbb{N}$ there exists a set of normalized bounded functions $\{\psi_j^m : D \to \mathbb{R}\}_{j=0}^J$ supported on $[a, a + \delta)$, where $\delta = (b - a)/m$, such that

$$\begin{cases} \varphi_r(x), \ r = 1..d \end{cases} = \begin{cases} \psi_j^m \left(x - \delta(p-1) \right) \mathbb{I} \left\{ x \in I_p \right\}, j = 0..J, \ p = 1..m \end{cases}, \\ \text{where} \qquad I_p := [a + \delta(p-1), a + \delta p). \end{cases}$$

<u>Main construction</u>: basis on $[a, a + \delta)$ is constructed from a basis $\{\tilde{\psi}_j\}_{j=0..J}$ on some "standard" interval $[\tilde{a}, \tilde{b}]$ by changing the variables:

$$\psi_j^m(x) = \sqrt{\frac{\tilde{b} - \tilde{a}}{\delta}} \cdot \tilde{\psi}_j \left(\frac{(\tilde{b} - \tilde{a})(x - a)}{\delta} + \tilde{a} \right).$$

Vladimir Panov

Maximal deviation for projection estimates

HSE

Examples

(i) Trigonometric basis on $[0, 2\pi]$:

 $\left\{\widetilde{\psi}_j(\mathbf{x})\right\} = \left\{\begin{array}{ll} \frac{1}{\sqrt{2\pi}}, & \sqrt{2}\cos(j\mathbf{x}), & \sqrt{2}\sin(j\mathbf{x}), & j = 0..J\right\}.$

(ii) Legendre polynomials on [-1,1]:

$$\left\{\widetilde{\psi}_j(x)\right\} = \left\{\sqrt{(2j+1)/2} \cdot P_j(x), \quad j = 0..J\right\}.$$

where $P_j(x) = (j!2^j)^{-1} \left[(x^2 - 1)^j \right]^{(j)}, \ j = 0..J.$

(iii) Wavelets, for instance Haar wavelets on [0, 1]:

$$\left\{\widetilde{\psi_j}(x)
ight\}=\left\{1,\quad \mathbb{I}\{x\in \llbracket 1/2,1
brace\}-\mathbb{I}\{x\in \llbracket 0,1/2
brace\}
ight\}.$$

Assumption: $\psi_i^m(x)$ depends on *m* such that

 $\sup_{x\in I_1}|\psi_j^m(x)|\leq C_1\sqrt{m},$

$$\lim_{\substack{a=x_0<\ldots< x_n=a+\delta\\\max_i|x_i-x_{i-1}|\to 0}}\sum_{i=1}^n \left|\psi_j^m(x_i)-\psi_j^m(x_{i-1})\right| \le C_2\sqrt{m}.$$

Vladimir Panov

Estimation of the coefficients β_r

Recall: $\tilde{s}(x) := \sum_{r=1}^{d} \beta_r \varphi_r(x)$, where $\beta_r = \beta(\varphi_r) = \int_D \varphi_r(x) s(x) dx$.

High-frequency setup: Wörner' 03, Figueroa-López' 04:

$$\hat{eta}(arphi_r) := rac{1}{T} \sum_{k=1}^n arphi_r \left(X_{k\Delta} - X_{(k-1)\Delta}
ight).$$

Finally we get the estimate:

$$\left| \hat{s}_n(x) := rac{1}{T} \sum_{r=1}^d \left[\sum_{k=1}^n \varphi_r \left(X_{k\Delta} - X_{(k-1)\Delta}
ight)
ight] \varphi_r(x).$$

In low-frequency setup, this idea fails because

$$\begin{split} \frac{1}{\Delta} \cdot \frac{1}{n} \sum_{k=1}^{n} \varphi_r \left(X_{k\Delta} - X_{(k-1)\Delta} \right) &\to \frac{1}{\Delta} \mathbb{E} \left[\varphi_r \left(X_\Delta \right) \right] \\ &= \frac{1}{\Delta} \int_D \varphi_r(x) F_\Delta(dx) \neq \int_D \varphi_r(x) s(x) dx. \end{split}$$

Vladimir Panov

Maximal deviation for projection estimates

Assumptions

1. **Small-time asymptotics:** Generally, Corollary 8.9 from Sato "Lévy processes and infinitely divisible distibutions" yields that

$$\hat{\beta}(\varphi_r) \xrightarrow[n \to \infty]{\mathbb{P}} \beta(\varphi_r).$$

We assume that there exist positive k and Δ^0 such that

$$\sup_{x\in D} \left| \frac{1}{\Delta} \mathbb{P}\left\{ X_{\Delta} \geq x \right\} - \nu\left([x, +\infty) \right) \right| < k\Delta, \qquad \forall \ \Delta < \Delta^0.$$

For instance, this property is fulfilled when *s* is Lipshitz in an open set containing *D* and uniformly bounded on |x| > q for any positive *q* (see Figueroa-López' 11).

2. Relation between $n, m, T \rightarrow \infty$: in what follows, we assume that

•
$$T = n^{\varkappa}$$
 for some $\varkappa \in (0, 1)$.

•
$$\Lambda_n := m \frac{\sqrt{\log n}}{n^{\varkappa/2}} \to 0$$
 as $n, m \to \infty$.

Vladimir Panov

Maximal deviation for projection estimates

э

イロト イポト イヨト イヨト

Theorem 1. Reformulation in terms of Gaussian processes

Denote

$$Z_n := \sup_{x \in D} \left(\frac{|\hat{s}_n(x) - \mathbb{E}\hat{s}_n(x)|}{\sqrt{s(x)}} \right), \qquad F_{Z_n}(u) := \mathbb{P}\left\{ Z_n \leq u \right\}.$$

Then there exist positive constants $c_1, c_2, \lambda_1, \lambda_2$ such that

$$F_{Z_n}\left(\sqrt{\frac{m}{T}}u\right) \leq \left[F_{\zeta}\left(\sqrt{m}u + c_1\sqrt{m}n^{-\lambda_1}\right)\right]^m + c_2n^{-\lambda_2},$$

$$F_{Z_n}\left(\sqrt{\frac{m}{T}}u\right) \geq \left[F_{\zeta}\left(\sqrt{m}u - c_1\sqrt{m}n^{-\lambda_1}\right)\right]^m - c_2n^{-\lambda_2},$$

where by $F_{\zeta}(\cdot)$ we denote the distribution function of the r.v.

$$\zeta = \zeta^{J,m} := \sup_{x \in [a,a+\delta)} \left| \Upsilon^{J,m}(x) \right|, \qquad \Upsilon^{J,m}(x) := \sum_{j=0}^{J} \xi_j \psi_j^m(x)$$

・ロト ・回ト ・ヨト ・ヨト

with i.i.d. standard normal r.v.'s ξ_j , j = 0..J.

Vladimir Panov

Maximal deviation for projection estimates

Supremum of Gaussian process: Markus & Shepp' 71

For any centered Gaussian process G_t with a.s. bounded sample paths,

$$\lim_{u\to\infty} \frac{\log \mathbb{P}\left\{\sup_{t\in K}\,G_t\geq u\right\}}{u^2} = -\frac{1}{2\sigma_K^2}, \qquad K\subset \mathbb{R},$$

where $\sigma_{K}^{2} = \sup_{t \in K} \mathbb{E}G_{t}^{2}$. For a single Gaussian variable $\xi \sim N(0, \sigma^{2})$:

$$\lim_{u\to\infty}\frac{\log\mathbb{P}\left\{\xi\geq u\right\}}{u^2}=-\frac{1}{2\sigma^2}$$

Main term in the asymptotics of $\mathbb{P}\{\xi \ge u\}$:

$$\mathbb{P}\left\{\xi \geq u
ight\} = rac{\sigma}{u\sqrt{2\pi}}\expigg(-rac{u^2}{2\sigma^2}igg)\Big(1+o(1)\Big), \quad u
ightarrow +\infty,$$

which does not necessary coincide with the asymptotics of $\mathbb{P}\{\sup G_t \ge u\}$.

Some related results: Borell' 75, Cirelson, Ibragimov & Sudakov' 76, Samorodnitsky '87, Talagrand '94.

Maximal deviation for projection estimates

Theorem 2: Asymptotic behaviour of $\zeta^{J,m}$

Let u grow with m so that $u/\sqrt{m} \to \infty$. Then it holds

$$\mathbb{P}\left\{\zeta^{J,m} \ge u\right\} = 2\frac{h_1 \ m^{k/2}}{u^k} \exp\left\{-h_2 \ u^2/m\right\} \left(1 + \tau \left(u/\sqrt{m}\right)\right), \qquad \text{where}$$

•
$$\tau(x) \rightarrow 0$$
 as $x \rightarrow \infty$;

- k = 0 for trigonometric basis, k = 1 for Legendre pol. and wavelets;
- $h_1, h_2, \tau(x)$ depend on the basis, but do not depend on m.

Proof crucially depends on the properties of the covariance function:

- (i) trigonometric basis: the process is stationary, and moreover the covariance function of X(t) has the asymptotics $r(t) = 1 \frac{1}{2}t^2 + \alpha t^4 + o(t^4), t \to 0$ \implies Pickands theorem or related techniques;
- (ii) Legendre polynomials: variance attains its maximum only in finite number of points \implies double sum method;
- (iii) wavelets: direct calculation.

Theoretical background: V.Piterbarg' 96. Asymptotic methods in the theory ofGaussian processes and fields.

Vladimir Panov

Non-stationary case (Legendre polynomials)

 $\underbrace{ \mbox{Main assumption:}}_{\mbox{amount of points } x^{(1)}_{\mbox{max}}, \dots, x^{(q)}_{\mbox{max}} :$

$$\sigma^{2}(x) = \sum_{j=0}^{J} \frac{2j+1}{2} P_{j}^{2}(x), \quad x_{\max}^{(1)} = 1, \ x_{\max}^{(2)} = -1.$$

Further assumptions.

- 1. With some $A_j > 0$, $\beta_j > 0$, it holds $\sigma(x) = 1 - \left| A_j(x - x_{\max}^{(j)}) \right|^{\beta_j} (1 + o(1)) \quad \text{as} \quad x \to x_{\max}^{(j)}, \quad j = 1..q.$
- 2. Local homogeneity:

correlation function $\rho(x, y)$ satisfies with some $C_j \neq 0, \alpha_j \in (0, 2]$, $\rho(x, y) = 1 - C_j |x - y|^{\alpha_j} (1 + o(1))$, as $x \to x_{\max}^{(j)}, y \to x_{\max}^{(j)}, j = 1..q$

3. Global Hölder condition:

there exist some g > 0, G > 0, such that $\mathbb{E}\left(\Upsilon^{J,m}(x) - \Upsilon^{J,m}(y)\right)^2 \leq G |x - y|^g$, $\forall x, y$.

4. for any $j_1, j_2 = 1..q, \ j_1 \neq j_2, \qquad \rho(x_{\max}^{(j_1)}, x_{\max}^{(j_2)}) < 1.$

Theorem 3: Asymptotic behaviour of the maximal deviation For any $y \in R$,

$$\mathbb{P}\left\{\sqrt{\frac{T}{m}}\sup_{x\in D}\left(\frac{|\hat{s}_n(x)-s(x)|}{\sqrt{s(x)}}\right)\leq u_m(y)\right\}=e^{-2e^{-y}}\left(1-2e^{-y}R(m)\right),$$

where

HSE

the sequence u_m(y) is equal to

$$u_m(y):=\frac{y}{a_m}+\left(b_m-\frac{c_m}{b_m}\right),$$

with $a_m := 2h_2b_m$, $b_m := \sqrt{h_2^{-1} \ln(h_1m)}$, $c_m := \frac{k}{2h_2} \ln b_m$;

the residual term is equal to

$$R(m):= au\left(u_m
ight)-rac{k^2}{16}rac{\left(\log\log m
ight)^2}{\log m}\left(1+o(1)
ight), \hspace{0.2cm} as \hspace{0.2cm} m
ightarrow\infty.$$

<u>Main conclusion</u>: the rates of covergence are typically logarithmic, e.g., for trigonometric basis $R(m) \simeq C \log(m)^{-1/2}$, for wavelets $R(m) \simeq C (\log \log m)^2 / \log m$.

Vladimir Panov

Theorem 4: Sequence of accomponaying laws

Consider the case of trigonometric basis. Define the sequence of distribution functions

$$A_{m}(y) := \begin{cases} \exp\left\{-2\exp\left\{-y - \frac{y^{2}}{4\ln(b_{1}m)}\right\} - 2m\left(1 - \Phi\left(u_{m}\sqrt{\frac{b-a}{J}}\right)\right)\right\}, \\ & \text{if } y \ge -b_{m}^{3/2}, \\ 0, & \text{if } y < -b_{m}^{3/2}, \end{cases}$$

where $u_m = y/(2h_2b_m) + b_m$ and $b_m = \sqrt{h_2^{-1} \ln(h_1m)}$, and $\Phi(\cdot)$ is the distribution function of the standard normal r.v. Then there exist some positive constants \bar{c}, β , such that for sufficiently large n and for any $y \in \mathbb{R}$,

$$\sup_{y\in\mathbb{R}}\left|\mathbb{P}\left\{\sqrt{\frac{T}{m}}\sup_{x\in D}\left(\frac{|\hat{s}_n(x)-s(x)|}{\sqrt{s(x)}}\right)\leq u_m(y)\right\}-A_m(y)\right|\leq \bar{c}\ n^{-\beta}.$$

Vladimir Panov

Maximal deviation for projection estimates

ヘロン 人間 とくほとく

Application: Construction of asymptotic confidence bands

From previous theorem it follows that

$$I_{\alpha,m} := \left(-\frac{k_{\alpha,m}^{(+)}}{2} + \sqrt{\frac{\left(k_{\alpha,m}^{(-)}\right)^2}{4} + \hat{s}_n(x)}, \quad \frac{k_{\alpha,m}^{(+)}}{2} + \sqrt{\frac{\left(k_{\alpha,m}^{(+)}\right)^2}{4} + \hat{s}_n(x)}\right),$$

where

$$k_{\alpha,m}^{(\pm)} := \sqrt{m/T} \left(q_{\alpha,m} a_m^{-1} + b_m \pm C_\alpha n^{-\beta} a_m^{-1} \right),$$

 $C_{\alpha} > 0$, $q_{\alpha,m} - (1 - \alpha)$ - quantile of the distribution function $A_m(\cdot)$, is a $(1 - \alpha)$ -confidence band, that is, for *m* large enough,

 $\mathbb{P}\left\{s(x)\in I_{\alpha,m}, \ \forall x\in D\right\}=1-\alpha.$

Vladimir Panov

Maximal deviation for projection estimates

イロト イポト イヨト イヨト

Summary

 Object of this study: projection estimates for Lévy densities in high-frequency setup.

$$\hat{s}_n(x) = rac{1}{n\Delta} \sum_{r=1}^d \left[\sum_{k=1}^n \varphi_r \left(X_{k\Delta} - X_{(k-1)\Delta} \right) \right] \varphi_r(x), \qquad x \in D.$$

Focus on the asymptotic properties of the distribution of max. deviation:

$$MD_n := \sup_{x \in D} \left(\frac{|\hat{s}_n(x) - s(x)|}{\sqrt{s(x)}} \right).$$

- Main idea: reformulate the problem in terms of Gaussian processes of some special type.
- We show that the exact rates of convergence are typically logarithmic, and construct the sequence of accompanying laws, which approximate the deviation distribution with polynomial rate.
- V.Konakov and V.Panov
 Sup-norm convergence rates for Lévy density estimation. *Extremes.* 2016. No. 19 (3), 371-403.

・ロト ・四ト ・ヨト ・ヨト

Summary

 Object of this study: projection estimates for Lévy densities in high-frequency setup.

$$\hat{s}_n(x) = rac{1}{n\Delta} \sum_{r=1}^d \left[\sum_{k=1}^n \varphi_r \left(X_{k\Delta} - X_{(k-1)\Delta} \right) \right] \varphi_r(x), \qquad x \in D.$$

Focus on the asymptotic properties of the distribution of max. deviation:

$$MD_n := \sup_{x \in D} \left(\frac{|\hat{s}_n(x) - s(x)|}{\sqrt{s(x)}} \right).$$

- Main idea: reformulate the problem in terms of Gaussian processes of some special type.
- We show that the exact rates of convergence are typically logarithmic, and construct the sequence of accompanying laws, which approximate the deviation distribution with polynomial rate.
- V.Konakov and V.Panov
 Sup-norm convergence rates for Lévy density estimation. *Extremes.* 2016. No. 19 (3), 371-403.

Thank you for your attention.

Vladimir Panov