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Gnedenko Theorem

Let X1, ...,Xn, ..., be independent identically distributed random
variables having distribution function F (x). Denote
Mn := max(Xi , i = 1, ..., n).

Theorem
(R. Fisher, L. H. C. Tippet(1928), B. V. Gnedenko(1943))
Let there exist sequences an > 0, bn and non-trivial distribution
function H(x) such, that P(an(Mn − bn) ≤ x)→ H(x) as n→∞.
Then one can find such a > 0, b, γ, that H(ax + b) = Hγ(x), with
1) (Gumbel) H0(x) = Λ(x) = exp(−e−x), x ∈ R;
2) (Frèchet) Hγ(x) = exp(−x−1/γ)I (x > 0), with γ > 0;
3) (Weibull) Hγ(x) = exp(−(−x)−1/γ)I (x ≤ 0) + I (x > 0), with
γ < 0.

We say that d.f. F belongs to MDA(Λ) if 1) fulfills. (resp. for
other two)
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2) (Frèchet) Hγ(x) = exp(−x−1/γ)I (x > 0), with γ > 0;
3) (Weibull) Hγ(x) = exp(−(−x)−1/γ)I (x ≤ 0) + I (x > 0), with
γ < 0.

We say that d.f. F belongs to MDA(Λ) if 1) fulfills. (resp. for
other two)



Gumbel MDA: von Mises representation

It is known that F belongs to Frèchet MDA iff 1− F (x) is
regularly varying at infinity with negative degree. Respectively for
Weibull MDA, but with positive degree. It means in particular that
the right end point is finite.

We take here MDA(Λ) because of it is extremely wide comparing
with other two, with quite different behavior of distribution tails,
such us Weibull like, log-Weibull like and even slower.
It is known that F ∈ MDA(Λ) iff for some x0 ≥ 0,

1− F (x) = c(x) exp

{
−
∫ x

x0

1

f (t)
dt

}
, x ≥ x0, (1)

with f (x), positive and absolutely continuous on [x0, ∞) with
density f ′(x), f ′(x)→ 0, and c(x)→ c > 0 as x →∞.
We restrict ourselves with infinite right end point of F .
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Gumbel MDA: von Mises representation

Often more flexible form of this assertion is convenient:
F ∈ MDA(Λ) if and only if for some x0 ≥ 0,

1− F (x) = c(x) exp

{
−
∫ x

x0

g(t)

f (t)
dt

}
, (2)

with the same properties of f (x) and c(x), and g(x)→ 1 as
x →∞.

For both the representations one may take

bn = F←(1− n−1), an = f (bn). (3)
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There is a wide bibliography on the quality of convergence in
Gnedenko limit theorem. We notice here two main directions of
studies.
First one is related with restrictions on the tail behavior of F at
infinity. First of all it is higher orders regular variation of the tail of
F , see
S. Resnick, L. de Haan (1996). Ann. Probab., 24, 1, 97-124.
L. de Haan, Ana Ferreira (2006). Extreme Value Theory. An
Introduction. Springer, with many references therein.

The second direction related to concrete expressions of the
distributions or family of distributions, such as Gaussian, Gaussian
like, Weibull, Weibull like, so on. Here is also a wide bibliography,
beginning with
P. Hall(1979) On the Rate of Convergence of Normal Extremes.
Journal of Applied Probability 16(2) 433-439
also see the same monograph by de Haan and Ferrira, and
S. Resnick (1987). Extreme values, regular variation, and point
processes. Springer-Verlag, New York Berlin Heidelberg,
with many references therein.
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Our study belongs rather to this second direction, we use von
Mises structure given above, but we suggest another approach: do
not investigate immediately
quality of Gumbel approximation
but first
look for better approximations.
Notice that this is very common approach in the study of quality
approximation in Central Limit Theorem, with Edgeworth-Cramer
approximation and other types of accompanying laws or measures.



Example: Gaussian stationary process

Theorem(2002)

Let X (t), t ∈ R, be a twice differentiable in square mean Gaussian
stationary process with EX (t) = 0, EX 2(t) = 1, EX ′(t)2 = 1.
Assume that for its covariance function r and some a > 0,∫ T
0 |r(t)|adt <∞.

Denote lT =
√

2 ln T
2π and

AT (x) =

{
e−e

−x−x2/2l2T , x ≥ −l3/2T ,

0, x < −l3/2T ,

T > 0.
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Example: Gaussian stationary process

Theorem (continued)

Then
1) For some γ > 0,

P

(
max

t∈[0,T ]
X (t) ≤ lT +

x

lT

)
− AT (x) = O(T−γ), T →∞

uniformly in x ∈ R.

2) Also,

l2T

(
P

(
max

t∈[0,T ]
X (t) ≤ lT +

x

lT

)
− e−e

−x

)
→ 1

2
e−e

−x
e−xx2,

as T →∞, uniformly in x ∈ R.
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Example: Gaussian stationary process

What we see:
1) From the second statement we see that the rate of convergence
of the distribution of the maximum to the Gumbel distribution is
logarithmic.

It also gives the second term of the asymptotic expansion for the
probability.
2) The first statement gives the sequence of approximating
functions that approaches the Gumbel distribution with the power
rate.
To my best knowledge, there are no similar results in extreme value
theory with accompanying laws or charges (signed measures).
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Asymptotic expansion and accompanying charges

Taking logarithm in von Mises representation with g = 1 and using
bn = F←(1− n−1), ∫ bn

x0

1

f (t)
dt = log(nc(bn)).

Further,

F n(anx + bn) =

(
1− c(anx + bn)e

−
∫ anx+bn
x0

1
f (t)

dt
)n

.

From this two expressions, using that an = f (bn) and denoting

γn(x) =

∫ anx+bn

bn

1

f (t)
dt − log

c(anx + bn)

c(bn)
,

after some evaluations we get the following.
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Asymptotic expansion and accompanying charges

Proposition

Let X1,X2, ..., be i.i.d. random variables with distribution function
F , and Mn := max(X1, , ...Xn). Assume von Mises representation.
Then for an, bn defined above and any x ,

P(Mn ≤ anx+bn) = exp
(
−e−γn(x)

)
exp

(
−1

n

∞∑
k=0

(−1)ke−(k+1)γn(x)

(k + 2)nk

)
.

Moreover, for any x , γn(x)→ x as n→∞.



Accompanying charge.

Notice that using flexible von Mises representation, with general g ,
one can also write a similar expansion, with modified γn(x).

Other expression for γn(x);

γn(x) = − log
1− F (bn + anx)

1− F (bn)
= log

1

n(1− F (bn + anx)
.
In case F has density one can get von Mises representation with
constant c(x), c(x) ≡ c > 0, and some other f . In this case,

γn(x) =

∫ x

0

(
f (bn)

f (bn + v)
− 1

)
dv + x .

Example: For exponential law f (x) ≡ 1, hence γn(x) = x and the
rate of convergence is O(n−1).
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Accompanying charge.

Remark: Looking at the expression

γn(x) =

∫ anx+bn

bn

1

f (t)
dt − log

c(anx + bn)

c(bn)
,

one see that both the summands may play dominating role in the
rate of convergence.

Example continued: Consider exponential-like distribution
F (x) = 1− c(x)e−x , x ≥ 0, c(1) = 1, and c(x)→ 1/2 as x →∞.
Taking c(x) = 1/2− 1/ log x , we get the following rate of
convergence.

∼ log(x + 1)

(log log n)2
, n→∞,
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Second order condition

Consider now the relation between rates of the convergences in
terms of γn and in terms of the following second order condition.

Denote

U(t) :=

(
1

1− F (t)

)←
; a(t) := f (U(t)) ,

then since bn = F←(1− 1/n), bn = U(n), one can take
an = a(n) = f (bn).
Second order condition:
a) ∃A(t), A(t)→ 0, t →∞, signA(t) = const

lim
t→∞

U(tx)−U(t)
a(t) − log x

A(t)
= H(x).

H(x) 6= 0, H(x) 6=∞ (identically)
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Second order condition

Facts (for MDA(Λ):
1. A(t) is regularly varying with non-positive index ρ ≤ 0.
2.

H(x) =
1

ρ

(
xρ − 1

ρ
− log x

)
for ρ < 0,

and

H(x) =
1

2
log2 x for ρ = 0.

Using S. Resnick and L. de Haan results, from Proposition it
follows:

P(Mn ≤ anx + bn) = e−e
−x−A(n)H(x)(1+o(1))(1 + R(x , n)),

in particular, R(x , n) = O(n−1).
Notice different cases: ρ < −1; ρ = −1; ρ > −1.
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Example: Weibull tails.

Consider first a distribution with f (t) = (Cp)−1t1−p for t ≥ x0,
and c = eCx

p
0 , p > 0. That is,

1− F (x) = ce−Cx
p
, x ≥ x0,

In this case

γn(x)− x = log n

((
1 +

x

p log n

)p

− 1

)
− x

For p = 1 we get power expansion; for p 6= 1 we have logarithmic
expansion.
In particular, for p = 2 we have, γn(x)− x = x2

4 log n , compare with

x2/2l2T in our first example of Gaussian stationary processes.
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Example: Log-Weibull tails.

Now take f (t) = (Cp)−1t log−p+1 t, p > 1, we have,

1− F (x) = ce−C logp x , x ≥ x0,

and get similarly,

γn(x)− x ∼ x2 log1−1/p n

2C 1/pp
exp

(
−C−1/p log1/p n

)
,

n→∞.
That is, the rate of convergence for log-Weibull distribution is
generally better that for Weibull one.



A scale

In order to consider the distributions with heavier tails in frames
MDA(Λ) we may continue a scale, as

1− F (x) = ce−C log x(log log x)a , a > 1, x ≥ x0,

1− F (x) = ce−C log x log log x(log log log x)a , a > 1, x ≥ x0,

so on.

We have for the first, by differentiating,

log x(log log x)a =

∫ x

x0

1 + a
log log t

t(log log x)−a
dt,

so that indeed, F ∈ MDA(Λ).
Thus we have some scale for MDA(Gumbel).
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A scale

Another definition of the Gumbel index/scale may be as following.
Denote

logk =

k︷ ︸︸ ︷
log ... log

and consider the integral

Gk =

∫ ∞
x0

f (t)dt

t2 log t log2 t... logk t
.

The first k = 0, 1, ... such that Gk <∞ is called the Gumbel index.
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Many thanks for your attention!


