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1 Introduction

In this lecture we focus on certain statistics (“power variation”) of semimartingales of
the form

Xt = X0 +

t∫
0

as ds+

t∫
0

σs dWs + Jt

where a is a drift term, σ is the volatility, W is a Brownian motion and J denotes the
jumps, observed at high frequency, i.e. at

ti = i ∆n with ∆n → 0.

Typically the process X = (Xt)t≥0 is observed on a fixed time intervall (say [0, 1]) and
we are interested in analyzing the structure of the unobserved characteristics of X. The
most important examples of such characteristics are:

(i) The quadratic variation

[X]T =

T∫
0

σ2
s ds+

∑
0≤s≤T

|∆Xs|2

with Xs = Xs −Xs−.

(ii) The continuous part of the quadratic variation (in finance also called the “inte-
grated volatility” or the “integrated variance”)

[X]ct =

T∫
0

σ2
s ds

and the discontinuous part of the quadratic variation

[X]dt =
∑

0≤s≤T

|∆Xs|2

(iii) The Blumenthal-Getoor index β ∈ [0, 2] of the process X. It gives information
about the jump activity of (Jt)t≥0.

The afore mentioned quantities are of huge importance in financial econometrics or
mathematical finance.

We remark that under no arbitrage assumptions price processes must follow a semi-
martingale (see [8]). The estimation of quadratic variation using high frequency data
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is required for option pricing or risk management. It turns out that power variations,
which are statistics of the form

bT/∆nc∑
i=1

|Xi∆n −X(i−1)∆n|p, p ≥ 0 (1.1)

are very informative when analyzing the fine structure of X. In the last fifteen years
there appeared a lot of publications on the asymptotic behaviour of power variations
and related statistics. An important starting point was the work of Jacod ([9],[10]),
who developed a first general (stable) central limit theorem for high frequency obser-
vations. Jean Jacod can be called the father of this research field.(See the recent book
of Jacod and Protter [12].)

The aim of this lecture is twofold:
At first we will study the asymptotic behaviour of power variations

bT/∆nc∑
i=1

|Xi∆n −X(i−1)∆n|p, p ≥ 0

and related functionals. This icludes the law of large numbers and the central limit
theorems.

Then we will apply the asymptotic results to estimation and testing problems. Some of
the most important statistical problems are:

(i) Estimation of the quadratic variation

[X]T =

T∫
0

σ2
s ds+

∑
0≤s≤T

|∆Xs|2

(ii) Robust estimation of the volatility functionals, i.e. integrated volatility

[X]ct =

T∫
0

σ2
s ds

Here the notion of robustness refers to robustness of jumps.

(iii) Testing whether X has jumps.

(iv) Testing whether X has a Brownian component.

What can be estimated based on high frequency obervationsX0, X∆n , X2∆n , . . . , XbT/∆nc∆n?

(i) The drift process (at)t≥0 can never be identified on a fixed time interval [0, T ]
(unless σ ≡ 0)!

(ii) The volatility process (σt)t≥0 can be consistently estimated.

(iii) The realised jumps ∆Xs can be identified.

(iv) But the law of jump part can not be identified.

5



2 A Crash Course on Stable
Convergence and Mixed Normality

The power variations of semimartingales usually exhibit an asymptotic mixed normal
distribution. For example when X is a continous semimartingale of the type

Xt = X0 +

t∫
0

as ds+

t∫
0

σs dWs,

we will show the following convergence in law for a fixed T > 0:

LnT = ∆−
1/2

n

( bT/∆nc∑
i=1

|∆n
iX|2 −

T∫
0

σ2
s ds
)

d−→ LT ∼MN
(

0, 2

T∫
0

σ4
s ds
)

where ∆n
iX = Xi∆n − X(i−1)∆n. Here the limiting variable LT has a mixed normal

distribution with mean 0 and conditional variance 2
∫ T

0
σ4
s ds. This means

LT
d
=
(

2

T∫
0

σ4
s ds
)1/2

U, U ∼ N(0, 1)

with U being independent of (σt)t≥0. Notice that the characteristic function of LT is
given by

E[(itLT )] = E
[

exp
(
− t

T∫
0

σ4
s ds
)]
.

In order to obtain confidence regions for the integrated volatility
∫ T

0
σ2
s ds, we will also

show that

V 2
n :=

2

3∆n

bT/∆nc∑
i=1

|∆n
iX|4

P−→ V 2 = 2

T∫
0

σ4
s ds.

In the second step we would like to conclude that
Lnt
Vn

d−→ N(0, 1).

However, the weak convergence Lnt
d−→ L does not imply the joint convergence

(LnT , Vn)
d−→ (LT , V ), which is required to conclude the above statement.

For this reason we require a stronger mode of convergence than convergence in law. Sta-
ble convergence turns out to be an exactly right type of convergence to guarantee the
afore mentioned statement. In the following subsection we will give a formal definition
of stable convergence and derive its most useful properties.
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2.1 Stable Convergence

In this subsection all random variables or processes are defined on some probability
space (Ω,F,P). We start with a definition of stable convergence.

Definition 2.1
Let Yn be a sequence of random variables with values in a Polish space (E, E). We

say that Yn converges stably with limit Y , written Yn
st−→ Y , where Y is defined on

an extension (Ω′,F′,P′) of the original probability space (Ω,F,P), iff for any bounded,
continuous function g and any bounded F-measurable random variable Z it holds that

E[g(Yn)Z]→ E′[g(Y )Z] as n→∞. (2.1)

First of all, we remark that random variables Yn in the above definition can also be
random processes. We immediately see that stable convergence is a stronger mode of
convergence than weak convergence (which corresponds to Z = 1), but weaker than
convergence in probability.
For the sake of simplicity we will only deal with stable convergence of Rd-valued random
variables in this subsection. The next proposition gives a much simpler characterization
of stable convergence which is closer to the original definition of Rény in [15] (see also
[2]).

Proposition 2.1
The following properties are equivalent:

(i) Yn
st−→ Y

(ii) (Yn, Z)
d−→ (Y, Z) for any F-measurable variable Z

(iii) (Yn, Z)
st−→ (Y, Z) for any F-measurable variable Z

The assertion of Proposition 2.1 is shown via the usual approximation techniques and
we leave the details to the reader.
For the moment it is not quite clear why an extension of the original probability space
(Ω,F,P) in Definition 2.1 is required. The next lemma gives the answer.

Lemma 2.1
Assume that Yn

st−→ Y and Y is F-measurable. Then

Yn
P−→ Y.

Proof: As Yn
st−→ Y and Y is F-measurable, we deduce by Proposition 2.1(ii) that

(Yn, Y )
d−→ (Y, Y ).

Hence, Yn − Y
d−→ 0, and Yn

P−→ Y readily follows. �

Lemma 2.1 tells us that the extension of the original probability space is not re-
quired iff we have Yn

P−→ Y . But if we have "real" stable convergence Yn
st−→ Y , what

type of extension usually appears? A partial answer is given in the following example.

7



Example 2.1
Let (Xi)i≥1 be a sequence of i.i.d. random variables with E[X1] = 0 and E[X2

1 ] = 1,
defined on (Ω,F,P). Assume that F = σ(X1, X2, . . .). Setting Yn = 1√

n

∑n
i=1 Xi we

obtain that
Yn

d−→ Y ∼ N(0, 1),

which is of course a well-known result. Is there a stable version of this weak conver-
gence? The answer is yes. Let Y ∼ N(0, 1) be independent of F. Then

Yn
st−→ Y.

This can be shown as follows. For any collection t1, . . . , tk ∈ N, we deduce that

(Yn, Xt1 , . . . , Xtk)
d−→ (Y,Xt1 , . . . , Xtk)

as Yn is asymptotically independent of (Xt1 , . . . , Xtk) and Y is independent of F. This
implies that

(Yn, Z)
d−→ (Y, Z)

for any F-measurable Z (since F = σ(X1, X2, . . .)). This implies that Yn
st−→ Y . �

In fact, the described situation is pretty typical. Usually, we only require a new standard
normal variable that is independent of F. Thus, the extension is given by a product
space. However, more complicated extensions may appear.

In the last proposition of this subsection we present the delta method for stable conver-
gence.

Proposition 2.2
Let Yn, Vn, Y , X, V be Rd-valued random variables and let g : Rd → R be a C1-function.

(i) If Yn
st−→ Y and Vn

P−→ V then (Yn, Vn)
st−→ (Y, V ).

(ii) Let d = 1 and Yn
st−→ Y ∼ MN(0, V 2) with V being F-measurable. Assume that

Vn
P−→ V and Vn, V > 0. Then

Yn
Vn

d−→ N(0, 1).

(iii) Let
√
n(Yn − Y )

st−→ X. Then
√
n(g(Yn)− g(Y ))

st−→ ∇g(Y )X.

Proof:

(i) Yn
st−→ Y implies (Yn, V )

d−→ (Y, V ). Since Vn
P−→ V , we also have

(Yn, Vn)
d−→ (Y, V ).

(ii) We know from part (i) that (Yn, Vn)
d−→ (Y, V ). Applying the continuous mapping

theorem with f(x, z) = x
z

to (Yn, Vn) we deduce that

Yn
Vn

d−→ Y

V
∼ N(0, 1).
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(iii) Since
√
n(Yn − Y )

st−→ X we have

‖Yn − Y ‖
P−→ 0.

The mean value theorem implies that
√
n(g(Yn)− g(Y )) =

√
n∇g(ξn)(Yn − Y )

for some ξn with ‖ξn − Y ‖ ≤ ‖Yn − Y ‖. Clearly, ξn
P−→ Y . Thus, by part (i)

we obtain (ξn,
√
n(Yn − Y ))

st−→ (Y,X). This implies the assertion by continuous
mapping because ∇g is continuous. �

2.2 Jacod’s Stable Central Limit Theorem

In practice it is difficult to prove stable convergence, especially for processes. As for
weak convergence, it is sufficient to show stable convergence of the finite dimensional
distributions and tightness. However, proving stable convergence of the finite dimen-
sional distributions is not easy, because the structure of the σ-algebra F can be rather
complicated.
Jacod (see [10]) has derived a general stable central limit theorem for partial sums
of triangular arrays. Below we assume that all processes are defined on the filtered
probability space (Ω,F, (Ft)t≥0,P). We consider functionals of the form

Y n
t =

[t/∆n]∑
i=1

Xin, (2.2)

where the Xin’s are Fi∆n-measurable and square integrable random variables. More-
over, we assume that Xin’s are "fully generated" by a Brownian motion W . Recall that
power variations are statistics of the type (2.2).

Before we present the main theorem of this subsection, we need to introduce some
notations. Below, ([M,N ]s)s≥0 denotes the covariation process of two (one-dimensional)
semimartingales (Ms)s≥0 and (Ns)s≥0. We write V n u.c.p.−→ V whenever

sup
t∈[0,T ]

|V n
t − Vt|

P−→ 0 ∀ T > 0.

Theorem 2.1 (Jacod’s Theorem (1997))
Assume there exist absolutely continuous processes F , G, and a continuous process B
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with finite variation such that the following conditions are satisfied for each t ∈ [0, T ]:

[t/∆n]∑
i=1

E[Xin|F(i−1)∆n ]
u.c.p.−→ Bt, (2.3)

[t/∆n]∑
i=1

(
E[X2

in|F(i−1)∆n ]− E2[Xin|F(i−1)∆n ]
)

P−→ Ft =

t∫
0

(v2
s + w2

s)ds, (2.4)

[t/∆n]∑
i=1

E[Xin∆n
iW |F(i−1)∆n ]

P−→ Gt =

t∫
0

vsds, (2.5)

[t/∆n]∑
i=1

E[X2
in1{|Xin>ε|}|F(i−1)∆n ]

P−→ 0 ∀ε > 0, (2.6)

[t/∆n]∑
i=1

E[Xin∆n
iN |F(i−1)∆n ]

P−→ 0, (2.7)

where (vs)s≥0 and (ws)s≥0 are predictable processes and condition (2.7) holds for all
bounded Ft-martingales (Ns)s≥0 with N0 = 0 and [W,N ]s ≡ 0. Then we obtain the
stable convergence of processes:

Y n
t

st−→ Yt = Bt +

t∫
0

vsdWs +

t∫
0

wsdW
′
s, (2.8)

on D([0, T ]), where W ′ is a Brownian motion defined on an extension of the original
probability space (Ω,F, (Ft)t≥0,P) and independent of the original σ-algebra F.

Remark 2.1
Let us shortly comment on the conditions of Theorem 2.1.

(i) Condition (2.3) determines the drift (or bounded variation part) of the limiting
process Y .

(ii) Condition (2.4) determines the quadratic variation of Y .

(iii) Condition (2.6) (“Lindeberg condition”) ensures that the limiting process Y has
no jump part.

(iv) Condition (2.8) implies that on the original probability space (Ω,F, (Ft)t≥0,P)
there is only one martingale W , which contributes to Y . The combination of
(2.4) and (2.5) identifies the distribution of the quadratic variation of Y between
the dWs and dW ′

s part. �

Remark 2.2
At the moment Theorem 2.1 is a probabilistic result that has no statistical applications
in general, because the distribution of Y is unknown. However, when B ≡ 0 and v ≡ 0,
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which is the case for the most interesting situations, things become different! We remark
that, for any fixed t > 0,

t∫
0

wsdW
′
s ∼MN

(
0,

t∫
0

w2
sds
)
,

since W ′ is independent of F. Hence

Y n
t√∫ t

0
w2
sds

d−→ N(0, 1),

and the convergence still holds true if we replace the denominator by a consistent esti-
mator. The latter can be applied to obtain confidence bands or to solve other statistical
problems. �

Next, we will apply Theorem 2.1 to a particular example.

Example 2.2
Let σ be a càdlàg, Ft-adapted and bounded process and let g, h : R → R be continuous
functions, where h satisfies the polynomial growth condition |h(x)| < C(1 + |x|r) for
some r > 0 and C > 0. Define

Y n
t =

[t/∆n]∑
i=1

Xin, Xin = ∆1/2
n g(σ(i−1)∆n)

(
h
(∆n

iW√
∆n

)
− E

[
h
(∆n

iW√
∆n

)])
. (2.9)

Note that the Xin’s have a pretty simple structure, since ∆n
iW is independent of F(i−1)∆n

and ∆n
iW/
√

∆n ∼ N(0, 1). Now we need to check the conditions (2.3) - (2.7) from
Theorem 2.1.

(2.3): E[Xin|F(i−1)∆n ] = 0 =⇒ B≡ 0. �

(2.4), (2.5):

E[X2
in|F(i−1)∆n ]− E2[Xin|F(i−1)∆n ] = ∆n g

2(σ(i−1)∆n) var(h(U)),

with U ∼ N(0, 1)

E[Xin∆n
iW |F(i−1)∆n ] = ∆n g(σ(i−1)∆n)E[h(U)U ]

And so it follows that

Ft = a2

t∫
0

g2(σs)ds with a2 = var(h(U)),

Gt = b

t∫
0

g(σs)ds with b = E[h(U)U ].
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Thus, we can set ws =
√
a2 − b2 g(σs), vs = b g(σs) in (2.4) and (2.5). �

(2.6):

[t/∆n]∑
i=1

E[X2
in1{|Xin|>ε}|F(i−1)∆n ] ≤ ε−2

[t/∆n]∑
i=1

E[X4
in|F(i−1)∆n ] ≤ C

∆n

ε2
−→ 0

for some C > 0, because σ is bounded. This implies (2.6). �

(2.7): Itô-Clark representation implies that

h
(∆n

iW√
∆n

)
− E

[
h
(∆n

iW√
∆n

)]
=

i∆n∫
(i−1)∆n

ηns dWs.

for some process (ηns )s≥0. We obtain that

E[Xin∆n
iN |F(i−1)∆n ] = ∆1/2

n g(σ(i−1)∆n) E
[ i∆n∫

(i−1)∆n

ηns dWs

i∆n∫
(i−1)∆n

dNs

]

= ∆1/2
n g(σ(i−1)∆n) E

[ i∆n∫
(i−1)∆n

ηns d [W,N ]︸ ︷︷ ︸
=0

s

]
= 0

Putting things together we deduce that

Y n
t

st−→ Yt = b

t∫
0

g(σs)dWs +
√
a2 − b2

t∫
0

g(σs)dW
′
s.

Furthermore, when h is an even function then b = 0 and we have

Y n
t

st−→ Yt = a

t∫
0

g(σs)dW
′
s ∼ MN

(
0, a2

t∫
0

g2(σs)ds
)

�
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3 Limit Theorems for Continuous
Semimartingales

In this section we consider continuous semimartingales of the form

Xt = X0 +

t∫
0

asds+

t∫
0

σsdWs, (3.1)

where (as)s≥0 is a càglàd process and (σs)s≥0 is a càdlàg, adapted process. Recall that
càglàd =̂ left continuous with right limits
càdlàg =̂ right continuous with left limits
(Ws)s≥0 is a 1-dimensional Brownian motion. All processes are defined on a filtered
probability space (Ω,F, (Ft)t≥0,P). We consider high frequency statistics of the form

V (f)nt = ∆n

[t/∆n]∑
i=1

f
(∆n

iX√
∆n

)
, ∆n

iX = Xi∆n −X(i−1)∆n . (3.2)

Notice that for f(x) = |x|p we obtain the power variation of X. We start with the “law
of large numbers” for V (f)nt . For any function f : R→ R, we define

ρx(f) = E[f(xU)], (3.3)

for x ∈ R and U ∼ N(0, 1), if the above expectation exitst.

Theorem 3.1
Assume that the function f is continuous and has polynomial growth, i.e. |f(x)| ≤
C(1 + |x|p) for some C > 0 and p ≥ 0. Then

V (f)nt
u.c.p.−→ V (f)t =

t∫
0

ρσs(f)ds. (3.4)

Recall that V (f)nt
u.c.p.−→ V (f)t stands for supt∈[0,T ] |V (f)nt − V (f)t|

P−→ 0 for all T > 0.
We remark that the drift process (as)s≥0 does not influence the limit V (f)t. We will
see later why this phenomenon appears. Next, we present an important application of
Theorem 3.1.

Example 3.1 (Power variation)
As we mentioned, the case f(x) = |x|p corresponds to the subclass of power variations.
It is the most important subclass of statistics in financial econometrics. For f(x) = |x|p,
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Theorem 3.1 translates to

V (f)nt
u.c.p.−→ V (f)t = mp

t∫
0

|σs|pds,

with mp = E[|N(0, 1)|p] since ρx(f) = mp|x|p. For f(x) = x2 we recover a well-known
result from stochastic calculus

V (f)nt =

[t/∆n]∑
i=1

|∆n
iX|2

u.c.p.−→ [X]t =

t∫
0

σ2
sds.

�

Sketch of the proof of Theorem 3.1.

(i) The crucial approximation: First of all, observe that

∆n
iX =

i∆n∫
(i−1)∆n

asds

︸ ︷︷ ︸
=Op(∆n)

+

i∆n∫
(i−1)∆n

σsdWs

︸ ︷︷ ︸
=Op(∆

1/2
n )

, (3.5)

where the second approximation follows by Burkholder’s inequality (see e.g. Theorem
IV.4.1 in [16]):

E
[∣∣∣ b∫

a

σs dWs

∣∣∣p] ≤ Cp E
[∣∣∣ b∫

a

σ2
s dWs

∣∣∣p/2] (3.6)

for all p ≥ 0, if the second expectation exists. Thus, the influence of the drift process
(as)s≥0 is negligible for the first order asymptotics. Indeed, we have

∆n
iX√
∆n

≈ αni = ∆−1/2
n σ(i−1)∆n∆n

iW, (3.7)

which is the crucial approximation for proving all asymptotic results. Note that,
compared to X, the αni ’s have a very simple structure: They are uncorrelated and
αni ∼MN(0, σ2

(i−1)∆n
). It holds that

E[f(αni )|F(i−1)∆n ] = ρσ(i−1)∆n
(f),

which explains the definition of ρx(f). �

(ii) From local boundedness to boundedness: Since the processes (as)s≥0 and (σs−)s≥0 are
assumed to be càglàd, they are locally bounded, i.e. there exists an increasing sequence
of stopping times Tk with Tk

a.s.−→∞ such that

|as|+ |σs−| ≤ Ck, ∀s ≤ Tk

14



for all k ≥ 1. Using this fact it is indeed possible to assume w.l.o.g. that (as)s≥0, (σs−)s≥0

are bounded, because Theorem 3.1 is stable under stopping. To illustrate these ideas set
a

(k)
s = as1{s≤Tk}, σ

(k)
s = σs1{s<Tk}. Note that the processes a(k), σ(k) are bounded for all

k ≥ 1. Associate X(k) with a(k), σ(k) by (3.1), V (k)(f)nt with X(k) by (3.2) and V (k)(f)t
with σ(k) by (3.4). Now, notice that

X
(k)
t = Xt, V (k)(f)nt = V (f)nt , V (k)(f)t = V (f)t, ∀t ≤ Tk.

As Tk
a.s.−→ ∞ it is sufficient to prove V (k)(f)nt

u.c.p.−→ V (k)(f)t for each k ≥ 1. For this
reason we may assume w.l.o.g. that (as)s≥0, (σs−)s≥0 are bounded in (ω, t). �

(iii) Main step: Since f is continuous and σ is càdlàg (and bounded w.l.o.g.), it is
relatively simple to show that

V (f)nt −∆n

[t/∆n]∑
i=1

f(αni )
u.c.p.−→ 0. (3.8)

On the other hand, it holds that

∆n

[t/∆n]∑
i=1

E[f(αni )|F(i−1)∆n ] = ∆n

[t/∆n]∑
i=1

ρσ(i−1)∆n
(f)

u.c.p.−→ V (f)t.

Hence, we are left to proving the convergence

∆n

[t/∆n]∑
i=1

{
f(αni )− E[f(αni )|F(i−1)∆n ]

}
u.c.p.−→ 0

But this follows directly from

∆2
n

[t/∆n]∑
i=1

E[f 2(αni )|F(i−1)∆n ] = ∆2
n

[t/∆n]∑
i=1

ρσ(i−1)∆n
(f)

P−→ 0.

Hence
V (f)nt

u.c.p.−→ V (f)t.

�

Now we turn our attention to the stable central limit theorem associated with Theorem
3.1. Here we require a stronger assumption on the volatility process σ to be able to deal
with the approximation error induced by (3.7). More precisely, the process σ is also a
continuous semimartingale of the form:

σt = σ0 +

t∫
0

ãsds+

t∫
0

σ̃sdWs +

t∫
0

τ̃sdVs, (3.9)

where the processes (ãs)s≥0, (σ̃s)s≥0, (τ̃s)s≥0 are càdlàg adapted and V is a Brownian
motion independent of W .
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In fact, the assumption (3.9) is motivated by econometric applications, as it is sat-
isfied for many stochastic volatility models. Next, for any function f : R → R and
k ∈ N, we define

ρx(f, k) = E[f(xU)Uk], U ∼ N(0, 1). (3.10)

Note that ρx(f) = ρx(f, 0).

Theorem 3.2
Assume that f ∈ C1(R) with f, f ′ having polynomial growth and that condition (3.9) is
satisfied. Then the stable convergence of processes

∆−1/2
n

(
V (f)nt − V (f)t

)
st−→ L(f)t =

t∫
0

bsds+

t∫
0

vsdWs +

t∫
0

wsdW
′
s, (3.11)

holds, where

bs = asρσs(f
′) +

1

2
σ̃s(ρσs(f

′, 2)− ρσs(f ′)),

vs = ρσs(f, 1),

ws =
√
ρσs(f

2)− ρ2
σs(f)− ρ2

σs(f, 1)

and W ′ is a Brownian motion defined on an extension of the original probability space
(Ω,F, (Ft)t≥0,P) and independent of the original σ-algebra F.

As a consequence of Theorem 3.2 we obtain a simple but very important lemma.

Lemma 3.1
Assume that f : R→ R is an even function and that the conditions of Theorem 3.2 hold.
Then ρx(f ′) = ρx(f

′, 2) = ρx(f, 1) = 0, and we deduce that

∆−1/2
n

(
V (f)nt − V (f)t

)
st−→ L(f)t =

t∫
0

wsdW
′
s,

with ws =
√
ρσs(f

2)− ρ2
σs(f).

As we mentioned in Remark 2.2, L(f)t has a mixed normal distribution (for any t > 0)
when f is an even function. Indeed, this is the case for almost all statistics used in
practice. Let us now return to Example 3.1.

Example 3.2 (Power variations)
We consider again the class of functions f(x) = |x|p (p > 0), which are obviously even.
By Lemma 3.1 we deduce that

∆−1/2
n

(
V (f)nt −mp

t∫
0

|σs|p
)

st−→ L(f)t =
√
m2p −m2

p

t∫
0

|σs|pdW ′
s. (3.12)
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In fact, the above convergence can be deduced from Lemma 3.1 only for p > 1, since
otherwise f(x) = |x|p is not differentiable at 0. However, it is possible to extend the
theory to the case 0 < p ≤ 1 under a further condition on σ; see BGJPS (06). By
Theorem 3.1 and Proposition 2.2 we are able to derive a feasible version of Lemma 3.1
associated with f(x) = |x|p:

∆
−1/2
n

(
∆

1−p/2
n |∆n

iX|p −mp

∫ t
0
|σs|p ds

)
√

m2p−m2
p

m2p
V (f 2)nt

d−→ N(0, 1),

which can be used for statistical purposes. For the case of quadratic variation, i.e.
f(x) = x2, this translates to

∆
−1/2
n

(∑[t/∆n]
i=1 |∆n

iX|2 −
∫ t

0
σ2
s

)
√

2
3
∆−1
n

∑[t/∆n]
i=1 |∆n

iX|4
d−→ N(0, 1).

Quite interestingly, the stable convergence for the case of quadratic variation can be
proved without imposing the condition (3.9); this is not possible for other powers p. �

Sketch of the proof of Theorem 3.2:
(i) CLT for the approximation (3.7): First of all, we observe that Theorem 3.2 is also
stable under stopping. Thus, we can assume w.l.o.g. that the processes (as)s≥0, (σs)s≥0,
(ãs)s≥0, (σ̃s)s≥0, (τ̃s)s≥0 are bounded. In a first step, we show the central limit theorem
for the approximation

αni = ∆−
1/2

n σ(i−1)∆n∆n
iW.

More precisely, we want to prove that

[t/∆n]∑
i=1

Xin
st−→

t∫
0

vsdWs +

t∫
0

wsdW
′
s, Xin = ∆1/2

n

(
f(αni )− E[f(αni )|F(i−1)∆n ]

)
,

where the processes (vs)s≥0 and (ws)s≥0 are defined in Theorem 3.2. In principle, we
can follow the ideas of Example 2.2: we immediately deduce the convergence

[t/∆n]∑
i=1

E[X2
in|F(i−1)∆n ]

P−→ Ft =

t∫
0

(ρσs(f
2)− ρ2

σs(f))ds,

[t/∆n]∑
i=1

E[Xin∆n
iW |F(i−1)∆n ]

P−→ Gt =

t∫
0

ρσs(f, 1)ds.

On the other hand, conditions (2.3) with B ≡ 0, (2.6) and (2.7) of Theorem 2.1 are
shown as in Example 2.2. Consequently, we deduce that

[t/∆n]∑
i=1

Xin
st−→

t∫
0

vsdWs +

t∫
0

wsdW
′
s.
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�

(ii) CLT for the canonical process: Before we proceed with the proof of Theorem
3.2 we need to present a further intermediate step. In fact, it is much more natural to
consider a central limit theorem for the "canonical process"

L(f)nt = ∆1/2
n

[t/∆n]∑
i=1

{
f
(∆n

iX√
∆n

)
− E

[
f
(∆n

iX√
∆n

)∣∣∣F(i−1)∆n

]}
since the latter is a martingale. Notice that

L(f)nt −
[t/∆n]∑
i=1

Xin =

[t/∆n]∑
i=1

(
Yin − E

[
Yin
∣∣F(i−1)∆n

])
with

Yin = ∆1/2
n

(
f
(∆n

iX√
∆n

)
− f(αni )

)
.

Since
[t/∆n]∑
i=1

E
[
Y 2
in

∣∣F(i−1)∆n

]
= ∆n

[t/∆n]∑
i=1

E
[(
f
(∆n

iX√
∆n

)
− f(αni )

)2∣∣∣F(i−1)∆n

]
P−→ 0

(this is shown as in (3.8)), we conclude that

L(f)nt −
[t/∆n]∑
i=1

Xin
u.c.p.−→ 0,

Hence,

L(f)nt
st−→

t∫
0

vsdWs +

t∫
0

wsdW
′
s.

�

(iii) The final step: Now, we are left to proving

∆−1/2
n

(
V (f)nt − V (f)t

)
− L(f)nt

u.c.p.−→
t∫

0

bsds,

where the process (bs)s≥0 is given in Theorem 3.2. In view of the previous step, it is
sufficient to show that

∆−1/2
n

[t/∆n]∑
i=1

i∆n∫
(i−1)∆n

(ρσs(f)− ρσ(i−1)∆n
(f))ds

u.c.p.−→ 0, (3.13)

∆1/2
n

[t/∆n]∑
i=1

E
[
f
(∆n

iX√
∆n

)
− f(αni )|F(i−1)∆n

]
u.c.p.−→

t∫
0

bsds. (3.14)
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To sketch the following ideas we use the notation Y n � Xn whenever Y n − Xn u.c.p.−→ 0.
We start with the convergence in (3.13). Notice that the function ρ.(f) : R → R is
differentiable. Hence, we have

ρσs(f)− ρσ(i−1)∆n
(f) ≈ ρ′σ(i−1)∆n

(f)(σs − σ(i−1)∆n)

≈ ρ′σ(i−1)∆n
(f)
(
σ̃(i−1)∆n(Ws −W(i−1)∆n) + τ̃(i−1)∆n(Vs − V(i−1)∆n)

)
:= χni (s)

due to condition condition (3.9). Notice that

V ar
[
∆−1/2
n

[t/∆n]∑
i=1

i∆n∫
(i−1)∆n

χni (s) ds
]

= ∆−1
n

[t/∆n]∑
i=1

E
[( i∆n∫

(i−1)∆n

χni (s) ds
)2]

= C∆n → 0

Hence, we deduce (3.13).
Finally, let us highlight the proof of (3.14). The most important idea is the following
approximation step

∆1/2
n

[t/∆n]∑
i=1

E
[
f
(∆n

iX√
∆n

)
− f(αni )|F(i−1)∆n

]
� ∆1/2

n

[t/∆n]∑
i=1

E
[
f ′(αni )

(∆n
iX√
∆n

− αni
)
|F(i−1)∆n

]

�
[t/∆n]∑
i=1

E
[
f ′(αni )

(
∆na(i−1)∆n +

i∆n∫
(i−1)∆n

(σs − σ(i−1)∆n)dWs

)
|F(i−1)∆n

]

�
[t/∆n]∑
i=1

E
[
f ′(αni )

(
∆na(i−1)∆n + σ̃(i−1)∆n

i∆n∫
(i−1)∆n

(Ws −W(i−1)∆n)dWs

︸ ︷︷ ︸
= 1

2
(|∆n

i W |2−∆n) due to Itô’s formula

)
|F(i−1)∆n

]
.

� ∆n

[t/∆n]∑
i=1

[
a(i−1)∆nρσ(i−1)∆n

(f ′) +
1

2
σ̃(i−1)∆n

{
ρσ(i−1)∆n

(f ′, 2)− ρσ(i−1)∆n
(f ′)

}]
u.c.p.−→

t∫
0

bsds,

which completes the proof of Theorem 3.2. �
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4 Robust Estimation

In this section we consider semimartingales with jumps of the form

Xt = X0 +

t∫
0

as ds+

t∫
0

σs dWs +
Nt∑
j=1

Yj, (4.1)

where the processes (as)s≥0, (σs)s≥0 satisfy the same assumptions as in section 3, (Ns)s≥0

denotes a Poisson process and (Yj)j≥0 is a sequence of iid random variables. Sometimes
we denote the jump part of X by Xj, i.e.

Xj
t =

Nt∑
k=1

Yk (4.2)

Processes of the form (4.2) are called “compound Poisson processes”; they exhibit
finitely many jumps on finite intervals.
In this subsection we are interested in constructing estimators of integrated (powers of)
volatility, which are robust to the presence of jumps. This is particularly important for a
separate estimation of

[Xc]t =

t∫
0

σ2
s ds, [Xj]t =

∑
0≤s≤t

|∆Xs|2 =
Nt∑
k=1

Y 2
k .

In finance these two parts of the quadratic variation have a different interpretation. We
will present two methods of robust estimation: (a) Multipower variation, which goes
back to Barndorff-Nielsen and Shephard (see [4]), (b) Threshold estimation proposed
by Mancini in [14]. There exist other alternative methods, see e.g. [7].

4.1 Multipower Variation

Multipower variation is a straightforward extension of the power variation concept. It
is defined as

V (X, p1, . . . , pk)
n
t = ∆1−p+/2

n

bt/∆nc−k+1∑
i=1

|∆n
iX|p1 . . . |∆n

i+k−1X|pk , (4.3)

where pj ≥ 0 and p+ = p1 + . . .+ pk. As we will see in the next theorem, the asymptotic
behaviour of multipower variation is very similar to the asymptotic behaviour of power
variation, if X is continuous.

20



Theorem 4.1
Assume that X is a continuous semimartingale, i.e. Xj = 0.

(i) For any p1, . . . , pk ≥ 0, it holds that

V (X, p1, . . . , pk)
n
t

u.c.p.−→ V (X, p1, . . . , pk)t := mp1 . . .mpk

t∫
0

|σs|p
+

ds, (4.4)

with mp = E[|N(0, 1)|p].

(ii) Assume that the conditions of Theorem 3.2 hold. Then we obtain

∆−
1/2

n

(
V (X, p1, . . . , pk)

n
t−V (X, p1, . . . , pk)t

)
st−→ L(p1, . . . , pk)t =

√
Ap1,...,pk

t∫
0

|σs|p
+

dW
′,
s

(4.5)

where the constant Ap1,...,pk is defined by

Ap1,...,pk =
k∏
l=1

m2pl − (2k − 1)
k∏
l=1

m2
2pl

+ 2
k−1∑
l=1

l∏
j=1

mpj

k∏
j=k−l+1

mpj

k−l∏
j=1

mpj+pj+l

Remark 4.1
Notice that the class of multipower variations estimates the same objects as in Example
3.1. So, it is a priori not clear why these statistics can be more useful. However, they
have a more rich behaviour when jumps are present, as we will see in the next theorem.
Theorem 4.1 has been proved in [3]. The proof mainly follows the same ideas as pre-
sented in section 3.

Now, we turn our attention to the asymptotic behaviour of V (X, p1, . . . , pk)
n
t in the pres-

ence of jumps.

Theorem 4.2
Assume that X satisfies the representation (4.1).

(i) For any p1, . . . , pk ≥ 0 with maxj pj < 2, it holds that

V (X, p1, . . . , pk)
n
t

u.c.p.−→ V (Xc, p1, . . . , pk)t = mp1 . . .mpk

t∫
0

|σs|p
+

ds. (4.6)

(ii) Assume that the conditions of Theorem 3.2 hold. For any p1, . . . , pk ≥ 0 with
maxj pj < 1 we obtain:

∆−
1/2

n

(
V (X, p1, . . . , pk)

n
t − V (X, p1, . . . , pk)t

)
st−→ L(p1, . . . , pk)t, (4.7)

where the limit L(p1, . . . , pk)t was defined in Theorem 4.1.
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In other words, Theorem 4.2 makes it possible to estimate integrated volatility robustly
to jumps. The most important example is the following:

V (X, 1, 1)nt =

bt/∆nc−1∑
i=1

|∆n
iX||∆n

i+1X|
u.c.p.−→ m2

1

t∫
0

σ2
s ds. (4.8)

This result shold be compared to the well known convergence

V (X, 2)nt =

bt/∆nc∑
i=1

|∆n
iX|2

u.c.p.−→
t∫

0

σ2
s ds+

∑
0≤s≤t

|∆Xs|2. (4.9)

Combining these two results, we can construct estimators for [Xc]t =
∫ t

0
σ2
s ds and

[Xj]t =
∑

0≤s≤t |∆Xs|2. We will use it later to propose a test for jumps (see [5]).

Remark 4.2
For a general jump process Xj we need to impose stronger assumptions for Theorem
4.2 (ii). In particular, the jump part Xj of X must have finite variation. �

A test for jumps:
The convergence in (4.8), (4.9) suggests that we may use the statistic

V (X, 2)nt −m−2
1 V (X, 1, 1)nt

P−→
∑

0≤s≤t

|∆Xs|2

to test whether X has jumps or not. Under the null hypothesis of no jumps, one can
show that

∆−
1/2

n

(
V (X, 2)nt −m−2

1 V (X, 1, 1)nt

)
st−→MN

(
0, µ

t∫
0

σ4
s ds
)

with µ = π2

4
+ π − 5. Theorem 4.2 (i) implies that

V (X, 1, 1, 1, 1)nt
u.c.p.−→ m4

1

t∫
0

σ4
s ds.

The test statistic for jumps is defined as

Snt =
∆
−1/2
n

(
V (X, 2)nt −m−2

1 V (X, 1, 1)nt

)
√
µm−4

1 V (X, 1, 1, 1, 1)nt
.

The null hypothesis of no jumps is rejected when

Snt > C1−α
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where C1−α is the (1− α)-quantile of N(0, 1). Indeed it holds that

PH0(Snt > C1−α)
n→∞−−−→ α

PH1(Snt > C1−α)
n→∞−−−→ 1

�
Sketch of the proof of Theorem 4.2:
First, let us set

V (X, p1, . . . , pk)
n
t =

bt/∆nc−k+1∑
i=1

χni , χni = ∆1−p+/2
n |∆n

iX|p1 . . . |∆n
i+k−1X|pk .

The proof is performed through the following observations:

(i) Recall that Xj
t =

∑Nt

l=1 Yl and (Ns)s≥0 has only finitely many jumps on the interval
[0, t]. This means that only finitely many χni ’s are influenced by Xj. �

(ii) Supposed that some χni is influenced by the jump part Xj. Then, with probability
converging to 1, only one of the intervals [(i− 1)∆n, i∆n] . . . [(i+k− 2)∆n, (i+k−
1)∆n] contains a jump of N . Indeed, it is easily shown that

P
(
N has 2 or more jumps in the intervals [(i− 1)∆n, i∆n] . . . [(i+ k − 2)∆n, (i+ k − 1)∆n]

)
= OP(∆2

n).

�

(iii) For the continuous part Xc we have the approximation

∆n
iX

c = OP(∆
1/2
n ).

�

(iv) Putting things together we obtain the following: Let χni be a summand influenced
by the jump part Xj (there are only finitely many of these!). W.l.o.g. this jump
lies in the interval [(i− 1)∆n, i∆n]. Then:

χni = ∆1−p+/2
n |∆n

iX|p1 |∆n
i+1X|p2︸ ︷︷ ︸

=OP(∆
p2/2
n )

. . . |∆n
i+k−1X|pk︸ ︷︷ ︸

=OP(∆
pk/2
n )

= OP
(
∆1−p1/2
n

)
.

Now, it is immediately clear that we deduce Theorem 4.2 (i) if maxj pj < 2 and
Theorem 4.2 (ii) if maxj pj < 1. �

4.2 Treshold Estimation

In this subsection we present a different approach of robust estimation proposed by
Mancini (see [14]). We restrict our attention to robust estimation of the integrated
volatility [Xc]t =

∫ t
0
σ2
s ds. The treshold estimator is defined as

TRV n
t :=

bt/∆nc∑
i=1

|∆n
iX|21{|∆n

i X|≤C∆ω
n}, (4.10)
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where the discontinuous semimartingale is given by (4.1), C > 0 and ω ∈ (0, 1
2
). The

idea behind this estimator is relatively simple. The increments of the continuous part
Xc satisfy

∆n
iX

c = OP
(
∆

1/2
n

)
,

so with probability converging to 1 they fulfill |∆n
iX| ≤ C∆ω

n for ω < 1
2
. On the other

hand, if there is a jump in the interval [(i− 1)∆n, i∆n] (which happens only for finitely
many i’s in our model), then |∆n

iX| > C∆ω
n with probability converging to 1, since

∆ω
n → 0. The following result is then rather sraightforward.

Theorem 4.3
Assume that the process X satisfies (4.1). Then it holds that

TRV n
t

u.c.p.−→ [Xc]t =

t∫
0

σ2
s ds, (4.11)

and

∆−
1/2

n

(
TRV n

t −
t∫

0

σ2
s ds
)

st−→
√

2

t∫
0

σ2
s dW

′
s. (4.12)

Remark 4.3
Observing Examples 3.1 and 3.2 we conclude that the treshold estimator TRV n

t is robust
to the presence of (finite activity) jumps. For more general jump processes we require
some stronger conditions to prove (4.12). In particular, the jump part Xj must have
finite variation. �

Using the result of Theorem 4.3 we can estimate [Xc]t and [Xj]t separately:

TRV n
t

u.c.p.−→
t∫

0

σ2
s ds,

bt/∆nc∑
i=1

|∆n
iX|2 − TRV n

t =

bt/∆nc∑
i=1

|∆n
iX|21{|∆n

i X|>C∆ω
n}

P−→
∑

0≤s≤t

|∆Xs|2.
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5 Limit Theorems for Discontinuous
Semimartingales

Until now we have learned how to estimate volatility in continuous models and how to
construct robust estimators in discontinuous models. In this section we concentrate on
central limit theorems for realised jumps, e.g. for estimators of

[X]t =

t∫
0

σ2
s ds+

∑
0≤s≤t

|∆Xs|2.

We consider again the discontinuous model

Xt = X0 +

t∫
0

as ds+

t∫
0

σs dWs +
Nt∑
j=1

Yj, (5.1)

as in section 4. The statistics of interest are again power variations

V (f)nt =

[t/∆n]∑
i=1

f(∆n
iX), f(x) = |x|p. (5.2)

The first result is the law of large numbers, which is due to [13].

Theorem 5.1
Assume that the process X is of the form (5.1) and f(x) = |x|p for p > 0. For any t ≥ 0
we have

V (f)nt
P−→ V (f)t =


∑

0≤s≤t
|∆Xs|p, p > 2,

[X]t =
∫ t

0
σ2
sds+

∑
0≤s≤t

|∆Xs|2, p = 2.

Remark 5.1
The convergence for p = 2 is, of course, a well-known result. For p > 2, the result is
easily shown (for the model (5.1)!) via a combination of

[t/∆n]∑
i=1

|∆n
iX

c|p P−→ 0 and
[t/∆n]∑
i=1

|∆n
iX

j|p P−→
∑

0≤s≤t

|∆Xs|2 ∀ p > 2.
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To proceed with the associated central limit theorem we need to introduce some nota-
tion. On an extension (Ω′,F′,P′) of the original probability space (Ω,F,P), let (Um)m∈N
and (U ′m)m∈N be iidN(0, 1)-distributed sequences, (κm)m∈N be an iid U([0, 1])-distributed
sequence, and (W ′

t)t≥0 be a Brownian motion. All these processes are mutually indepen-
dent and independent of F. We define

L(f)t =
∑

m: Tm≤t

f ′(∆XTm)
(√

κmUmσTm− +
√

1− κmU ′mσTm
)
, (5.3)

where (Tm)m≥1 are jump times of N (and so of X) and f(x) = |x|p. Jacod (see [11])
has proved the following result.

Theorem 5.2
Let f(x) = |x|p for p > 0. For any t ≥ 0 we obtain

∆−1/2
n

(
V (f)nt − V (f)t

)
st−→

{
L(f)t p > 3,

L(f)t + L(f)t, p = 2.
(5.4)

where L(f)t is defined by (5.3) and L(f)t is given via

L(f)t =
√

2

t∫
0

σ2
s dW

′
s.

We remark that the result of Theorem 5.2 does not hold in a functional sense. A func-
tional central limit theorem can be obtained by replacing V (f)t through V (f)∆nbt/∆nc.
Notice that there is no central limit theorem for p ∈ (2, 3].

Remark 5.2 (Statistical applications)
The second part of Theorem 5.2 implies that

∆−1/2
n

( bt/∆nc∑
i=1

|∆n
iX|2 − [X]t

)
st−→ L(f)t + L(f)t

with f(x) = x2. How can we use this result to construct confidence regions for [X]t?
Assume that the processes X and σ have no common jumps. Then it holds that

L(f)t = 2
∑

m: Tm≤t

∆XTmσTm

(√
κmUm +

√
1− κmU ′m︸ ︷︷ ︸

∼N(0,1)

)
.

Consequently, we have that

L(f)t + L(f)t ∼MN
(

0, 2

t∫
0

σ4
s ds+ 4

∑
m: Tm≤t

σ2
Tm|∆XTm |2

)
.

The first part of the conditional variance

V 2 =

t∫
0

σ2
s ds+ 4

∑
m: Tm≤t

σ2
Tm|∆XTm|2
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can be estimated as in example 3.2; for the estimation of the second part we need local
estimates of the volatility. Since σ is càdlàg, the local estimate of σ2

s is given as

σ2
s,n :=

1

κn∆n

bs/∆nc+κn∑
i=bs/∆nc

|∆n
iX|21{|∆n

i X|≤C∆ω
n}

with C > 0, ω ∈ (0, 1
2
) and κn →∞, ∆nκn → 0. Indeed, the results of section 4.2 imply

that
σ2
s,n

P−→ σ2
s .

Now, the estimator of V 2 can be defined as

V 2
n =

2

3∆n

bt/∆nc∑
i=1

|∆n
iX|4 + 4

bt/∆nc∑
i=1

σ2
i∆n,n|∆

n
iX|21{|∆n

i X|>C∆ω
n}

P−→ V 2.

Finally, we obtain a standard central limit theorem

∆
−1/2
n

(∑bt/∆nc
i=1 |∆n

iX|2 − [X]t

)
Vn

d−→ N(0, 1)

for any fixed t > 0. �

Remark 5.3 (Another test for jumps)
Ait-Sahalia and Jacod (see [1]) applied the result of Theorem 5.2 to construct a test
for jumps. The main idea is to use ratio statistics at two different frequencies. Namely,
Theorem 3.2 implies the convergence∑bt/∆nc

i=1 |∆n
iX|4∑bt/∆nc

i=2

(
Xi∆n −X(i−2)∆n

)4

P−→

{
1 : if X has jumps,
1
2

: if X has no jumps.

Furthermore, we have the associated central limit theorems in both cases. This gives a
possibility to construct a consistent level-α test for the null hypothesis of no jumps. �

Sketch of the proof of theorem 5.2:
We start with the case p > 3, f(x) = |x|p. Observe the decomposition

∆−1/2
n

(
V (f)nt − V (f)t

)
= Snt +Rn

t ,

with

Snt = ∆−1/2
n

bt/∆nc∑
i=1

{
f(∆n

iX)− f(∆n
iX

j)
}
,

Rn
t = ∆−1/2

n

( bt/∆nc∑
i=1

f(∆n
iX

j)−
∑

0≤s≤t

f(∆Xs)
)
.
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First of all, since the probability of having two or more jumps in the interval
[(i− 1)∆n, i∆n] is very small, we have

Rn
t

P−→ 0.

For the term Snt we obtain that

Snt ∼ ∆−1/2
n

bt/∆nc∑
i=1

f ′(∆n
iX

j)
(
∆n
iX −∆n

iX
j
)

∼ ∆−1/2
n

bt/∆nc∑
i=1

f ′(∆n
iX

j)

i∆n∫
(i−1)∆n

σs dWs.

Now we proceed with a rather intuitive argument. Assume that X has one jump at
time T ∈ [(i− 1)∆n, i∆n] (and with probability converging to 1 it is the only one in this
interval). Then

∆−1/2
n f ′(∆n

iX
j)

i∆n∫
(i−1)∆n

σs dWs ∼ ∆−1/2
n f ′(∆XT )

[ T∫
(i−1)∆n

σs dWs +

i∆n∫
T

σs dWs

]
Since σ is càdlàg, the above quantity is approximated as illustrated below:

σTm−(WT −W(i−1)∆n) - � σT (Wi∆n −WT )

(i− 1)∆n T i∆n

Because N is a Poisson process, T is uniformly distributed in [(i − 1)∆n, i∆n]. This
implies that

∆−1/2
n f ′(∆XT )

[ T∫
(i−1)∆n

σs dWs +

i∆n∫
T

σs dWs

]
st−→ f ′(∆XT )

[√
κ U σt +

√
1− κ U ′ σT

]
,

with κ ∼ U([0, 1]), U,U ′ ∼ N(0, 1) and all these variables are independent (and also
independent of F). Summing up over all jump times we obtain

∆−1/2
n

(
V (f)nt − V (f)t

)
st−→ L(f)t

for f(x) = |x|p for p > 3. �

For the case f(x) = |x|2 the situation is simple:

∆−1/2
n

( bt/∆nc∑
i=1

|∆n
iX|2 − [X]t

)
= Snt + S

n

t +Rn
t ,
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with

Snt = ∆−1/2
n

( bt/∆nc∑
i=1

|∆n
iX

c|2 −
t∫

0

σ2
s ds
)

st−→ L(f)t (Example 3.2),

S
n

t = ∆−1/2
n

bt/∆nc∑
i=1

∆n
iX

c∆n
iX

j st−→ L(f)t (as before),

Rn
t = ∆−1/2

n

( bt/∆nc∑
i=1

|∆n
iX

j|2 −
∑

0≤s≤t

|∆Xs|2
)

P−→ 0 (as before).

�
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