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Overview

Models of population dynamics
That reach steady state—i.e., neither grow without limit nor die out
From classical (nineteenth century) to quite recent
We consider first, mean field models, then, models with spatial dynamics

Related qualitative effects in steady state populations

Clusterization: tendency of population to form clusters of increasing size separated by

nearly empty space of increasing size (see satellite photographs)
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where m; and ms are first and second moments

closely related to clusterization

Intermittency: identified mathematically by

Globalization: a network effect

the vast majority of the nodes in a network become indirectly linked
a manifestation of the Erdos-Renyi Theorem for random graphs

i.e., a giant component emerges above a critical value of expected degree
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Population Clusterization in Russian
Federation (Data from OECD.Stat)

Russian Federation: Population Density, 2000




Population Clusterization in USA (Data
from OECD.Stat)

United States of America : Population Density, 2000 GPW 3]




Satellite photo of nighttime lights in Japan, S.
Korea, China




Satellite photo of nighttime lights in
Europe




Satellite photo of nighttime lights in
USA




Distribution of Population Density in
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Distribution of Pop. Density in Iowa
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Introduction

Population dynamics theory:
Study of random integer valued measures n(t,T'), I' C R? (or Z9).
n(t,I") is number of particles in set [' at moment ¢ = 0.

Use neutral language of “particles,” as models too simple even for biological applications.
Particle field must be, for fixed ¢ > 0, homogeneous and ergodic in space.

Its evolution in time should include:

random motion in space (migration), birth and death processes, immigration,
and, in some cases, interaction between particles.

Central problem: convergence in law of n(¢,T"), t — oo, to steady state n(oco,T').
L.e., ergodicity of Markov process n(t,-) in space of infinite configurations of particles
In ergodic situation obtain population process that is homogeneous in time and space.

All models based on branching random processes, reaction-diffusion equations, and so forth.

Historically, starting point of theory was FKPP (Fischer-Kolmogorov-Petrovskii-Piskunov)
non-linear equation describing diffusion of new (superior) gene in supercritical regime.



[. Galton-Watson (continuous time)

Sir Francis Galton

Inspiration for Galton’s model: disappearance of noble families in England
Name passed on only through males
Extinction rate: About 50 % per century from medieval through modern times
“Life expectancy” of family: No more than 3 generations

But a few of these families grow quite large, e.g., Spencer family

(including Sir Winston Churchill, Dukes of Marlborough, Princess Diana)
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[. Galton-Watson (continuous time)
n(t): number of particles at ¢, n(0) = 1.

During (¢,t + dt) each particle either j,./"% P
produces one offspring with probability Fdt \\\; >

or dies (annihilation) with probability pdt P "\/\/\} ﬁ'

3 = p critical case

For u(t, z) = E2™*" backward Kolmogorov equation: % = B(u—1)% u(0,2) ==z

Results:

En(t) =1, En%(t) =1, P{n(t) =0} = —1,t—= 00

l—|-3f

but [Efu(t)|u(t) > 0] =1+ St (the central observation by Galton)



[I. Galton-Watson + immigration

Possible reactions during time interval (¢, + dt):

With probability Sdt With probability pdt

\ﬂp

New particle appears from outside with probability kdt, & the immigration rate
\ p
Process n(t), t > 0 is random walk on Z} = (0,1,...):

-k -(6n + tn + k)
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[I. Galton-Watson + immigration (cont.)
Limat Theorem 2.1. If B < p, k > 0, then there exists the limiting distribution

n(m) = lim p(t,ng,m) =

1 un!

_ k(B+E)---((m—1)3+k) (1 k “.+k(ﬁ—l—k)-*-((ﬂ—l)ﬁ_pk)_'_“.)—1

wmm!

In addition, En(t) —

L ,t—o0. If 8> p, k>0 then n(t) = oo (P-a.s.).

If the last parameter is large, then

& ﬂ’(t) - % law
n*(t) = k: — (0,1)
(n—5)*

In stationary regime, random variable n(t) has Gaussian fluctuations of

k
order , / T ks B around mean value .
p—p




[I. Galton-Watson + immigration (cont.)

Limit Theorem (Kurtz-type result) 2.2. If 3 < u, k > 0, then

g (t) - ﬁ law

\/E

which s an Ornstein- Uhlenbeck process.

» (1)

Model for some countries in contemporary Europe:
Below replacement fertility compensated by immigration
Central result: convergence to statistical equilibrium even in case

where p(z) and 3(z) are random and In % > ()



[I. Galton-Watson + immigration (cont.)

Country Natural change Immigration rate

rate (per thousand) (per thousand)
2012 2013 2014 2012 2013 2014

Germany -24 -26 -2.2 409 5.6 7.2
Italy -1.3 -14 -16 6.2 19.7 1.8
Hungary -39 -38 -33 1.6 0.5 0.5




[II. Bolker-Pacala Model (mean field approximation)

In this model, 3 > g, but

Stability of population depends on additional competition term
in mortality rate:

by = [T + C{]HTZ? L > 0.
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Equilibrium point n* is given by equation

L2 aq_
o _ fn = n'= (8= mo)L
L Cn

Gaussian fluctuations occur around this equilibrium.

Lo +



[V. Branching random walk with immigration

Similar to critical FKPP-type model on lattice Z¢

But includes immigration to any site x € Z¢

Initial configuration can be identically zero.

Backward approach of section I not applicable here:
Cannot split population n(¢,I") into sum of independent

subpopulations n(t, z, ).

Must use forward equations, therefore, for correlation functions

Generator of the underlying random walk: L (x) := Z a(z)(Y(z+ z) —¥(x))
z7#0



[V. Branching r.w. with immigration (cont.)

Simplest case is constant birth rate 5, mortality rate g and immigration
at constant rate k.

Equation for my(t,y) = E.n(t,y):

omi(t,y)
ot
m1(0,y) = po

= Lmy(t,y) + (8 — pw)m(t.y) + k

which yields: mi(t,y) = y E_ (for pu > B

t— o0 n—pa

Analysis of higher correlation functions is more difficult—
Not yet completed but we believe that limiting steady state exists.

This model is very stable.



[V. Branching r.w. with immigration (cont.)

Consider, next, case when §(z,w), u(z,w), and k(z,w) are
random stationary fields on lattice Z¢, and

a) plr,w)— pBlz,w) =46 >0
b) k(x,w)>d >0

Then, solution of equation

6m1(;tyw) = Lmy + (B — p)(z,w)my + k(z,w)
ml(o'.r y) — Po

tends, for t — oo, to limit: my(t,z,w) — mq(x,w).



[V. Branching r.w. with immigration (cont.)

Limiting density is solution of elliptic problem

Lm+ (f—p)m=—k
m(t,z) = ) Glz,y)k(y,w)

yeZd

where GG(x,y) is Green function for operator H = L+ V, V < —4§ < 0.

G(x,y) exists and is fast decreasing on Z%. |G(z,y)| < ce™?1*7¥l ¢ > 0.



[V. Branching r.w. with immigration (cont.)

Consider, finally, case when [, i, and k are stationary ergodic fields
in space and time and, again

(p—pB)(t,z,w) =0 >0
k(t,z,w) > d; > 0.

Even here, results on convergence to dynamics that are stationary
in space and time are similar.



V. Backward approach to ergodic theorem.
Lattice FKPP-type equation

Phase space: Z%; Uniform initial distribution: n(0,z) = 1
Critical case: 5 = pu > 0; & is the rate of jumps.
a(z) is probability of transition z -z + z; ) a(z)=1); a(z) =a(—2)

Generator of the underlying random walk: L (x) := Z a(z)(V(x+ z) — Y(z))
z70

Central result: If 3 = u (equilibrium between birth and death rates):
Steady state exists iff the underlying random walk is transzent.
In other words, migration must be sufficiently active.

In dimension d = 2, this means jump distribution must be heavy-tailed (many
long jumps).

Without this, population will undergo infinitely strong clusterization.



V. Backward approach to ergodic thm. (cont.)

Strategy of proof:

Take single particle at = € Z%.

Let n(t,z,T") = #(particles it generates at t > 0 in I' C Z9).

R.v.s n(t,z,T), z € Z% are independent. n(t,T')=3"__ .n(t,z,T).

For generating function, wu.(t,z,I") = B,z - we have KPP-type equation:

du, .
;1; = Lu, + B(u, — 1)
, xel

w(0,z,T) = o
1, z¢T

Differentiation over z and evaluation at z = 1 gives moment equations for
my(t,z, ') = E.n(t,T), mo(t,z,T) = Eyn(n — 1),



V. Backward approach to ergodic thm. (cont.)

To find Carleman estimates for cumulants ¢ (n(t,1)):

Calculate cumulants s4(n(t, z,T")) of independent r.v.s n(¢, z,I") using
estimates of factorial moments for n(t, z, )

Use relation s4(n(t,1")) = > e 2a(n(t,z, 1)), 1=1,2,...

Existence of limits of my(t, z,T"), t — oo follows from explicit formulas
for factorial moments.

This method works with small modifications for all branching random
processes on R? (or Z%), including KPP model, contact processes, etc.



VI. The problem of stability of the steady state

Clearly, assumption of criticality 5 = p not realistic for applications

All models without immigration are unstable.

Theorem 1.4 (Kondratiev-Kutoviy-Molchanov). Assume that
B(x) = fo+2b(x);  plx) = Bo+en(x)
where &(x) and n(x) are independent for different x € Z¢; and for some &
P{(€ —n)(z) > 6} > 0.

Then, n(t,I") — oo, P-a.s.

Central element here is the localization theorem for the Hamiltonian
H=L+cl(z)—nx) =L+:V(rw)

and existence of localized states with eigenvalues A;(w) > 0.

Corresponding eigenstates are concentrated on “happy islands” where £(z) —n(z) = 6 = 0.



VI. Stability of the steady state (cont.)
= plx) = B, z#F0; B(0) — p(0) =g = 0.

Consider now the local perturbation 3(x) =

Theorem 1.5. If the underlying random walk with the jump distribution a(z) is recurrent
(which is possible for d = 1,2), then, for arbitrary cg > 0 the Hamaltonian H = L + cpdg(x)

has a positive eigenvalue \i(cg) and, as a result, n(t,I') — 0o, P-a.s.

(Note: random walk is always transient for d > 3 and in low dimensions d =1, d = 2 under
additional assumptions: that distribution a(z) has heavy and regular tails, i.e., belongs to
domain of attraction of symmetric stable law with parameter o < 2 ford =2 or a < 1 for

d=1).
If random walk is transient, then, a spectral bifurcation occurs:
For ¢y > c.: positive eigenvalue exists and system is supercritical
For ¢y < c¢.: spectrum of H = L + ¢pdg 1s pure a.c.

Most likely indicates that steady state exists and represents small perturbation
of initial steady state but this fact still has no complete proof.



VII. Globalization

Definitions:
Random graph:
Collection V' of m vertices linked by set E of bidirectional edges.
Edges created probabilistically such that between any two
vertices 7 and j edge e;; exists with probability p

independently of the existence of any other edge.

Degree d of a vertex: number of other vertices to which it is directly linked.
Ed=p(m —1).
Component: set of vertices linked directly or indirectly to each other but

to no other vertices

Erdés-Renyi Theorem (1960): Above the critical value for the expected degree,
Ed =1, a giant component, i.e., a component including most vertices, emerges,
Below the critical value there is no giant component.



VII. Globalization (cont.)

Random graph with 150 vertices:




