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Outline

* Description of mean field model for one
population
— Model and random walk
— Limit theorems

* Extension of mean field model to multiple,
e.g., stratified, populations
— Multiple equilibria
— Global limit theorems and ergodicity



Basic model: Three processes

* Infinite initial population of particles living on
the lattice:  n(0,z), z € Z¢
* 1. Birth and migration

— Each particle, in time dt, produces 1 offspring with
probability b dt

— Offspring migrates distance z on lattice with
probability a*(z)



Basic model: Three processes

e 2. Mortality
— Each particle, in time dft, dies with probability u dt

* 3. Competition

— For any two particles, located at x and y, in time
dt, probability that each dies is a*(x,y) dt

— May assume that both do not die

— Probability that particle dies due to competition is
sum due to competition with all other particles



Mean field approximation

* Consider box @; c Z* with|Q.| = L, L alarge

parameter.
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» Total number of particles N.(t) = ) n(t,z)is
the logistic Markov chain TEQL

* Transition rates

npdt +n?/Ldt +o(dt?) ifj=n—1
[(Efz;l otherwise

nbdt + o(dt?) if j=n4+1
P (Np(t+dt) = j|Np(t) =n) =



Mean field approximation

 Modified l.c. to eliminate absorption at O:
Generator
Lip(n) = ap(n —1) — (an + Bu)t(n) + Bpb(n+ 1), n>0
LY(0) = Bor(1) — Bo(0)
Transition rates 2
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Mean field approximation

As random walk
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— Equilibrium for appropriately chosen large L
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— Asymptotics same as for iogistic chain



Mean field approximation

* Local Central Limit Theorem
— Let b > u. If k= O(L%3) then
for the invariant distribution 7, where o7 = Lb/~
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Mean field approximation

 Proof uses well-known formula for invariant
distribution of birth-and-death process

. . , m S-1 =1
m(r) = lm p(t,-.z) = <1 B0 fe1
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And fact that for logistic chain, S can be represented
in terms of degenerated hypergeometric function.



Mean field approximation

* Global Central Limit Theorem (Kurtz-type
result)

—Ifb>u, L>0,7>0 then

N = 5
\/E L—.h-::a:;r |

where ((t) is an Ornstein-Uhlenbeck process.

[1] M. Bessonov, S. MoLcHANOV. AND J. WHITMEYER, A Mean Field Approzima-
tron of the Bolker-Pacala Population Model. Markov Processes and Related Fields,
20, (2014) 329-348.



Multi-Class Extension: N-Box Model

Instead of 1-box model, N-box model
Gives rise to a random walk on

‘EHN ={(ny,no,...,nN):n; €Z, 1 <i <N}
Migration potential:
i (z,9) = af /L, i,j=1,2,...,N
Competition potential:
ap (x,y) =a; /L% i,7=1,2,...,N

Population given by
n(t) = {ni(t),n2(t),...,ny(t)}



N-Box Model

* Change in time dft:

(€ w. pr. bn;(t)dt + r:r(a’tgj

—€; w. pr. pn;(t)dt +

N
g 1
JZ a;;n;j(t)dt + o(dt?)
=1
e; —e; W. PI. ni(t)a;jdi—ﬂ{dtzj. jFi

n(t+dtn(t)) = n(t)+4 N
0 w. pr. 1 — Z[b- + i )ng (t)dt

——Zn n;(t)a; dt—I—Zn —|—-:= a’t]

(other  w. pr. o(dt?)

Where e; is vector with 1 in position i and O everywhere else.



Functional LLN and CLT for N-Box Model

* Transition function p from probabilities above:

p((n(t), n(t)+1)

( by (1)

pni(t) +

.’t}a—l—
S
+ Z ni{ﬂau

ni(t) =

jnj{ﬂ

Jl: Zni(ﬂnj(f}a;j—l—

1,7

all other 1



Functional LLN and CLT for N-Box Model

* Rescale process. Temporarily fix L.

ni(t)
L

e Set, foralli, zi(t) :=

e Define fr(z(t), 1) := %p[ll{ﬂ, n(t) +1)



Functional LLN and CLT for N-Box Model

e Then

( ba,.;::‘:a,.; 1=Ei_._ E=1......_;'\'T
piz; +a; 22 + Z a; ;zizj 1= —e;, i=1,...,N
_ JFi
fu(z(?),1) = 4 ﬁ:J-zi l=¢€;—¢€;, 1,7=1,...,Nii# ]
(not needed) 1=0
0 otherwise

\

* Note that f, does not depend on L.

1
*Set Fy(z(t)) == )  Lif(z(t),)
* Now letting L vary, relabel zp (1) := .

=~

and Zp(t) = (zp1(t), ..., zn (1))



Functional LLN and CLT for N-Box Model

For the rescaled system we have a functional Law of
Large Numbers, following papers by Kurtz.

Theorem. The process Z,(t) converges uniformly in
probability as L = o= to a deterministic process, the
solution of the system of differential equations

dz(t) 5
- = F(z(t
7 (z(1))

with initial point a stable equilibrium z* of the
system, i.e., solution of 0 = F(z(t))




Functional LLN and CLT for N-Box Model

Similarly, we have a functional Central Limit
Theorem.

In particular, ¢.(t) == VL(ZL(t) — z*) converges
weakly, as L—=>eo, to an Ornstem-UhIenbeck
process



Results for N = 2 and 3 Boxes

« Assume completely symmetric conditions
— Single birth rate (@, single death rate u
— Equal internal competition or “suppression” rates:
a” = ay foralli
— Equal external competition rates: a5 = a; for all |,
Jy 1 #]
— Common migration rates: a* = a;* for i, | = 1, 2

« Set B> u so system does not inevitably die
Out.



Results for N = 2 Boxes

« System may have up to 4 distinct non-
negative singular points

All 4 are real and non-negative If

* _ _ | L q T ap
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1) Trivial equilibrium at (0,0), unstable if 8 > p.
2) ( B—p_ _Bp ) which always exists.

@y +ag " ay +ag




Results for N = 2 Boxes

3) B—pu—2at | \'/I:E—ILI—EG__:IE[EE}—GI_ )2—da;at(ag—a; )(B—p—2a™)
2a; 2a; (ap—aj ) '
B—p—2at \/[E—;_{—Ea—]?[ﬂf}—ﬂr )2—da;at(ag—a; }(F—p—2at)
2a; 2a; (ag—ay )
4) f—p—2a™t V/[E—,L{—Ea—}?[ac—}—ar_"_|3—=1af_cr,+(aﬁ—a?}(,ﬁ—y—?a"‘]
2a; 2a; (ag—aj ) .
B—p—2a™ J[E—ﬂ—?ﬂ‘}%ﬂ@—ﬂ?‘_|3—=1ﬂ ;at(ag—a; )(B—p—2at)
2a; 2a; (ag—aj; )

Points 3 and 4 are stable equilibria.
Point 2 is a saddle point and not stable.



Results for N = 2 Boxes

* |f condition (*) is not satisfied, point 2 is the
only non-trivial equilibrium and it is stable.

* Point 2 is same equilibrium for each box as for
1-box model.

* Note existence of equilibria 3 and 4 depends
on a* small enough, i.e., low migration rate.

Contrary to what one might assume, that low
migration would keep the 1-box equilibrium stable.



Results for N = 3 Boxes

Results are similar to N= 2

In particular, 2 equilibria always exist
1) Trivial equilibrium at (0,0,0), unstable if 8 > .

2) B—pu B—pu B—pu
a; +2a; " ay +2a5 " a; +2a;

If ag"= 0, then point 2 is only non-trivial non-
negative equilibrium

Otherwise, under additional conditions, including
sufficiently low migration between boxes, multiple
non-negative equilibria can occur.



Ergodicity for N boxes

* Finally, we can establish geometric ergodicity

* We create {X,,}>2, on (Z,)", the
embedded discrete time r.w. associated with

our continuous r.w.

Set
=Z(5+H1 )i + Z

=1 i,j=1,i#j



Ergodicity for N boxes

Transition probabilities:
for x,y € (Z.)V, x#0

( Bix; ify=x+e,i=1,...,N
1 H'If'-l-a—?;;rz fv=x—e.,1=1 N
P[}{‘}-"): .;JI L L 1 o 1 gooogqd
C{}:\) + - if v — _ . P
Rijil 1 F—K—E‘L—E‘j‘;#}
0 otherwise
for x =0
(1
P{}:'. }r} = 4 in'lr'l } €i, - ?
w otherwise




Ergodicity for N boxes

Theorem. A r.w. with the above transition
probabilities is geometrically ergodic. That is, it
is positively recurrent with exponential
convergence to a stable distribution.



Ergodicity for N boxes

Method of proof:
Sufficient condition°
Z P(x,y)V(y) € AV (x) + bl g(x)
for Lyapunov function V(x) > 1
bounded set B, constants b< oo, A< 1
Lyapunov function: V(x) = o/l witha>1

We show a, A, b, and B can be chosen such
that the condition is met



Ergodicity for N boxes

Set external competition a;; = 0fori # j

Set symmetric conditions: for all i, 5; = 3,

;Li = ||”’ ﬂgj : ""-I'?'?' = ﬂj ’I-'ﬂ > Lt

H. .
Then, drift vector for this rw. Az := PZ — 7 =0

has at least 2 equilibria: 0 and & where

L4

for all components j: & = &=
{
Matches equilibria determined for N =1, 2, 3.



