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Outline 

• Description of mean field model for one 
population 

– Model and random walk 

– Limit theorems 

• Extension of mean field model to multiple, 
e.g., stratified, populations 

– Multiple equilibria 

– Global limit theorems and ergodicity 



Basic model: Three processes 

• Infinite initial population of particles living on 
the lattice:  

• 1. Birth and migration 

– Each particle, in time dt, produces 1 offspring with 
probability b dt 

– Offspring migrates distance z on lattice with 
probability a+(z) 



Basic model: Three processes 

• 2. Mortality 

– Each particle, in time dt, dies with probability μ dt 

• 3. Competition 

– For any two particles, located at x and y, in time 
dt, probability that each dies is a-(x,y) dt 

– May assume that both do not die 

– Probability that particle dies due to competition is 
sum due to competition with all other particles 

 



Mean field approximation 

• Consider box        with  , L a large 
parameter. 

• Let 

 

• Total number of particles     is 
the logistic Markov chain 

• Transition rates 



Mean field approximation 

• Modified l.c. to eliminate absorption at 0: 

Generator 

              , n>0 

 

Transition rates 

 

 

  

  



Mean field approximation 

As random walk 
 

               

 

 

 

– Equilibrium for appropriately chosen large L 

 

 

– Asymptotics same as for logistic chain 



Mean field approximation 

• Local Central Limit Theorem 

– Let b > μ.  If k = O(L2/3) then  

    for the invariant distribution πL,  where  



Mean field approximation 

• Proof uses well-known formula for invariant 
distribution of birth-and-death process 

 

 

Where 

 

And fact that for logistic chain, S can be represented 
in terms of degenerated hypergeometric function. 

 

 

 

 



Mean field approximation 

• Global Central Limit Theorem (Kurtz-type 
result) 

– If b > μ, L > 0,  then 

 

 

 

    where        is an Ornstein-Uhlenbeck process. 



Multi-Class Extension: N-Box Model 

• Instead of 1-box model, N-box model 

• Gives rise to a random walk on  

 

• Migration potential: 

 

• Competition potential:  

 

• Population given by 

 



N-Box Model 

• Change in time dt: 

 

 

 

 

 

 
 

Where ei is vector with 1 in position i and 0 everywhere else. 

 



Functional LLN and CLT for N-Box Model 

• Transition function p from probabilities above: 

 

 

 

 

 

 
 

  

 



Functional LLN and CLT for N-Box Model 

• Rescale process.  Temporarily fix L.   

 

• Set, for all i, 

 

• Define  

 

 
 

  

 



Functional LLN and CLT for N-Box Model 

• Then   
 
 

•   
 
 
 

• Note that fL does not depend on L.  
 

• Set 
 

• Now letting L vary, relabel  
         and  



Functional LLN and CLT for N-Box Model 

For the rescaled system we have a functional Law of 
Large Numbers, following papers by Kurtz. 

 

Theorem.  The process ZL(t) converges uniformly in 
probability as L  ∞ to a deterministic process, the 
solution of the system of differential equations  

 

 

with initial point a stable equilibrium z* of the  

system, i.e., solution of  

 

 
 

 

 

 

 



Functional LLN and CLT for N-Box Model 

Similarly, we have a functional Central Limit 
Theorem. 

 

In particular,     converges 
weakly,  as L∞, to an Ornstein-Uhlenbeck 
process 

 

 
 

 

 

 

 



Results for N = 2 and 3 Boxes 

• Assume completely symmetric conditions 

– Single birth rate β, single death rate μ 

– Equal internal competition or “suppression” rates: 
aI

- = aii
- for all i 

– Equal external competition rates: aO
- = aij

- for all i, 
j, i ≠ j 

– Common migration rates: a+ = aij
+ for i, j = 1, 2 

 

• Set β > μ so system does not inevitably die 
out. 

 



Results for N = 2 Boxes 

• System may have up to 4 distinct non-

negative singular points 

 

All 4 are real and non-negative if  

  (*) 

 

1) Trivial equilibrium at (0,0), unstable if β > μ. 

2)                           , which always exists. 

 

 



Results for N = 2 Boxes 

3) 

 

  

4) 

 

 

Points 3 and 4 are stable equilibria. 

Point 2 is a saddle point and not stable.  

 



Results for N = 2 Boxes 

• If condition (*) is not satisfied, point 2 is the 
only non-trivial equilibrium and it is stable. 

• Point 2 is same equilibrium for each box as for 
1-box model. 

• Note existence of equilibria 3 and 4 depends 
on a+ small enough, i.e., low migration rate. 

Contrary to what one might assume, that low 
migration would keep the 1-box equilibrium stable. 



Results for N = 3 Boxes 

• Results are similar to N= 2 

 

• In particular, 2 equilibria always exist 
1) Trivial equilibrium at (0,0,0), unstable if β > μ. 

 

2)                                                 

 

• If aO
- = 0, then point 2 is only non-trivial non-

negative equilibrium 

 

• Otherwise, under additional conditions, including 
sufficiently low migration between boxes, multiple 
non-negative equilibria can occur. 



Ergodicity for N boxes 

• Finally, we can establish geometric ergodicity 

• We create     , the 
embedded discrete time r.w. associated with 
our continuous r.w. 

Set 

 



Ergodicity for N boxes 

Transition probabilities: 

 



Ergodicity for N boxes 

Theorem.  A r.w. with the above transition 
probabilities is geometrically ergodic.  That is, it 
is positively recurrent with exponential 
convergence to a stable distribution. 

 

  



Ergodicity for N boxes 

Method of proof:   

 Sufficient condition: 

 

  for Lyapunov function V(x) ≥ 1 

  bounded set B, constants b < ∞, λ < 1 

 Lyapunov function:    with α > 1 

 We show α, λ, b, and B can be chosen such 
       that the condition is met 

 

 

 



Ergodicity for N boxes 

Set external competition  for  

Set symmetric conditions: for all i,      , 

      ,   ,       ,  

Then, drift vector for this r.w. 

 has at least 2 equilibria: 0 and    where 

    for all components i:  

Matches equilibria determined for N = 1, 2, 3. 


